高中数学 2.2.2事件的相互独立性课件 新人教A版选修2-3
人教A版高中数学选修2-3第二章:2.2.2事件的相互独立性课件

C A B AB
P(C ) 1 P(C ) 1 [1 P( A)][1 P(B)]
1 P( A)P( B ) 1 (1 0.6)(1 0.5) = 0.8
( 互独事件)
对立事件的概率
独立事件一定不互斥. 互斥事件一定不独立.
巩固练习:甲, 乙两人同时向敌人炮击,已
知甲击中敌机的概率为0.6, 乙击中敌机的
概率为0.5, 求敌机被击中的概率.
解: 设 A={ 甲击中敌机 }, B={ 乙击中敌机 }, C={敌机被击中 }, 则 C A B.
依题设, P( A) 0.6, P(B) 0.5
2.2.2事件的相互独立性
复习回顾
条件概率:
设事件A和事件B,且P(A)>0,在已知 事件A发生的条件下事件B发生的概率, 叫做条件概率。记作P(B |A).
条件概率计算公式:
P(B | A) n( AB) P( AB) n( A) P( A)
注意条件:必须 P(A)>0
事件的关系及其运算
事件A与B关系
(1)“都抽到某一指定号码”; 解: (1)记“第一次抽奖抽到某一指定号码” 为事件A, “第二次抽奖抽到某一指定号 码”为事件B,则“两次抽奖都抽到某一 指定号码”就是事件AB。
由于两次的抽奖结果是互不影响的,因此A 和B相互独立.于是由独立性可得,两次抽奖 都抽到某一指定号码的概率为
P(AB)=P(A)P(B)=0.05×0.05=0.0025
(2)“恰有一次抽到某一指定号码”;
解: “两次抽奖恰有一次抽到某一指定号码”
可以用(AB)(AB)表示。由于事件 AB 与 AB
高中数学第二章随机变量及其分布 事件的独立性学案含解析新人教A版选修2_3

2.2.2 事件的独立性自主预习·探新知情景引入在一次有关“三国演义”的知识竞赛中,三个“臭皮匠”能答对某题目的概率分别为50%,45%,40%,“诸葛亮”能答对该题目的概率为85%,如果将“三个臭皮匠”组成一组与“诸葛亮”进行比赛,各选手独立答题,不得商量,团队中只要有一人答出即为该组获胜.试问:哪方获胜的可能性大?新知导学相互独立事件1.概念(1)设A,B为两个事件,若事件A是否发生对事件B发生的概率没有影响,即__P(B|A)=P(B)__,则称两个事件A,B相互独立,并把这两个事件叫做__相互独立事件__.(2)对于n个事件A1,A2,…,A n,如果其中任一个事件发生的概率不受__其他事件是否发生__的影响,则称n个事件A1,A2,…,A n相互独立.2.性质(1)如果事件A与B相互独立,那么事件A与__B__,A与__B__,__A__与__B__也都相互独立.(2)若事件A与B相互独立,则P(A|B)=__P(A)__,P(A∩B)=__P(A)×P(B)__.(3)若事件A1,A2,…,A n相互独立,那么这n个事件都发生的概率,等于__每个事件发生的概率积__,即P(A1∩A2∩…∩A n)=P(A1)×P(A2)×…×P(A n).并且上式中任意多个事件A i换成其对立事件后等式仍成立.预习自测1.(2020·刑台高二检测)甲、乙两人各用篮球投篮一次,若两人投中的概率都是0.7,则恰有一人投中的概率是( A )A .0.42B .0.49C .0.7D .0.91[解析] 设甲投篮一次投中为事件A ,则P (A )=0.7, 则甲投篮一次投不中为事件A ,则P (A )=1-0.7=0.3, 设乙投篮一次投中为事件B ,则P (B )=0.7,则乙投篮一次投不中为事件B ,则P (B )=1-0.7=0.3, 则甲、乙两人各投篮一次恰有一人投中的概率为:P =P (A ∩B )+P (A ∩B )=P (A )·P (B )+P (A )·P (B )=0.7×0.3+0.7×0.3=0.42.故选A . 2.国庆节放假,甲、乙、丙去北京旅游的概率分别是13、14、15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( B )A .5960B .35C .12D .160[解析] 设甲、乙、丙去北京旅游分别为事件A 、B 、C ,则P (A )=13,P (B )=14,P (C )=15,P (A )=23,P (B )=34,P (C )=45,由于A ,B ,C 相互独立,故A ,B ,C 也相互独立,故P (A B C )=23×34×45=25,因此甲、乙、丙三人至少有1人去北京旅游的概率P =1-P (A B C )=1-25=35. 3.已知A 、B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B )=__16__;P (A B )=__16__.[解析] ∵A 、B 是相互独立事件, ∴A 与B ,A 与B 也是相互独立事件. 又∵P (A )=12,P (B )=23,故P (A )=12,P (B )=1-23=13,∴P (A B )=P (A )×P (B )=12×13=16;P (A B )=P (A )×P (B )=12×13=16.4.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于__0.128__.[解析] 此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.互动探究·攻重难互动探究解疑 命题方向❶事件独立性的判断典例1 判断下列各对事件是不是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[解析] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, ∴P (A )=36=12,P (B )=26=13,P (AB )=16,∴P (AB )=P (A )·P (B ), ∴事件A 与B 相互独立.