数学建模例题

合集下载

数学建模例题

数学建模例题

例1 怎样使饮料罐制造用材最省的问题.首先,把饮料罐假设为正圆柱体(实际上由于制造工艺等要求,它不可能正好是数学上的正圆柱体,但这样简化确实是近似的、合理的).在这种简化下,我们就可以来明确变量和参数了,例如可以假设:V一罐装饮料的体积,r一半径,h一圆柱高,b一制罐铝材的厚度,l一制造中工艺上必须要求的折边长度。

上面的诸多因素中,我们先不考虑l这个因素.于是:由于易拉罐上底的强度必须要大一点,因而在制造上其厚度为罐的其他部分厚度的3倍.因而制罐用材的总面积A=,每罐饮料的体积V是一样的,因而V可以看成是一个常数(参数),解出A:代入A得:从而知道,用材最省的问题就是求半径r使A(r)达到最小。

A(r)的表达式就是一个数学模型。

可以用多种精确的或近似的方法求A(r)最小时相应的r。

从而求得例3 数据拟合模型在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。

但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。

只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是统计学中的拟合回归方程问题。

“人口问题”是我国最大社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础。

有人口统计年鉴,可查的我国从1949年至1994年人口数据智料如下:年份1949 1954 1959 1964 1969 1974 1979 1984 1989 1994人口数(百万)541.67602.66672.09704.99806.71908.59975.421106.761176.74分析:(1)在直角坐标系上作出人口数的图象。

(2)估计出这图象近似地可看做一条直线。

(3)用以下几种方法(之一)确定直线方程,并算出1999年人口数。

方法一:先选择能反映直线变化的两个点,如(1949,541.67),(1984,1034.75)二点确定一条直线,方程为N = 14.088 t – 26915.842代入t =1999,得N »12.46亿方法二:可以多取几组点对,确定几条直线方程,将t = 1999代入,分别求出人口数,在取其算数平值。

数学建模例题题

数学建模例题题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、线性规划模型—销售计划问题某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

要求:若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型,并用软件求解。

【注】线性规划在MATLAB的库函数为:linprog。

语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划目标函数的系数:f = [-5; -4; -6]约束方程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调用线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

全国数学建模例题

全国数学建模例题

全国数学建模例题
以下是一个全国数学建模竞赛的例题:
题目:某地区近年来发生了多起自然灾害,为了更好地预防和应对灾害,需要对该地区的边坡进行稳定性评估。

边坡的稳定性评估可通过计算其稳定性指数来衡量,稳定性指数高表示边坡稳定,稳定性指数低表示边坡存在倾覆的风险。

现有一座边坡,其高度为H,坡度为α,坡面上分布有多个点,每个点的坡面高度记为hi(i=1,2,3,...,n)。

已知边坡的重力稳定系数为K,稳定性指数计算公式如下:
SI = Σ(K⋅hi⋅cos(α))^2 - H^2
请你们设计一个数学模型,利用给定的数据计算该边坡的稳定性指数,并分析稳定性指数与边坡参数的关系。

要求:
1. 给出稳定性指数计算公式的推导过程;
2. 设计算法和程序,输入边坡的参数(H, α, hi)和重力稳定系数K,输出稳定性指数SI;
3. 分析稳定性指数与边坡参数的关系,并给出相应的结论和建议。

