中心对称图形学案

合集下载

中心对称图形教案

中心对称图形教案

中心对称图形教案第一章:中心对称图形的概念与性质1.1 引入中心对称图形的概念利用实物或图片引导学生观察和感知中心对称现象。

向学生介绍中心对称图形的定义:在同一平面内,如果一个图形能够绕某一点旋转180度后与原来的图形完全重合,这个图形就叫做中心对称图形。

1.2 探索中心对称图形的性质引导学生通过实际操作,探究中心对称图形的性质。

学生总结出中心对称图形的性质:(1)对称中心是图形的旋转中心;(2)对称中心将图形分成两个完全相同的部分;(3)对称中心到图形上任意一点的距离等于该点到对称中心的距离。

1.3 练习与巩固提供一些图形,让学生判断它们是否为中心对称图形。

让学生自己找出一些中心对称图形,并画出它们的对称中心。

第二章:中心对称图形的绘制与识别2.1 学习中心对称图形的绘制方法引导学生学习如何绘制中心对称图形。

学生通过实际操作,学会利用直尺和圆规绘制中心对称图形。

2.2 提高中心对称图形的识别能力提供一些图形,让学生判断它们是否为中心对称图形。

引导学生学会如何找出中心对称图形的重心。

2.3 练习与巩固提供一些图形,让学生判断它们是否为中心对称图形,并找出它们的重心。

让学生自己找出一些中心对称图形,并画出它们的对称中心。

第三章:中心对称图形与坐标系3.1 引入坐标系的概念向学生介绍坐标系的定义和作用。

利用实际例子,让学生理解坐标系中点的表示方法。

3.2 学习中心对称图形在坐标系中的性质引导学生学习中心对称图形在坐标系中的性质。

学生总结出中心对称图形在坐标系中的性质:(1)对称中心的坐标为(h, k),其中h为对称中心在x轴上的坐标,k为对称中心在y轴上的坐标;(2)对称中心将图形分成两个完全相同的部分;(3)对称中心到图形上任意一点的距离等于该点到对称中心的距离。

3.3 练习与巩固提供一些图形,让学生在坐标系中判断它们是否为中心对称图形。

让学生自己在坐标系中找出一些中心对称图形,并画出它们的对称中心。

人教版九年级数学上册23.2.2:中心对称图形(教案)

人教版九年级数学上册23.2.2:中心对称图形(教案)
3.实践活动中的分组讨论和实验操作,学生们表现得积极主动,这让我很欣慰。但同时,我也注意到有些学生在讨论过程中过于依赖同伴,缺乏独立思考。在接下来的教学中,我会加强对学生的引导,鼓励他们提出自己的观点,培养他们的独立思考能力。
4.学生小组讨论环节,大家在分享成果时表现出很高的热情。但在讨论过程中,我发现有些小组在解决问题时过于依赖教师,缺乏自主解决问题的能力。针对这个问题,我将在后续的教学中,逐步减少对学生的干预,让他们在探讨中学会自主分析和解决问题。
(4)中心对称图形的创新能力:学生在创作中心对称图形时,往往局限于教材中的例子,缺乏创新意识。
突破方法:鼓励学生发挥想象,尝试将中心对称知识应用于不同的场景和领域,提高学生的创新能力和实践能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过一些美丽的图案,它们看起来是完全对称的?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中心对称图形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如对称中心的寻找,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理。
5.总结回顾环节,学生对中心对称图形的基本概念和性质有了较好的掌握,但在实际应用方面还显得有些吃力。为了提高学生的应用能力,我计划在课后布置一些具有实际背景的作业,让学生在完成作业的过程中,进一步巩固所学知识。

中心对称图形 优秀教案

中心对称图形 优秀教案

中心对称图形【教学目标】1.知识与技能:1)通过具体实例认识旋转和中心对称图形;2)探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;3)了解线段、平行四边形、矩形、菱形、正方形、圆等是中心对称图形;2.过程与方法:渗透旋转变换的思考方法3.情感态度与价值观:1)通过数学活动了解数学与生活的广泛联系;2)通过观察分析国内外构图艺术,提高审美情趣。

【教学重难点】重点:探索中心对称图形概念的形成、识别和画法;难点:通过中心对称图形的教学渗透旋转变换的概念。

【教学过程】教学环节教师活动学生活动设计意图一、创设情境,引入新课展示生活情境,提出问题:1.仔细观察这些实例有何共同之处?1)风车2)太极图2在静止状态下,这些图形有怎仔细观察,都在旋转3)扑克牌1010样的特点呢?3做一做:以风车的风轮为例,绕点O旋转的风轮,使得A1移动到A2的位置。