『规律总结』 (1)利用相互独立事件的定义(即P (AB )=P (A )·P (B ))可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.(2)判别两个事件是否为相互独立事件也可以从定性的角度进行分析,即看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件,有影响就不是相互独立事件.┃┃跟踪练习1__■一个家庭中有若干个小孩,假设生男孩和生女孩是等可能的,设A ={一个家庭中既有男孩,又有女孩},B ={一个家庭中最多有一个女孩}. 对下列两种情况讨论事件A 与B 的独立性.(1)家庭中有两个小孩; (2)家庭中有三个小孩.[解析] (1)有两个小孩的家庭,对应的样本空间Ω={(男,男),(男,女),(女,男),(女,女)},有4个基本事件,每个基本事件的概率均为14,这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,样本空间为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},每个基本事件的概率均为18,这时A 中有6个基本事件,B 中有4个基本事件,AB 中含有3个基本事件,于是P (A )=68=34,P (B )=48=12.P (A )·P (B )=38,即P (AB )=38=P (A )P (B )成立,从而事件A 与B 是相互独立的. 命题方向❷求相互独立事件的概率典例2 (2020·鹤岗高二检测)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.[解析] 用A ,B ,C 分别表示这三列火车正点到达的事件,则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A )=0.2,P (B )=0.3,P (C )=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为P 1=P (A BC )+P (A B C )+P (AB C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P 2=1-P (ABC )=1-P (A )P (B )P (C )=1-0.2×0.3×0.1=0.994.『规律总结』 与相互独立事件有关的概率问题求解策略明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么: (1)A ,B 中至少有一个发生为事件A +B ; (2)A ,B 都发生为事件AB ; (3)A ,B 都不发生为事件A B ; (4)A ,B 恰有一个发生为事件A B +A B .(5)A ,B 中至多有一个发生为事件A B +A B +A B . 它们之间的概率关系如表所示:┃┃跟踪练习2__■(2020·浙江杭州高级中学检测)甲、乙两人各射击一次,击中目标的概率分别为23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲、乙各射击一次均击中目标概率; (2)求甲射击4次,恰有3次连续击中目标的概率;(3)若乙在射击中出现连续2次未击中目标则会被终止射击,求乙恰好射击4次后被终止射击的概率.[解析] (1)记事件A 表示“甲击中目标”,事件B 表示“乙击中目标”. 依题意知,事件A 和事件B 相互独立,因此甲、乙各射击一次均击中目标的概率为P (AB )=P (A )·P (B )=23×34=12.(2)记事件A i 表示“甲第i 次射击击中目标”(其中i =1,2,3,4),并记“甲4次射击恰有3次连续击中目标”为事件C ,则C =A 1A 2A 3A 4∪A 1A 2A 3A 4,且A 1A 2A 3A 4与A 1A 2A 3A 4是互斥事件. 由于A 1,A 2,A 3,A 4之间相互独立,所以A i 与A j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (A 1)=P (A 2)=P (A 3)=P (A 4)=23,故P (C )=P (A 1A 2A 3A 4∪A 1A 2A 3A 4)=P (A 1)P (A 2)P (A 3)P (A 4)+P (A 1)P (A 2)P (A 3)P (A 4) =(23)3×13+13×(23)3=1681. (3)记事件B i 表示“乙第i 次射击击中目标”(其中i =1,2,3,4),并记事件D 表示“乙在第4次射击后终止射击”,则D =B 1B 2B 3B 4∪B 1B 2B3B 4,且B 1B 2B3B 4与B 1B 2B 3B 4是互斥事件.由于B 1,B 2,B 3,B 4之间相互独立,所以B i 与B j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (B i )=34(i =1,2,3,4),故P (D )=P (B 1B 2B3B 4∪B 1B 2B3B 4)=P (B 1)P (B 2)P (B 3)P (B 4)+P (B 1)P (B 2)P (B 3)P (B 4) =(34)2×(14)2+34×(14)3=364. 