请根据以上要求给出你们的建模方案和解答步骤。

以上是一个示例的全国数学建模竞赛题目,实际的题目内容和难度会因年份和级别的不同而有所变化。

在数学建模竞赛中,参赛者需要运用数学知识和建模技巧,解决现实问题并给出合理的建议和结论。

数学建模经典例题

数学建模经典例题

1 数学建模经典例题某学校有三个系共200名学生,其中甲系100名,乙系60名,丙系40名.若学生代表会议设20各级席位,公平而又简单的席位分配方法是按学生人数的比例分配,显然甲乙丙三系分别应占有10,6,4个席位,现在丙系有6名学生转入甲乙两系,各系人数如表第二列所示,仍按比例(表中第三列)分配席位时出现了小数(表中第四列),在将取得整数的19席分配完毕后,三席同意剩下的1席参照所谓惯例分给比例中小数最大的系,于是三系分别占有10,6,4席(表中第5列)因为有20个代表会议在表决的时候可能出现10:10的局面,会议决定下一届增加一席,他们按照上述方法重新分配席位,计算结果见表6,7列,显然这个结果对丙系太不公平了.因为总席位增加一席,而丙系却由4席减为3席.按照比例并参照惯例的席位分配系别学生学生人数 20个席 20个席位 21个席位 21个席位人数的比例(% 的分配的分配的分配的分配比例分配参照惯例比例分配参照惯例的席位的结果的席位的结果甲 103 51.5 10.3 10 10.815 11乙 63 31.5 6.3 6 6.615 7丙 34 17.0 3.4 4 3.570 3总和 200 100.0 20.0 20 21.000 21要解决这个问题必须舍弃所谓惯例,找到衡量公平分配席位的指标,并由此建立新的分配分配方法解答:Pī/Nī表示第ī个单位每个代表名额代表的人数采用相对标准,引入相对不公平概念.如果P1/n1>P2/n2,则说明A方是吃亏的,或说对A方不公平.对A的相对不公平度:rA(n1,n2)=(p1/n1-p2/n2)/(p2/n2)=(p1n2)/(p2n1)-1对B的相对不公平度:rB(n1,n2)=(p2n1)/(p1n2)-1情形1:P1/(n1+1)>p2/n2,表明即使A方再增加一个名额,仍然对A方不公平,所以这个名额当然给A方情形2:P1/(n1+1)<p2/n2,表明A增加一个名额后,就对B方不公平,这时B的相对不公平度为:rB(n1+1,n2)=p2(n1+1)/p1n2-1情形3:(P1/n1)>p2/(n2+1) ,表明B增加一个名额后,就对A方不公平,这时A的相对不公平度为:rA(n1,n2+1)=p1(n2+1)/p2n1-1由以上三种情形可知,若情形1发生,名额给A方.否则须考查rB(n1+1,n2)和rA(n1,n2+1)的大小关系.如果rB<rA,则名额给方,否则给B方.由于rB(n1+1,n2)<rA(n1,n2+1)等价于P2*P2/n2(n2+1)< P1*P1/n1(n1+1)若情形1发生,上式仍成立,记作Qi=pi*pi/ni(ni+1)增加名额给Q值较大一方.Q甲=103*103/10(10+1)=96.445Q乙=63*63/6(6+1)=94.5Q丙=34*34/4(4+1)=57.8因此名额加给甲班。

数学建模线性规划上机题

数学建模线性规划上机题

例1 (任务安排)某厂计划在下月内生产4种产品B1,B2,B3,B4。

每种产品都可用三条流水作业线A1,A2,A3中旳任何一条加工出来.每条流水线(Ai)加工每件产品(Bj)所需旳工时数(i=1,2,3,j=1,2,3,4)、每条流水线在下月内可供运用旳工时数及多种产品旳需求均列表于4.1中.又A1,A2,A3三条流水线旳生产成本分别为每小时7,8,9元。

现应怎样安排各条流水线下月旳生产任务,才能使总旳生产成本至少?例2 (外购协议)某企业下月需要B1,B2,B3,B4四种型号旳钢板分别为1000,1200,1500,2023吨。

它准备向生产这些钢板旳A1,A2,A3三家工厂订货。

该企业掌握了这三家工厂生产多种钢板旳效率(吨/小时)及下月旳生产能力(小时),如表4.2所示。

而它们销售多种型号钢板旳价格如表4.3所示。

该企业当然但愿能以至少旳代价得到自己所需要旳多种钢板,那么,它应当向各钢厂订购每种钢板各多少吨?假设该企业订购时采用如下原则,要么不订购,要么至少订购100吨以上。

该怎样处理这个问题。

若至少订购50吨,怎样处理?例3 (广告方式旳选择) 中华家电企业近来生产了一种新型洗衣机.为了推销这种新产品,该企业销售部决定运用多种广告宣传形式来使顾客理解新洗衣机旳长处。

