质点动力学的基本方程
11第11章质点动力学的基本方程PPT课件

略摩擦及AB质量;λ=r/l 较小时,以O为坐标原点,滑块B的运动方
程近似为
x l( 1 24 ) r [ct o (s 4 )c,试2 o 求t]s
t0和 时2,AB所受的力。
解:以滑块B为研究对象
mxaFcos
yA
O
F
FN
x
由滑块B的运动方程得
a x x r 2 (c to c s2 o t)s
§11-2 动力学的基本定律
牛顿三定律
第一定律(惯性定律) 不受力作用的质点,将保持静止或作匀速直线运动。
包括受平衡力系作用的质点
不受力作用的质点处于静止状态,或保持其原有的 速度(包括大小和方向)不变的性质称为惯性。
第一定律阐述了物体作惯性运动的条件,故称为惯 性定律。
§11-2 动力学的基本定律
从这种意义上说,动力学是理论力学中最具普遍意义 的部分,静力学、运动学则是动力学的特殊情况。
动力学的研究对象:低速、宏观物体的机械运动的普 遍规律。
动力学的力学模型
质点:质点是具有一定质量而几何形状和尺寸大小可以 忽略不计的物体。 地球绕太阳的公转——质点 刚体的平动——质点
质点系:系统内包含有限或无限个质点,这些质点都具有惯性, 并占据一定的空间;质点之间以不同的方式连接或者 附加以不同的约束。 地球的自转——质点系
刚体:质点系的一种特殊情形——不变形的质点系 其中任意两个质点间的距离保持不变。
工程实际中的动力学问题
v1
F
v2
棒球在被球棒击 打后,其速度的大 小和方向发生了变 化。如果已知这种 变化即可确定球与 棒的相互作用力。
工程实际中的动力学问题 载人飞船的交会与对接
v2 v1
B A
§3.3 质点系的动力学方程(YBY

m1a1 F1 f12 ,
f12 f21
m2a2 F2 f21
m1a1 m2a2 F1 F2
推广到质点组 (1) m a F F ii i (1)称为质点组的动力学方程。 2、质点系质心动力学方程
(5)
质点系的质心运动定理在直角坐标系中投影式为
Fx Fix maCx , Fy Fiy maCy , Fz Fiz maCz (6)
质心运动定理给出质心加速度,描述了质点系整体运动的重要 特征.并未对质点系运动作全面描述,更全面描述质点系的运 动,还应进—步研究各质点相对质心的运动.
d 2 ri F Fi mi ai mi 2 dt
2 2
d d mi ri 2 mi ri m 2 dt dt m
(2)
m r ii m
具有长度的量纲,描述与质点系相关的某一空间点的位置 m r ii (3) 引入质心的概念 rC m 在直角坐标系
m1r1 m2 r2 rc (t ) m1 m2 r2 (t ) r1 (t ) r (t )
m2 r1 (t ) rc (t ) m m r (t ) 1 2 m1 r r (t ) 2 (t ) rc (t ) m1 m2
m x ,
i i
xc
m
yc
m y ,
i i
m
第二章非惯性系中的质点动力学

x'
y
O
x
非惯性系中的质点动力学基本方程
mar F FIe FIC 或质点相对运动动力学基本方程
在非惯性系内,上式写成微分方程形式
m
d
2
r
dt 2
F
FIe
FIC
非惯性系中的质点运动微分方程
质点相对运动微分方程
其中 r表 示质点M在非惯性系中的矢径
d 2r dt 2
解:
以上抛点为坐标原点,选取固定于地球的非惯 性参考系为 Oxyz
其中 z轴 铅直向上, 近似通过地球中心。
x轴水平向东, y轴水平向北。
表现重力
P F FIe mg
其中 F为地球引力
科氏惯性力
FIC maC 2m vr
vr xi yj zk
FIC
的矢量积可展开为
i j k
例2- 4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,
如图所示,若不计摩擦等阻力。
求:平板以多大加速度向右平移时,小球能保持相对静止。 若平板又以这个加速度的两倍向右平移时,小球应沿 板向上运动。球沿板走了l 距离后,小球的相对速度是 多少?
a
解: (1)在平板上固结一动参考系 Oxy
md2来自rdt 2mg
F1
F2
FIe
FIC
(a)
将上式投影到 x轴 上得 mx mx 2
令 vr x
dvr dvr dx 2x
dt dx dt
z'
O
y' F1
F2
B
mg
FIC
FIeA x'
注意
dx dt
vr
第10章质点动力学的基本方程