命题方向❸相互独立事件的综合应用典例3 (2020·西安高二检测)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列. [解析] (1)设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手. 观众甲选中3号歌手的概率为23,观众乙未选中3号歌手的概率为1-35.所以P (A )=23×(1-35)=415.因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为415.(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3. 观众甲选中3号歌手的概率为23,观众乙、丙选中3号歌手的概率为35.当观众甲、乙、丙均未选中3号歌手时,这时X =0, P (X =0)=(1-23)×(1-35)2=475.当观众甲、乙、丙中只有1人选中3号歌手时,这时X =1,P (X =1)=23×(1-35)2+(1-23)×35×(1-35)+(1-23)×(1-35)×35=8+6+675=2075.当观众甲、乙、丙中只有2人选中3号歌手时,这时X =2,P (X =2)=23×35×(1-35)+(1-23)×35×35+23×(1-35)×35=12+9+1275=3375.当观众甲、乙、丙均选中3号歌手时,这时X =3, P (X =3)=23×(35)2=1875.X 的分布列如下表:『规律总结』 概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A )=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.┃┃跟踪练习3__■某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.[解析] (1)两地区用户满意度评分的茎叶图如图.通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”;则C A 1与C B 1相互独立,C A 2与C B 2相互独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2),由所给数据得C A 1,C A 2,C B 1,C B 2的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020, P (C B 2)=820,所以P (C )=1020×1620+820×420=0.48.学科核心素养正难则反的思想的应用正难则反的思想在求解概率问题中应用广泛,尤其是解概率问题的综合题中,出现“至少”或“至多”等事件的概率求解问题,如果从正面考虑,它们是诸多事件的和或积,求解过程繁杂,而且容易出错,但如果考虑“至少”或“至多”事件的对立事件往往会简单,其概率很容易求出,此时可逆向分析问题,先求出其对立事件的概率,再利用概率的和或积的互补公式求出原来事件的概率.典例4三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局的胜者对第一局的败者,第四局是第三局的胜者对第二局的败者,求乙队连胜四局的概率.[思路分析]乙队每局胜利的事件是相互独立的,可由其公式计算概率.[解析]设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6,第二局中乙胜丙(A2),其概率为0.5,第三局中乙胜甲(A3),其概率为1-0.4=0.6,第四局中乙胜丙(A4),其概率为0.5,因各局比赛中的事件相互独立,故乙队连胜四局的概率为P(A)=P(A1A2A3A4)=0.62·0.52=0.09.『规律总结』(1)求复杂事件的概率一般可分三步进行:①列出题中涉及的各个事件,并用适当的符号表示它们;②理清各事件之间的关系,列出关系式;③根据事件之间的关系准确地运用概率公式进行计算.(2)直接计算符合条件的事件个数较复杂,可间接地先计算对立事件的个数,求得对立事件的概率,再求出符合条件的事件的概率.┃┃跟踪练习4__■在一段线路中并联着3个自动控制的常开开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.[解析]如图所示,分别记这段时间内开关J A,J B,J C能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.7)(1-0.7)(1-0.7)=0.027,于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P (A B C )=1-0.027=0.973.易混易错警示因混淆独立事件和互斥事件而致错典例5 设事件A 与B 相互独立,两个事件中只有A 发生的概率和只有B 发生的概率都是14,求事件A 和事件B 同时发生的概率.[错解] ∵A 与B 相互独立,且只有A 发生的概率和只有B 发生的概率都是14,∴P (A )=P (B )=14,∴P (AB )=P (A )·P (B )=14×14=116.[正解] 在相互独立事件A 和B 中,只有A 发生即事件A B 发生,只有B 发生即事件A B 发生.∵A 和B 相互独立,∴A 与B ,A 和B 也相互独立.∴P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=14,① P (A B )=P (A )·P (B )=[1-P (A )]·P (B )=14.② ①-②得P (A )=P (B ).③联立①③可解得P (A )=P (B )=12.