通过调查研究,销售部经理提出了五种可供选择旳宣传方式.销售部门并搜集了许多数据。

如每项广告旳费用,每种宣传方式在一种月内可运用旳最高次数以及每种广告宣传方式每进行一次所期望得到旳效果等.这种期望效果以一种特定旳相对价值来度量、是根据长期旳经验判断出来旳.上述有关数据见表4.8中华家电企业拨了20230元给销售部作为第一种月旳广告预算费、同步提出,月内至少得有8个电视商业节目,15条报纸广告,且整个电视广告费不得超过12023元,电台广播至少隔日有一次,现问该企业销售部应当采用怎样旳广告宣传计划,才能获得最佳旳效果?例4 长城家电企业近来研制了一种新型电视机.准备在三种类型旳商场即一家航空商场、一家铁路商场和一家水上商场进行销售.由于三家商场旳类型不同样,它们旳批发价和推销费都不同样。

数学建模例题和答案

数学建模例题和答案

数学建模例题和答案
题目:
一个汽车公司拥有两个工厂,分别生产两种型号的汽车,A型和B型,每种型号的汽车都有一定的销售价格。

现在,该公司需要在两个工厂中生产A型和B型汽车,使得总收入最大。

答案:
1、建立数学模型
设A型汽车在第一个工厂生产的数量为x,在第二个工厂生产的数量为y,A型汽车的销售价格为a,B型汽车的销售价格为b,则该公司的总收入可以表示为:
总收入=ax+by
2、确定目标函数
由于题目要求使得总收入最大,因此可以将总收入作为目标函数,即:
最大化Z=ax+by
3、确定约束条件
由于两个工厂的生产能力有限,因此可以设置约束条件:
x+y≤M,其中M为两个工厂的总生产能力
4、求解
将上述模型转化为标准的数学规划模型:
最大化Z=ax+by
s.t. x+y≤M
x≥0,y≥0
由于该模型是一个线性规划模型,可以使用数学软件进行求解,得到最优解:
x=M,y=0
即在第一个工厂生产M件A型汽车,在第二个工厂不生产B型汽车,此时该公司的总收入最大,为Ma。