受力分析: 电场力
运动分析: 平面曲线运动
y 交流 O
电源
v0
F v
x
质点运动
轨迹
dx vx v 0 dt dy eA vy sin kt dt mk
运动方程:
t 0时 x y 0
eA cos kt 1 y 2 mk
k cos v x 1 0
Tmax
2 v0 G( 1 ) gl
n
T
v
说明:
G
①减小绳子拉力途径:减小跑车速度或者增加绳子长度。 ②拉力Tmax由两部分组成, 一部分等于物体重量,称为静拉力。 一部分由加速度引起,称为附加动拉力。全部拉力称为动拉力。
2.第二类:已知作用在质点上的力,求质点的运动(积分问题)
第十章
质点动力学的基本方程
——质点受力与其运动变化之间的关系
§10-1
第一定律 :
动力学的基本定律
不受力作用的质点,将保持静止或作匀速直线运动。
惯性
说明: 1、不受力作用的质点,包括受平衡力系作用的质点。 2、阐述了物体作惯性运动的条件,又称为惯性定律。
第二定律
ma F
1、质点在力作用下必有的加速度,运动状态一定发生改
向前摆动,求钢丝绳的最大拉力。
v0
解: ①研究对象: 重物(抽象为质点)
②受力分析: 如图所示。
n
T
v
③运动分析: 以O为圆心,l为半径的
圆周运动。
G
⑤求解
④质点运动微分方程
v2 T G(cos ) gl
ma F
第9章 质点动力学的基本方程

Northeastern University
§9-2 质点的运动微分方程
质量为m的炮弹以速度 发射, 的炮弹以速度v 例9-2 质量为 的炮弹以速度 0发射,v0与地面夹角为θ,求炮 弹的运动规律。 弹的运动规律。 以炮弹为研究对象, 解:⑴ 以炮弹为研究对象,画受力图 取坐标系, ⑵ 取坐标系,列微分方程
PAG 17
Northeastern University
§9-2 质点的运动微分方程
质量为m的小球以水平速度 射入静水,如水对小球的 的小球以水平速度v 例9-3 质量为 的小球以水平速度 0 射入静水 如水对小球的 阻力F与小球速度 的方向相反,而大小成正比 与小球速度v的方向相反 而大小成正比,即 阻力 与小球速度 的方向相反 而大小成正比 即F=-µv(µ为粘 ( 为粘 滞阻尼系数)。忽略水对小球的浮力, )。忽略水对小球的浮力 滞阻尼系数)。忽略水对小球的浮力,试分析小球在重力和阻 力作用下的运动。 力作用下的运动。 以小球为研究对象, 解:⑴ 以小球为研究对象,画 受力图 取直角坐标系, ⑵ 取直角坐标系,列小球沿 x、y轴的运动微分方程 、 轴的运动微分方程 r r r F = − µvx i − µv y j
理论力学
Northeastern University
第九章 质点动力学的基本方程
静力学:研究物体在力系作用下的平衡条件 运动学:研究物体运动的几何性质 动力学:研究物体的机械运动与作用力之间的关系 质点:只计质量而忽略其形状和大小的物体
研究卫星的轨道时,卫星 刚体作平移时,刚体 质点; 质点。
PAG 2
µ
m
t
PAG 20
Northeastern University
质点动力学知识点总结

质点动力学知识点总结基本概念:质点:具有质量但没有体积和形状的物体模型。
力:质点动力学研究的核心内容,包括恒力、变力和约束力。
运动方程:描述质点在外力作用下的运动规律的基本方程。
动量:描述质点运动状态的重要物理量,等于质点的质量乘以速度。
动能:描述质点运动状态的另一个重要物理量,等于质点的质量乘以速度的平方再乘以1/2。
势能:描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。
角动量和角动量定理:与质点的旋转运动相关的物理量和定理。
基本理论:牛顿运动定律:描述了质点在作用力作用下运动的规律,即F=ma,其中F表示合外力,m表示质点的质量,a表示质点的加速度。
动量定理:通过动量的概念揭示了力与运动之间的内在联系,即合外力的冲量等于物体动量的变化量,表达式为Ft=mV-mv。
动能定理:引入动能的概念,建立了力学与能量之间的关系,即合外力做的功等于物体的动能的改变量,表达式为W=1/2mV^2-1/2mv^2。
分析方法:矢量方法:利用矢量运算符对问题进行矢量分析。
微分方程方法:将运动方程化为微分方程,然后求解微分方程获得运动规律。
能量方法:利用能量守恒定律等能量原理分析运动问题。
实际应用:军事方面:应用在导弹、卫星、航天器和飞机等领域,研究其受力情况和运动规律,从而提高军事制式的效率和效果。
经济方面:应用在金融市场和交通运输领域,分析市场变化和流动性,以及货运运输的效益和优化策略。
社会方面:研究城市交通拥堵问题、人口迁移以及城市规律,以提高城市的运作效率和质量。
总的来说,质点动力学涉及到质点的运动规律、动量、动能、势能等基本物理量的研究,以及相关的理论和实际应用。
通过学习和掌握质点动力学的知识,可以更好地理解物体在外力作用下的运动规律,以及如何利用这些规律解决实际问题。
质点动力学知识点总结