∴P (AB )=P (A )·P (B )=12×12=14.[误区警示] 在A 与B 中只有A 发生是指A 发生和B 不发生这两个事件同时发生,即事件A B 发生.课堂达标·固基础1.下列事件A ,B 是相互独立事件的是( A )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“一个灯泡能用1 000小时”,B =“一个灯泡能用2 000小时”[解析] 把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是相互独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C,其结果具有唯一性,A ,B 应为互斥事件;D 中事件B 受事件A 的影响.故选A .2.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( C )A .事件A ,B 同时发生B .事件A ,B 至少有一个发生C .事件A ,B 至多有一个发生D .事件A ,B 都不发生[解析] P (A )P (B )是指A ,B 同时发生的概率,1-P (A )P (B )是A ,B 不同时发生的概率,即至多有一个发生的概率.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是( C )A .512B .12C .712D .34[解析] 由题意P (A )=12,P (B )=16,事件A 、B 中至少有一个发生的概率P =1-12×56=712. 4.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为__12__. [解析] 若都取到白球,P 1=812×612=13,若都取到红球,P 2=412×612=16, 则所求概率P =P 1+P 2=13+16=12. 5.甲、乙两人独立地破译密码的概率分别为13、14.求: (1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有一人译出密码的概率;(4)至多一人译出密码的概率;(5)至少一人译出密码的概率.[解析] 记事件A 为“甲独立地译出密码”,事件B 为“乙独立地译出密码”.(1)两个人都译出密码的概率为P (AB )=P (A )P (B )=13×14=112.(2)两个人都译不出密码的概率为P(A B)=P(A)P(B)=[1-P(A)][1-P(B)]=(1-13)(1-14)=12.(3)恰有一人译出密码分为两类:甲译出乙译不出,乙译出甲译不出, 即A B+A B,∴P(A B+A B)=P(A B)+P(A B)=P(A)·P(B)+P(A)P(B)=13×(1-14)+(1-13)×14=512.(4)至多一人译出密码的对立事件是两人都译出密码,∴其概率为1-P(AB)=1-112=1112.(5)至少一人译出密码的对立事件为两个都没有译出密码, ∴其概率为1-P(A B)=1-12=12.。
人教A版高中数学必修第二册教学课件:事件的相互独立性

=
1 12
+
1 8
+
1 4
=
11 24
,所以事件A,B,C只发生两个的概率为
11 24
.
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
(3)记A:出现偶数点,B:出现3点或6点,
则A={2,4,6},B={3,6},AB={6},
所以P(A)= 3 = 1 ,P(B)= 2 = 1 ,P(AB)= 1 .
62
63
6
【变式训练2】端午节放假,甲回老家过节的概率为 1 ,乙、丙回老家 3
过节的概率分别为 1 ,1 .假定三人的行动相互之间没有影响,那么这段 45
时间内至少1人回老家过节的概率为 ( )
A. 59
B. 1
C. 3
D. 1
60
2
5
60
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
所以P(AB)=P(A)P(B),
所以事件A与B相互独立.
下学期高二数学人教A版选修2-3第二章2.2.2事件的相互独立性课件

│学习目标│➯│新课引入│➯│课本预习│➯│预习评价│➯│知识导出│➯│课堂互动│➯│课堂小结│
│课堂互动│
2.2.2 事件的相互独立性
【训练 2】 本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车 点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收
【迁移2】 (变换所求)例1条件不变,求2人至多有1人射中目标的概率.
解 “2人至多有1人射中目标”包括“有1人射中”和“2人都未射中”两种情况, 故所求概率为 P=P(A- B-)+P(AB-)+P(A-B) =P(A-)·P(B-)+P(A)·P(B-)+P(A-)·P(B)=0.02+0.08+0.18=0.28.
│新课引入│
2.2.2 事件的相互独立性
引例2:分析下面的实验,它们有什么共同特征?所求随机事件的概率是多 少?
(1)将一个质地均匀的骰子投掷3次,出现3次点数6的概率是多少;
(2)某P同( A学1 A投2 A篮3 )3次 C,33每 (次16命)3 中的概率为0.6 ,求命中1次的概率;
P(
A1
P(B | A) n( AB) P( AB) n( A) P( A)
│学习目标│➯│新课引入│➯│课本预习│➯│预习评价│➯│知识导出│➯│课堂互动│➯│课堂小结│
│新课引入│
引例2:分析下面的实验,它们有什么共同特征?