思考下面的问题:(1)旋转后的风轮与原来位置上的风轮是否重合?(2)指出旋转中心在哪里?旋转角的角度是多少?(3)对于其他四个图形,请你也像上面一样进行研究,回答同样的问题。

具有这种共同特征的图形就是我们今天要探知的中心对称图形。

(板书课题)4)飞机的螺旋桨1)重合2)O点,180度3)观察实践后说明重合;总有一个点,绕之旋转180度后与原图形互相重合。

二、新课探究,对称性质1.归纳共同点:2.尝试概括中心对称图形的定义:一般地,在同一平面内,一个图形绕某一个点旋转180°,如果旋转前、后的图形相互重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

1.绕一个固定点旋转;旋转180度;旋转前、后的图形相互重合。

2.学生独立思考后,小组讨论,尝试组织语言抽象归纳出定义。

A1B1C1A2B2C2O1013.你在什么地方见到过中心对称图形?3.学生举例三、结合已学,探究性质1.想一想:1)我们已经学习了哪些几何图形?2)如线段、圆、等边三角形、平行四边形等。

中心对称图形教案+教案说明

中心对称图形教案+教案说明

中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。

通过一系列的教学活动和实例,学生将能够掌握中心对称图形的性质和特点,并能够运用这些知识解决实际问题。

教学目标:1. 了解中心对称图形的定义和性质。

2. 能够识别和绘制中心对称图形。

3. 能够运用中心对称图形的性质解决实际问题。

教学内容:第一章:中心对称图形的定义1.1 引入中心对称图形的概念。

1.2 解释中心对称图形的定义。

1.3 举例说明中心对称图形的特征。

第二章:中心对称图形的性质2.1 介绍中心对称图形的基本性质。

2.2 通过实例演示中心对称图形的性质。

第三章:识别中心对称图形3.1 教授如何识别中心对称图形。

3.2 提供练习题,让学生练习识别中心对称图形。

3.3 给予反馈和指导。

第四章:绘制中心对称图形4.1 教授如何绘制中心对称图形。

4.2 提供练习题,让学生练习绘制中心对称图形。

4.3 给予反馈和指导。

第五章:中心对称图形在实际问题中的应用5.1 介绍中心对称图形在实际问题中的应用。

5.2 提供实际问题,让学生运用中心对称图形的知识解决。

5.3 给予反馈和指导。

教学方法:1. 采用直观演示法,通过实物和图形进行展示和讲解。

2. 采用问题解决法,提供实际问题,让学生运用中心对称图形的知识解决。

3. 采用分组讨论法,让学生分组讨论和交流,促进学生的思维和合作能力。

评价方法:1. 课堂练习题,评估学生对中心对称图形的理解和掌握程度。

2. 实际问题解决,评估学生运用中心对称图形知识解决实际问题的能力。

3. 学生分组讨论和交流,评估学生的合作和思维能力。

教学资源:1. 中心对称图形的实物和图形展示。

2. 练习题和实际问题。

3. 分组讨论和交流的指导。

教学时间:1. 第一章:2课时2. 第二章:2课时3. 第三章:1课时4. 第四章:1课时5. 第五章:1课时通过本教案的学习和实践,学生将能够理解中心对称图形的概念,并能够识别和绘制各种中心对称图形。