中学数学建模经典例题

中学数学建模经典例题

中学数学建模经典例题中学数学建模经典例题包括:1.最大利润问题:某公司生产一种产品,每件成本为3元,售价为10元,年销售量为10万件。

为了扩大销售量,公司计划通过广告宣传来增加销售量。

经调查发现,广告费用与年销售量之间的关系可以近似地用函数y=−0.2x+10来表示,其中x为广告费用(单位:万元)。

问:广告费用为多少时,公司可获得最大年利润?2.最小费用问题:某公司需要将货物从甲地运往乙地,由于路途遥远,需要采用飞机、火车、汽车三种运输方式来完成。

运输方式的费用分别为x万元、y万元、z万元。

三种运输方式的单程运输能力分别为10万吨、15万吨、5万吨,而货物的总重量为35万吨。

为确保运输过程顺利进行,单程运输能力不能超过总重量。

请为该公司设计一个总费用最少的运输方案,并求出最少的总费用。

3.最小路径问题:某城市有若干个居民小区,每个小区有一定数量的居民。

为了方便居民出行,市政府计划修建地铁连接这些小区。

已知任意两个小区之间的距离可以近似地用欧几里得距离来表示,而修建地铁的费用与小区之间的距离成正比。

问:市政府应该如何规划地铁线路,使得总费用最低?4.人口预测问题:某城市的人口数量在过去几年里呈现出指数增长的趋势。

已知该城市的人口数量在过去的几年中每年以10%的速度增长,并且目前该城市的人口数量为50万。

我们要预测未来5年该城市的人口数量。

5.资源分配问题:某公司拥有一定的资源,需要将其分配给若干个项目以获得最大的收益。

每个项目的收益与分配到的资源数量成正比,而不同项目之间的收益增加率是不同的。

问:公司应该如何分配资源,使得总收益最大?这些例题涵盖了中学数学建模的多个方面,包括函数模型、最优化问题、线性规划等。

通过这些例题的解答,可以帮助学生提高数学建模的能力和解题技巧。

数学建模简单例题

数学建模简单例题

数学建模简单例题
近年来,数学建模迅速发展,成为数学教育的重要组成部分。

不仅如此,数学建模也在实际应用中扮演着重要角色。

以下是举出的一些简单例题,介绍如何应用数学建模解决实际问题。

例1:汽车路线优化
假设有A、B、C三个城市,从A到B需要经历200公里,从B到C需要经历300公里。

同时,存在有限路段,要求尽可能明确最短路径。

此时,可以建立一个图,将A、B、C三个城市看作三个顶点,再建立若干边,表示每条路径的距离,再使用迪杰斯特拉算法,计算出最短路径。

例2:工厂设备调配
假想一家公司有3台生产设备,每台设备有不同的生产能力和每日最大生产量,要求给出每天各台设备的最优配置,以达到每日最大生产量。

给定三台设备的生产能力和每日最大生产量,建立这个问题的数学模型,可以采用最短路径算法的思想,建立一张图,把每台设备看成一个顶点,再建立若干边,表示每台设备的最大生产能力,最后根据路径的长度,计算出各台设备的最优配置。

以上是两个简单的数学建模例题,为了解决具体实际问题,数学建模不仅仅可以使用上述算法,还可以使用线性规划、最优化、反问题等方法来解决实际问题。

本文就介绍了数学建模的一些基础原理,
并举出了几个例子,希望能对读者有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建模课程设计-考试题目1. 蠓虫的分类实验目的: 学习利用向量夹角余弦建模方法进行生物种类的判别, 熟悉回代误判率与交叉误判率的计算, 熟练掌握Matlab关于向量的内积, 范数, 均值的计算, 提高综合编程能力.问题描述两种蠓虫Af和Apf已由生物学家根据触角长度和翅长加以区分, 现测得6只Apf和9只Af蠓虫的触长, 翅长的数据如下:Apf: (1.14,1.78), (1.18,1.96), (1.20, 1.86), (1.26, 2.00), (1.28, 2.00), (1.30, 1.96)Af: (1.24, 1.72), (1.36, 1.74), (1.38,1.64), (1.38,1.82), (1.38, 1.90), (1.40, 1.70), (1.48, 1.82), (1.54, 1.82), (1.56, 2.08)问题1. 如何依据以上数据, 制定一种方法, 正确区分两类蠓虫.2. 将你的方法用于触长, 翅长分别为(1.24, 1.80), (1.28, 1.84), (1.40, 2.04) 的3个样本进行识别.3. 设Af 是宝贵的传粉益虫, Apf是某种疾病的载体, 是否应该修改分类方法.4. 衡量两个向量之间的接近程度还有哪些方法, 据此建立新的判别方法, 并与上述方法进行比较, 由此你有何发现?2. 最速落径实验目的1. 熟悉用计算机模拟解决物理中的极小值问题2. 进一步熟悉多元函数求极值问题实验内容及要求问题提出: 如下图所示:图1设A, B 是不在一条铅垂线上的两点, 在连接A, B 两点的所有光滑曲线中, 找出一条曲线, 使得初速度为零的质点, 在重力作用下, 自A 点下滑到B 点所需的时间最短.分析: 由A 到B 的曲线如果是直线AB, 质点沿直线AB 的运动是匀加速的,0,A B v v ==平均速度()/22A B v v v =+=, 所需总时间为T =问题1: 对从A 到B 的曲线, 如果是a) 圆弧, b) 抛物线, 计算所需的时间, 圆弧和抛物线的选择不是唯一的, 你可任选一条, 看哪种方案所需时间少些. 时间与曲线的选择有关吗?问题3: 作图, 将模拟出来的最速落径曲线和理论曲线arccos(1)x y =-相比较, 比较模拟效果如何.问题4: 理论推导最速落径曲线方程: arccos(1)x y =-提示: 根据费马定律, 光在媒质中总是走最省时间的路线, 是否可以让质点模拟光的行为, 按照光的折射定律运行, 这样走出的轨迹就是最速路径.3. 投资的收益与风险实验目的: 学会利用线性规划建立数学模型的方法, 利用Matlab 在给定风险的条件下求解最大收益的投资方案, 建立风险与收益的函数关系.实验内容及要求1. 问题描述: 市场上有n 种资产(如股票, 债券等等), , (1,2,,)i S i n =供投资者选择, 某公司有数额为M 的一笔相当大的资金可用作一个时期的投资, 公司财务人员对这n 种资产进行了评估, 估算出在这一时期内购买i S 的平均收益率为i r , 并预测出购买i S 的风险损失率为i q , 考虑到投资越分散, 总的风险就越小, 公司确定, 总体风险可用所投资的i S 中最大的一个风险来度量.购买i S 要付交易费, 费率为i P , 并且当购买额不超过给定值i u 时, 交易费按购买额i u 计算, (不买无需付费), 另外, 假定同期银行存款利率是0r , 既无交易费又无风险0(5%)r = (1) 已知4n =时的相关数据如表1:表1M 息, 使净收益尽可能大, 而总体风险尽可能小.(2) 试就一般情况对以上问题进行讨论, 并利用下表的数据进行计算2. 问题的分析与模型的建立建立一个确定投资比例的向量模型, 使资产组合的净收益尽可能大, 而总体风险尽可能小.设01234,,,,x x x x x 分别是银行存款和投资于1234,,,s s s s 的投资比例系数, 由于银行存款既无交易费又没有风险, 故000,0p q == 总体风险可用所投资的i S 中最大的一个风险来度量, 于是投资组合总体风险为04max{}i i i F x q ≤≤=由于题设给出M 为相当大的一笔资金, 为了简化模型, 认为该公司投资每一项资产都超过给定的定值i u , 于是资产组合的平均收益率为40()i i i i R x r p ==-∑为了使平均收益率尽可能大, 而总体风险尽可能小, 采取固定总体风险的一个上界q , 使得总体收益取得最大, 运用Matlab 软件, 对总体风险的上界从[0,3], 取步长为0.01, 计算301种不同风险时的总体收益的最大值及相应的投资比例系数. 问题:1. 绘制投资方案的净收益率与风险损失率的关系曲线, 并分析之. 对该曲线给出函数描述.2. 计算风险为0.1,0.2,,2.5时的投资比例系数与收益.3. 建立一般情况下的投资组合模型, 并利用2中数据进行计算.4. 湖泊水质富营养化的综合评价实验目的: 学习利用距离函数建模的方法,掌握客观性圈中的变异系数法以及综合评价的基本方法,熟练掌握Matlab 处理矩阵的各种方法。