2.2.2 事件的相互独立性
(1)将一个质地均匀的骰子投掷3次,出现3次点数6的概率是多少; (2)某同学投篮3次,每次命中的概率为0.6 ,求命中1次的概率;
(2)“2 人各射击 1 次,恰有 1 人射中目标”包括两种情况:
①甲射中、乙未射中(事件 A B-发生),
2019年高中数学 2.2.2事件的相互独立性课后训练 新人教A版选修2-3

2.2.2 事件的相互独立性A组1.两个射手彼此独立射击一目标,甲射中目标的概率为0.9,乙射中目标的概率为0.8,在一次射击中,甲、乙同时射中目标的概率是()A.0.72B.0.85C.0.1D.不确定解析:甲、乙同时射中目标的概率是0.9×0.8=0.72.答案:A2.一袋中有除颜色外完全相同的3个红球,2个白球,另一袋中有除颜色外完全相同的2个红球,1个白球,从每袋中任取1个球,则至少取1个白球的概率为()A. B. C. D.解析:至少取1个白球的对立事件为从每袋中都取得红球,从第一袋中取1个球为红球的概率为,从另一袋中取1个球为红球的概率为,则至少取1个白球的概率为1-.答案:B3.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为,视力合格的概率为,其他标准合格的概率为,从中任选一名学生,则该生三项均合格的概率为(假设三项标准互不影响)()A. B. C. D.解析:该生三项均合格的概率为.答案:B4.甲、乙两名学生通过某种听力测试的概率分别为,两人同时参加测试,其中有且只有一人能通过的概率是()A. B. C. D.1解析:设事件A表示“甲通过听力测试”,事件B表示“乙通过听力测试”.依题意知,事件A和B 相互独立,且P(A)=,P(B)=.记“有且只有一人通过听力测试”为事件C,则C=AB,且AB互斥.故P(C)=P(AB)=P(A)+P(B)=P(A)P()+P()P(B)=.答案:C5.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能获得冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为()A. B. C. D.解析:根据题意,由于甲队只要再赢一局就获冠军,乙队需要再赢两局才能获得冠军,根据两队每局中胜出的概率都为,则可知甲队获得冠军的概率为.答案:D6.加工某一零件需经过三道工序,设第一、第二、第三道工序的次品率分别为,且各道工序互不影响,则加工出来的零件的次品率为.解析:加工出来的零件的正品率是,因此加工出来的零件的次品率为1-.答案:7.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗卫星预报准确的概率是.解析:设甲、乙、丙预报准确依次记为事件A,B,C,不准确记为事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P()=0.2,P()=0.3,P()=0.1,至少两颗预报准确的事件有AB,AC,BC,ABC,这四个事件两两互斥.∴至少两颗卫星预报准确的概率为P=P(AB)+P(AC)+P(BC)+P(ABC)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.答案:0.9028.计算机考试分理论考试和上机操作考试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”则计算机考试合格并颁发合格证书.甲、乙、丙三人在理论考试中合格的概率分别为;在上机操作考试中合格的概率分别为.所有考试是否合格相互之间没有影响.(1)甲、乙、丙三人在同一计算机考试中谁获得合格证书的可能性最大?(2)求这三人计算机考试都获得合格证书的概率.解:记“甲理论考试合格”为事件A1,“乙理论考试合格”为事件A2,“丙理论考试合格”为事件A3;记“甲上机考试合格”为事件B1,“乙上机考试合格”为事件B2,“丙上机考试合格”为事件B3.(1)记“甲计算机考试获得合格证书”为事件A,记“乙计算机考试获得合格证书”为事件B,记“丙计算机考试获得合格证书”为事件C,则P(A)=P(A1)P(B1)=,P(B)=P(A2)P(B2)=,P(C)=P(A3)·P(B3)=,有P(B)>P(C)>P(A),故乙获得合格证书的可能性最大.(2)记“三人计算机考试都获得合格证书”为事件D.P(D)=P(A)P(B)P(C)=.所以,三人计算机考试都获得合格证书的概率是.9.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率;(2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为,只有农产品加工和水果种植两个项目成功的概率为,只有绿色蔬菜种植和水果种植两个项目成功的概率为,故恰有两个项目成功的概率为.(2)三个项目全部失败的概率为,故至少有一个项目成功的概率为1-.B组1.同时转动如图所示的两个转盘,记转盘甲指针指的数为x,转盘乙指针指的数为y,x,y构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为()A. B. C. D.解析:满足xy=4的所有可能如下:x=1,y=4;x=2,y=2;x=4,y=1.∴所求事件的概率为P(x=1,y=4)+P(x=2,y=2)+P(x=4,y=1)=.答案:C2.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片跳到另一片),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A片上,则跳三次之后停在A片上的概率是()A. B. C. D.解析:由题意知逆时针方向跳的概率为,顺时针方向跳的概率为,青蛙跳三次要回到A只有两条途径: 第一条:按A→B→C→A,P1=;第二条,按A→C→B→A,P2=,所以跳三次之后停在A上的概率为P1+P2=.答案:A3.已知甲袋中有除颜色外大小相同的8个白球,4个红球;乙袋中有除颜色外大小相同的6个白球,6个红球,从每袋中任取一个球,则取得同色球的概率为.解析:设从甲袋中任取一个球,事件A:“取得白球”,则此时事件:“取得红球”,从乙袋中任取一个球,事件B:“取得白球”,则此时事件:“取得红球”.∵事件A与B相互独立,∴事件相互独立.∴从每袋中任取一个球,取得同色球的概率为P(AB+)=P(AB)+P()=P(A)P(B)+P()P()=.答案:4.设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.则甲、乙、丙每台机器在这个小时内需要照顾的概率分别为,,.解析:记“机器甲需要照顾”为事件A,“机器乙需要照顾”为事件B,“机器丙需要照顾”为事件C,由题意可知A,B,C是相互独立事件.