质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。
在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。
在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。
希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。
一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。
根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。
根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。
二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。
这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。
2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。
这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。
三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。
根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。
动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。
根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。
四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。
动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。
质点动力学的基本方程

y aC x ar
FS
maa Fi m(ae ar aC ) Fi
φ
F
a
n e
φ FN
mg
沿x方 向 投 影: m (a r aen ) F mg sin Fs 2 ( 0.2) F 2 9.8 sin57.3o Fs (1) 沿y方 向 投 影: maC FN mg cos
t m m y D2 e g ( 6) m m m C1 v 0 C 2 v0 0 可得 m2 m2 0 D1 2 g D2 2 g
t m 代入( 3) , (5) 式整理可得: x v0 (1 e m )
t m2 m m y 2 g(e 1) gt
k cos v x 1 0
例三
质量为m 的小球以水平速度vo 射入静水中. 水对小球的阻力F与 小球的速度方向相反, 而大小为F = μv , μ 为阻尼系数. 忽略水对 小球的浮力. 求小球在重力和阻力作用下的运动方程.
解:
O vo F M v mg x
y
取质点分析其受力及运动: 0 m x 0 C x Ct D x x eA cos kt m y
m x
0
vo
F
v
e A cos kt y m e y A sin kt E km e y 2 A cos kt Et F k m
0 (1) x m g ( 2) m y mg y y y m 先求二阶常系数齐次的 通解 x m x x (特征根法) 0 m 1 0 2 m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并与铅直线成
角。如小球在水平面内作匀
速圆周运动,求小球的速度v与绳的张力。
已知:
求:
已知: :
这是混合问题。
例10-4 粉碎机滚筒半径为R,绕通过中心的水
平轴匀速转动,筒内铁球由筒壁上的凸棱带着上升。 为了使小球获得粉碎矿石的能量,铁球应在 时才掉下来。求滚筒每分钟的转数n 。
已知:匀速转动。
常数A,k,忽略质点的重力,试求质点的运动轨迹。
已知:
求:质点的运动轨迹。
已知: 求:质点的运动轨迹。
解:
由 积分
已知: 求:质点的运动轨迹。
得运动方程 消去t, 得轨迹方程
这是第二类基本问题。
例10-3 一圆锥摆,如图所示。质量m=0.1kg的
小球系于长l=0.3m 的绳上,绳的另一端系在固定点O,
§10-1 动力学的基本定律
第一定律 (惯性定律): 不受力作用的质点,将保持静止或作匀速直线运动。 第二定律 重力 力的单位:牛[顿],
第三定律 (作用与反作用定律): 两个物体间的作用力与反作用力总是大小相等,方向 相反,沿着同一直线,且同时分别作用在这两个物体上。
§10-2 质点的运动微分方程
如滑块的质量为m, 忽
略摩擦及连杆AB的质量,试
求当
,
连杆AB所受的力.
已知: 则
求: 解:研究滑块
其中
当 得
有 得
这属于动力学第一类问题。
例10-2 质量为m的质点带有电荷e,以速度v0进入强 度按E=Acoskt变化的均匀电场中,初速度方向与电场强度
垂直,如图所示。质点在电场中受力
作用。已知
时小球掉下。
求:转速n.
已知:匀速转动。 求:转速n.
解:研究铁球
时小球掉下。
1 、在直角坐标轴上的投影
2、在自然轴上的投影
3 、质点动力学的两类基本问题 第一类问题:已知运动求力。 第二类问题:已知力求运动。 混合问题:第一类与第二类问题的混合。
例10-1 曲柄连杆机构如图所示.曲柄OA以匀角速
度 转动,OA=r,AB=l,当
比较小时,以O 为坐
标原点,滑块B 的运动方程可近似写为