实验内容及要求: 近年来,我国淡水湖水质富营养化的污染日益严重,如何对湖泊水质的富营养化进行综合评价与治理是摆在我们门前的一项重要任务,下面两表分别为我国5个湖泊的实测数据和湖泊水质的评价标准:问题1. 试利用以上数据, 分析总磷, 耗氧量, 透明度和总氮这4种指标对湖泊水质富营养化所起的作用, 哪个所起作用最大.问题2. 对上述5个湖泊的水质进行综合评估, 确定水质等级.5. 足球赛排名问题实验目的:1. 学习建立效益型矩阵的方法, 利用各向量与理想点Mahalanobis距离函数进行排序.2. 熟练掌握Matlab中处理矩阵, 进行秩和比检验的方法实验内容及要求问题下表给出了我国12支足球队在1988-1989年全国足球甲级联赛中的成绩, 要求:1. 设计一个依据这些成绩排除诸对名次的算法, 并给出用该算法排名次的结果.2. 把算法推广到任意N个队的情况3. 讨论: 数据应具备什么样的条件, 用你的方法才能排出诸队的名次.对上表的说明如下:1. 12支球队依次记为T1, T2,, T12.2. 符号⨯表示两队未曾比赛3. 表中的数字表示两队比赛结果.6. 水中倒影实验目的: 模拟微幅波浪水中的倒影, 探究影响倒影长度的有关因素, 解释日常生活所观察到的现象. 问题描述:站在岸边看水中倒影, 仔细观察不难看出, 同样高的灯柱, 人灯间距越大, 灯光倒影越长; 人灯间距不变, 灯柱越高, 灯光倒影越长; 人站得越高, 所看到的同一个灯柱灯光的倒影越短; 波浪越大, 灯光倒影拉得越长; 灯光倒影根部清晰明亮, 顶部稀疏黯淡.问题1. 根据光的反射定律, 建立水中虚像的坐标 (,)P x y 与人, 物间距s , 物点高度a , 观察者高度b , 波浪大小θ(波浪表面与水平面的夹角)之间满足的方程式, 并用软件求出该方程的数值解, 画出物点在水中的虚像, 解释日常生活所观察到的这一物理现象. 参考数据:05, 1.8,100,10a m b m s m θ====问题2. 如果波浪不是对称的,比如迎风角与背风角相差几度, 那么,迎风与背风所看到同一个物体(这里假设,,a b s 都一样)的倒影长度是否一样长呢?请你观察风成波的形状,模拟计算并画出迎风和背风所看到的倒影图像,合理解释这一现象。