由题意可知得所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.答案:0.20.250.55.有甲、乙、丙三支足球队互相进行比赛.每场都要分出胜负,已知甲队胜乙队的概率是0.4,甲队胜丙队的概率是0.3,乙队胜丙队的概率是0.5,现规定比赛顺序是:第一场甲队对乙队,第二场是第一场中的胜者对丙队,第三场是第二场中的胜者对第一场中的败者,以后每一场都是上一场中的胜者对前场中的败者,若某队连胜四场则比赛结束,求:(1)第四场结束比赛的概率;(2)第五场结束比赛的概率.解:(1)∵P(甲连胜4场)=0.4×0.3×0.4×0.3=0.014 4.P(乙连胜4场)=0.6×0.5×0.6×0.5=0.09,∴P(第4场结束比赛)=0.014 4+0.09=0.104 4.(2)第5场结束比赛即某队从第2场起连胜4场,只有丙队有可能.∵P(甲胜第一场,丙连胜4场)=0.4×0.7×0.5×0.7×0.5=0.4×0.122 5,P(乙胜第一场,丙连胜4场)=0.6×0.5×0.7×0.5×0.7=0.6×0.122 5.∴P(第5场结束比赛)=0.4×0.122 5+0.6×0.122 5=0.122 5.6.已知A,B是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效,若在一个试验组中,服用A有效的白鼠的只数比服用B有效的多,就称该试验组为甲类组,设每只小白鼠服用A有效的概率为,服用B有效的概率为.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.解:(1)设A i表示事件“一个试验组中,服用A有效的小白鼠有i只”,i=0,1,2.B i表示事件“一个试验组中,服用B有效的小白鼠有i只”,i=0,1,2.据题意有:P(A0)=,P(A1)=2×,P(A2)=,P(B0)=,P(B1)=2×.所求概率为P(B0A1)+P(B0A2)+P(B1A2)=.(2)所求概率为1-.7.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的可能取值及对应的概率.解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”,则A=A1·A2.故P(A)=P(A1·A2)=P(A1)·P(A2)=.(2)X的可能取值为0,1,2.B1表示事件“第1局乙和丙比赛结果乙胜”,B2表示事件“第2局乙参加比赛结果乙胜”,B3表示事件“第3局乙参加比赛结果乙胜”.则P(X=0)=P(B1·B2·B3)=P(B1)P(B2)P(B3)=,P(X=2)=P()=P()P()=,P(X=1)=1-P(X=0)-P(X=2)=1-.。
2019_2020学年高中数学第二章随机变量及其分布2.2.2事件的相互独立性练习含解析新人教a版选修2_3

2.2.2 事件的相互独立性[A 基础达标]1.坛子中放有3个白球,2个黑球,从中进行不放回地取球两次,每次取一球,用A 1表示第一次取得白球,A 2表示第二次取得白球,则A 1和A 2是( )A .互斥事件B .相互独立事件C .对立事件D .不相互独立的事件解析:选D .因为P (A 1)=35,若A 1发生了,P (A 2)=24=12;若A 1不发生,P (A 2)=34,所以A 1发生的结果对A 2发生的结果有影响,所以A 1与A 2不是相互独立事件.2.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为( )A .0.2B .0.8C .0.4D .0.3解析:选D .由相互独立事件同时发生的概率可知,问题由乙答对的概率为P =0.6×0.5=0.3,故选D .3.某种开关在电路中闭合的概率为p ,现将4只这种开关并联在某电路中(如图所示),若该电路为通路的概率为6581,则p =( )A .12B .13C .23D .34解析:选B .因为该电路为通路的概率为6581,所以该电路为不通路的概率为1-6581,只有当并联的4只开关同时不闭合时该电路不通路,所以1-6581=(1-p )4,解得p =13或p =53(舍去).故选B .4.(2019·重庆高二检测)荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A .13B .29C .49D .827解析:选A .由已知得逆时针跳一次的概率为23,顺时针跳一次的概率为13,则逆时针跳三次停在A 上的概率为P 1=23×23×23=827,顺时针跳三次停在A 上的概率为P 2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.5.有一道数学难题,学生A 解出的概率为12,学生B 解出的概率为13,学生C 解出的概率为14.若A ,B ,C 三人独立去解答此题,则恰有一人解出的概率为( ) A .1 B .624 C .1124D .1724解析:选C .一道数学难题,恰有一人解出,包括: ①A 解出,B ,C 解不出,概率为12×23×34=14;②B 解出,A ,C 解不出,概率为12×13×34=18;③C 解出,A ,B 解不出,概率为12×23×14=112.所以恰有1人解出的概率为14+18+112=1124.6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.解析:所求概率P =0.8×0.1+0.2×0.9=0.26. 答案:0.267.在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是________.解析:设“开关a ,b ,c 闭合”分别为事件A ,B ,C ,则灯亮这一事件为ABC ∪AB C —∪A B —C ,且A ,B ,C 相互独立,ABC ,AB C —,A B —C 相互独立, ABC ,AB C —,A B — C 互斥,所以 P =P (ABC )+P (AB C —)+P (A B —C )=P (A )P (B )P (C )+P (A )P (B )P (C —)+P (A )P (B —)P (C ) =12×12×12+12×12×⎝ ⎛⎭⎪⎫1-12+12×⎝ ⎛⎭⎪⎫1-12×12=38.答案:388.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为13,12,23,则汽车在这三处因遇红灯或黄灯而停车一次的概率为________. 解析:分别设汽车在甲、乙、丙三处通行的事件为A ,B ,C , 则P (A )=13,P (B )=12,P (C )=23,停车一次为事件(A —BC )∪(A B —C )∪(AB C —),故其概率P =⎝ ⎛⎭⎪⎫1-13×12×23+13×⎝ ⎛⎭⎪⎫1-12×23+13×12×⎝ ⎛⎭⎪⎫1-23=718.