中心对称图形教案+教案说明

中心对称图形教案+教案说明

中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。

通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。

教学目标:1. 了解中心对称图形的定义和性质。

2. 学会如何判断一个图形是否为中心对称图形。

3. 能够运用中心对称图形的性质解决实际问题。

教学重点:1. 中心对称图形的定义和性质。

2. 判断一个图形是否为中心对称图形的方法。

教学难点:1. 理解中心对称图形的性质并运用解决实际问题。

教学准备:1. 教学PPT或黑板。

2. 中心对称图形的示例图形。

3. 练习题。

教学过程:一、导入(5分钟)1. 向学生介绍中心对称图形的概念。

2. 向学生展示一些中心对称图形的示例。

二、新课(15分钟)1. 向学生讲解中心对称图形的定义和性质。

2. 通过示例图形,让学生观察和操作,引导学生发现中心对称图形的性质。

3. 引导学生通过推理和交流,总结中心对称图形的性质。

三、练习(10分钟)1. 让学生独立完成一些判断中心对称图形是否为中心对称图形的练习题。

2. 让学生运用中心对称图形的性质解决实际问题。

四、总结(5分钟)1. 让学生回顾本节课所学的中心对称图形的定义和性质。

2. 让学生谈谈自己在练习中遇到的问题和解决方法。

五、作业(5分钟)1. 让学生完成一些关于中心对称图形的练习题。

2. 让学生运用中心对称图形的性质解决实际问题。

教学反思:通过本节课的教学,学生应该能够理解中心对称图形的定义和性质,并能运用其性质解决实际问题。

在教学过程中,要注意引导学生通过观察、操作、推理和交流等活动,加深对中心对称图形性质的理解。

要关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。

中心对称图形教案教案说明:本教案旨在帮助学生理解中心对称图形的概念,并能运用其性质解决实际问题。

通过观察、操作、推理和交流等活动,学生将能够掌握中心对称图形的定义、性质及其在几何中的应用。

中心对称图形的性质教案

中心对称图形的性质教案

中心对称图形的性质教案一、引言中心对称图形是几何学中一个重要的概念。

它具有许多独特的性质和特点,能够帮助我们更好地理解图形的结构和性质。

本教案将介绍中心对称图形的定义、性质以及相关的应用。

二、中心对称图形的定义1. 定义:中心对称图形是指图形中的每一个点都与以某一点为中心的另一个点关于中心对称图形的性质教案对称轴相交,并且对称轴将图形分为两个部分,这两个部分完全相同。

2. 符号表示:用字母A表示中心对称图形中的一个点,以O表示中心点,用A'表示点A相对于中心点O的对称点。

3. 性质:(1) 中心对称图形中的任意一点在对称轴上的对称点对称性:若B 为中心对称图形中的任意一点,B'为点B在对称轴上的对称点,则B'也是对称轴上任意一点的对称点。