提示: 这里只考虑由风力所形成的微幅波, 波形曲线微圆余摆线, 参数方程为()sin 22cos 2h x t vt hy λθθθ=+-=其中, 波速为v7. 资源优化配置问题实验目的: 学习动态规划方法, 利用软件编程计算最优决策序列和总利润的最大值,并且掌握利用inline 建立编程函数的方法.试验内容及要求:问题:某公司新购置了某种设备6台, 欲分配给下属的4个企业. 已知各企业获得这种设备后年创利润如下表所示, 单位为千万元, 问应如何分配这些设备能使年创总利润最大, 最大利润为多少?8. 应聘问题实验目的: 随机模拟方法问题描述: 设想一个经理要从N个应聘者中雇佣一名秘书. 按照某种标准, 可以用1,2,,N 分别表示这些应聘者的优劣的绝对名次. 1表示最优者, N表示最劣者. 假设这些应聘者是逐个到来接受经理面试的, 并且应聘者到来的优劣次序是随机的.经理每次会见一名应聘者, 面试后决定录用与否. 如果录用到当时面试的应聘者, 则停止下面的会见, 否则面试下一位. 假定每个当时不被录用的应聘者是不能事后再召回录用的. 在经理每次面试后, 他只知道当时的应聘者与先前已面试者比较的相对名次, 而不知道当时应聘者的绝对名次. 现在要问经理要怎样决定他的录用策略, 或者说经理在何时停止他的会见(录用当时的应聘者) 是最优的. 当然这里最优要有一个标准, 通常采用下面的两种标准:(1) 第一标准: 使录用到最优应聘者的概率最大;(2) 第二标准: 使录用的应聘者的绝对名次尽量的小。

问题1.在以上两种不同标准之下, 分别讨论录用策略.问题2. 对N=100, 分别对不同的G(1,2,,100)G 做模拟, 求出成功的概率, 然后找出最优的G值, 并求出此时录用到第一名的概率。

问题3. 分别给出N=50, 100, 200, 300, 400时的最优的G值(用*()G N表示)及相应的成功概率,观察N趋向于无穷大时,*()G NN的值以及成功概率有无极限。

9. 猪的最佳销售问题一般从事猪的商业性饲养和销售总是希望获得利润,因此饲养某种猪是否获利,怎样获得最大利润是饲养者必须首先考虑的问题。

如果把饲养技术水平、猪的类型等因素视为不变的,且不考虑市场需求变化,那么影响获利大小的一个主要因素是如何选择猪的售出时机,即何时把猪卖出获利最大。

也许有人认为,猪养的越大,售出后获利越大,其实不然,因为随着猪的生长,单位时间消耗的饲养费用也就越多,但同时其体重的增长速度却不断下降,所以饲养时间过长是不合算的。

试做适当的假设,引入相应的参数,建立猪的最佳销售时机的数学模型。

预备知识:盈亏平衡原理在一个追求最大利润的经济活动中,设X(t)为t时刻保有某种价值的对象所增加的价值,Y(t)为保有者t时刻所支付的费用,X(t),Y(t)分别为随时间递减和递增的函数,且X(0)>Y(0).保有者可以在某个时刻将保有对象出售以获得利润,那么保有者获得最大利润的出售时刻为盈亏时刻t*,t*满足表达式X(t*)=Y(t*).实验要求:1、设猪开始进行商业性饲养的时刻t=0, x(0)为t=0猪的体重,x(t)为猪在时刻t体重,X为猪在时刻t最大体重,y(t)为一头猪t时刻共消耗的饲养费用,x s为猪可售出的最小体重,小于x s的猪,收购站不予收购,t s为猪从重x(0)长到x s所需时间,C为猪的单位重量售价,C0为刚出生小猪的单位价格假设:(1)由于开始进行商业性饲养时已有一定体重,所以可以假设猪体重增长的速度将不断减慢,设反映猪体重增长速度的参数为α.(2)由于猪的体重越大,单位时间消耗饲养费用就越多,达到最大体重后,单位时间消耗的饲养费接近某一常数γ。

相关文档
最新文档