答案:7189.某学生语、数、英三科考试成绩在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,求在一次考试中:(1)三科成绩均未获得第一名的概率是多少? (2)恰有一科成绩未获得第一名的概率是多少?解:分别记该学生语、数、英考试成绩排名全班第一的事件为A ,B ,C ,则A ,B ,C 两两互相独立,且P (A )=0.9,P (B )=0.8,P (C )=0.85.(1)“三科成绩均未获得第一名”可以用A — B — C —表示,P (A — B — C —)=P (A —)P (B —)P (C —)=[1-P (A )][1-P (B )][1-P (C )] =(1-0.9)(1-0.8)(1-0.85) =0.003,即三科成绩均未获得第一名的概率是0.003. (2)“恰有一科成绩未获得第一名”可以用 (A —BC )∪(A B —C )∪(AB C —)表示. 由于事件A —BC ,A B —C 和AB C —两两互斥,根据概率加法公式和相互独立事件的意义,所求的概率为P (A —BC )+P (A B —C )+P (AB C —) =P (A —)P (B )P (C )+P (A )P (B —)P (C )+P (A )P (B )P (C —)=[1-P (A )]P (B )P (C )+P (A )[1-P (B )]P (C )+P (A )P (B )[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329, 即恰有一科成绩未获得第一名的概率是0.329.10.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100 m 跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则(1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大.解:记“甲、乙、丙三人100 m 跑成绩合格”分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )=25,P (B )=34,P (C )=13.设恰有k 人合格的概率为P k (k =0,1,2,3), (1)三人都合格的概率:P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110.(2)三人都不合格的概率:P 0=P (A — B — C —)=P (A —)·P (B —)·P (C —)=35×14×23=110.(3)恰有两人合格的概率:P 2=P (AB C —)+P (A B —C )+P (A —BC )=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.综合(1)(2)(3)可知P 1最大. 所以出现恰有1人合格的概率最大.[B 能力提升]11.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,则灯亮的概率为( )A .316B .34C .1316D .14解析:选C .记“A ,B ,C ,D 四个开关闭合”分别为事件A ,B ,C ,D ,可用对立事件求解,图中含开关的三条线路同时断开的概率为:P (C —)P (D —)[1-P (AB )]=12×12×⎝ ⎛⎭⎪⎫1-12×12=316.所以灯亮的概率为1-316=1316.12.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任意取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.解析:设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥,又P (A )=C 12C 14C 25=45,P (AB )=C 12C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P (AB )P (A )+P (AC )P (A )=34.答案:3413.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为45×56×(1-23)=29,只有农产品加工和水果种植两个项目成功的概率为45×(1-56)×23=445,只有绿色蔬菜种植和水果种植两个项目成功的概率为(1-45)×56×23=19,所以恰有两个项目成功的概率为29+445+19=1945.(2)三个项目全部失败的概率为(1-45)×(1-56)×(1-23)=190,所以至少有一个项目成功的概率为1-190=8990.14.(选做题)某公司为了了解用户对其产品的满意度,从A ,B 两个地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两个地区用户满意度评分的茎叶图,并通过茎叶图比较两个地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C 用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解:(1)两个地区用户的满意度评分的茎叶图如图.通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A 1表示事件“A 地区用户的满意度等级为满意或非常满意”,C A 2表示事件“A 地区用户的满意度等级为非常满意”,C B 1表示事件“B 地区用户的满意度等级为不满意”,C B 2表示事件“B 地区用户的满意度等级为满意”,则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2,P (C )=P (C B 1C A 1∪C B 2C A 2)=P (C B 1C A 1)+P (C B 2C A 2)=P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据,得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,P (C )=1020×1620+820×420=0.48.。
人教版高中数学选修2-3《2.2.2事件的相互独立性》

把“从乙坛子里摸出 1个 球,得到白球”叫做事件B
甲
没有影响
乙
事件的相互独立性 设A,B为两个事件,如果 P(AB)=P(A)P(B),则
称事件A与事件B相互独立.