(2) 中心对称图形中的任意一对相对点对称性:若A和B是中心对称图形中的一对相对点,A'和B'分别是A和B的对称点,则A'和B'也是一对相对点。

(3) 中心对称图形中的任意两条线段之间的长度对称性:若线段AB 与线段A'B'在对称轴上分别相交于C和C',则AC = A'C',BC = B'C'。

三、中心对称图形的性质1. 中心对称图形的对称轴:(1) 对称轴是图形中的一条直线,将图形分为对称的两部分。

(2) 对称轴具有以下性质:- 对称轴上的任意一点与中心点的连线垂直于对称轴。

- 对称轴上的任意一点和其对称点与中心点的连线共线。

2. 中心对称图形的旋转对称性:(1) 旋转对称轴是图形中的一条直线,将图形分为旋转对称的两部分。

(2) 旋转对称轴具有以下性质:- 旋转对称轴上的任意一点经过旋转180度后与中心点重合。

- 旋转对称轴上的任意一点和其旋转180度后的点的连线垂直于旋转对称轴。

3. 中心对称图形的面积和周长:中心对称图形的面积和周长与其对称轴和旋转对称轴之间的位置关系密切。

中心对称图形的教案孔凡华

中心对称图形的教案孔凡华

中心对称图形教案(孔凡华)一、教学目标:知识与技能目标:让学生理解中心对称图形的概念,能够识别和画出简单的中心对称图形。

过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的观察能力和创新意识。

二、教学重点与难点:重点:中心对称图形的概念及性质。

难点:如何判断一个图形是否是中心对称图形。

三、教学方法:采用问题驱动法、合作学习法和情境教学法,引导学生通过观察、操作、思考、交流等活动,发现中心对称图形的特征和性质。

四、教学准备:准备一些中心对称图形的图片,如圆、正方形、矩形等,以及一些非中心对称图形的图片,如三角形、梯形等。

还需要准备一些教学工具,如直尺、圆规等。

五、教学过程:1. 导入:展示一些中心对称和非中心对称的图片,让学生观察并说出它们的名称。

引导学生思考:这些图形有什么特点?有没有什么规律?2. 新课导入:介绍中心对称图形的概念,让学生了解中心对称图形的定义和性质。

通过示例,讲解如何判断一个图形是否是中心对称图形。

3. 课堂讲解:讲解中心对称图形的性质,如对称轴、对称中心等。

让学生通过观察、操作,发现中心对称图形的特征。

4. 课堂练习:让学生分组讨论,找出一些中心对称图形,并画出来。

让学生尝试解决一些与中心对称图形有关的问题。

5. 课堂小结:6. 课后作业:布置一些有关中心对称图形的练习题,让学生巩固所学知识。

六、教学拓展:引导学生思考中心对称图形在现实生活中的应用,如设计图案、建筑结构等。

让学生举例说明中心对称图形在实际生活中的运用,提高学生的实际应用能力。

七、课堂评价:通过课堂练习和课后作业,评价学生对中心对称图形的理解和掌握程度。

关注学生在课堂中的参与情况和合作意识,鼓励学生积极发言,提高课堂氛围。

八、教学反思:在课后反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

关注学生的学习需求,不断优化教学内容和方法。

中心对称图形的特征和性质教案

中心对称图形的特征和性质教案

中心对称图形的特征和性质教案
一、教学目标
1.了解中心对称图形的特征和性质;
2.培养学生观察能力和创造力;
3.提高学生问题解决的能力。

二、教学重点
中心对称图形的特征和性质。

三、教学难点
如何使用中心对称的方式解决问题。

四、教学准备
1.课程教材:小学数学教材;
2.教学工具:图形板、圆规、直尺、彩色笔等;
3.教学环境:课堂。

五、教学过程
1.导入
引入中心对称的概念和应用,让学生能识别图形中的对称轴。

2.讲解
(1)中心对称的含义
中心对称是指以图形中心为对称中心,将原来的图形旋转180度后仍然是原来的图形。

(2)中心对称的特征
图形中心是中心对称的对称中心,当图形旋转180度后,形状和大小都不变,而且和原图形重合,有对称性。

(3)中心对称的性质
1)对称图形的中心点一定在对称轴上;
2)对称图形中心对称的物体的大小和形状完全相同;
3)对称轴一定是对称图形的一条直线或一条曲线。

3.演示
老师在黑板上演示,让学生观察图形的对称性质。

4.练习
让学生自己操作,通过练习观察和查找对称轴的位置,找出中心对称图形的特征和性质。

5.拓展
让学生思考:如何在一些问题中使用中心对称的方式解决问题。

六、教学总结
通过本节课的学习,学生们学会了中心对称图形的特征和性质,培养了他们的观察能力和创造力。

在将来学习课程时,他们可以更好地应用这些知识帮助自己解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4中心对称图形
潍城区南关中学岳奎韫
学习目标:
1.经历观察.操作.分析等数学活动过程,通过具体实例认识中心对称图形。

2.了解中心对称图形的性质.
教学重点、难点:中心对称的性质.
教学过程:
一、情境引入
利用多媒体提供的实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将一个图形绕着某一点旋转180°,能与自身重合吗?哪些旋转180°后可以与自身重合?
二、新课讲授
⒈引出概念:
在平面内,如果一个图形绕着某一点旋转180度,能与重合,那么这个图形叫做,叫做对称中心,叫做对称点议一议:
下列图形哪些是中心对称图形?哪些是轴对称图形?
(1)平行四边形、矩形、菱形、正方形、梯形、等腰梯形
(2)正三角形、正四边形、正五边形、正六边形、正七边形…
由此的出结论:边数为的正多边形都是中心对称图形。

2.中心对称图形的性质:。

想一想:如何确定一个点的对称点?找出图中P点的对称点
B C
3、轴对称图形与中心对称图形的区别:
三、随堂练习:
1、在纸上写下前26个大写的英文字母,观察它们:
A B C D E F G H I J K M N
O P Q R S T U V W X Y Z
(1)是轴对称图形的有
(2)是中心对称图形的有
(3)既是中心对称图形,又是轴对称图形的有。

1:(2010山东青岛)下列图形中,中心对称图形有().
2.(2010甘肃兰州)观察下列银行标志,从图案看既是轴对称图形又是中心对称图
形的有()
A.1个B.2个 C.3个 D.4个
A.等边三角形B.矩形C.等腰梯形D.平行四边形
4、(2010 江苏连云港)下列四个多边形:
①等边三角形;②正方形;③正五边形;④正六边形.
其中,既是轴对称图形又是中心对称图形的是()
A.①②B.②③C.②④D.①④
5、(2010 山东莱芜)在下列四个图案中既是轴对称图形,又是中心对称图形的是( )
A B C D
6、(2010 广东珠海)现有如图所示的四张牌,若只将其中一张牌旋转180后
得到图,则旋转的牌是()
A B C D
五、作业布置:配套练习册P9页。

相关文档
最新文档