即事件A(或B)是否发生,对事件B(或A)发生
的概率没有影响,这样的两个事件叫相互独立事件.
显然事件A“从甲坛子里摸出1个球,得到白球”与
两个相互独立事件A,B同时发生,即事件AB发生 的概率为:
这就是说,两个相互独立事件同时发生的概率, 等于每个事件发生的概率的积.
一般地,如果事件A1,A2,…,An相互独立,
那么这n个事件同时发生的概率等于每个事件发生
的概率的积,即
P(A1·A2·…·An)=P(A1)·P(A2)·… · P(An)
(1)甲同学做错、乙同学做对. (2)甲、乙两同学同时做错. (3)甲、乙两同学中至少有一人做对. (4)甲、乙两同学中至多有一人做对. (5)甲、乙两同学中恰有一人做对.
2.补全下列的表格:
概 率 意 义
相互独立事件同时发生的概率公式: 若A、B是相互独立事件,事件A,B同时发生,将
它记作AB.
(3)解法1:两人各射击一次至少有一人击中目标的概
率是
解法2:两人都未击中的概率是
【提升总结】
(1)求相互独立事件同时发生的概率的步骤是: ①首先确定各事件之间是相互独立的; ②确定这些事件可以同时发生; ③求出每个事件的概率,再求积. (2)使用相互独立事件同时发生的概率计算公式时, 要掌握公式的适用条件——各个事件是相互独立的,
应用公式的前提: 1.事件之间相互独立 2.这些事件同时发生.
探究点2
求相互独立事件同时发生的概率
2017年高中数学第二章随机变量及其分布2.2.2事件的相互独立性习题课件新人教A版选修2_3

解:记“甲射击 1 次,击中目标”为事件 A,“乙射击 1 次, 击中目标”为事件 B,则 A 与 B,A 与 B,A 与 B ,A 与 B 为相互 独立事件,
(1)2 人都射中目标的概率为: P(AB)=P(A)·P(B)=0.8×0.9=0.72.
(2)“2 人各射击 1 次,恰有 1 人射中目标”包括两种情况: 一种是甲射中、乙未射中(事件 A B 发生),另一种是甲未射中、乙 射中(事件 A B 发生).根据题意,事件 A B 与 A B 互斥,根据互斥 事件的概率加法公式和相互独立事件的概率乘法公式,所求的概 率为:
(2)D= C ,P(D)=1-P(C)=1-0.8=0.2, P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.
11.某项选拔共有四轮考核,每轮设有一个问题,能正确回 答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回 答第一、二、三、四轮问题的概率分别为45、35、25、15,且各轮问 题能否正确回答互不影响:
(3)分别抛掷 2 枚相同的硬币,事件 M:“第 1 枚为正面”,
事件 N:“两枚结果相同”.
这 3 个问题中,M,N 是相互独立事件的有( )
A.3 个
B.2 个
C.1 个
D.0 个
解析:(1)中,M,N 是互斥事件;(2)中,P(M)=35,P(N)=12.
即事件 M 的结果对事件 N 的结果有影响,所以 M,N 不是相互
P(A B )+P( A B)=P(A)·P( B )+P( A )·P(B) =0.8×(1-0.9)+(1-0.8)×0.9 =0.08+0.18=0.26.
(3)“2 人至少有 1 人射中”包括“2 人都中”和“2 人有 1 人 射中”2 种情况,其概率为