基本不等式2
2018-2019学年高中数学 第一章 不等式的基本性质和证明的基本方法 1.2 基本不等式(二

1.2 基本不等式(二)1.理解定理3、定理4,会用两个定理解决函数的最值或值域问题.2.能运用三个正数的平均值不等式解决简单的实际问题.自学导引1.当a 、b 、c ∈R +时,a +b +c3≥3abc a =b =c 时,等号成立,称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a 、b 、c 的几何平均值. 2.如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n a 1=a 2=…=a n时,等号成立.基础自测1.设a 、b 、c ∈R ,下列各不等式中成立的是( ) A.a 2+b 2≥2|ab | B.a +b ≥2ab C.a 3+b 3+c 3≥3abcD.a +b +c3≥3abc解析 由a 2+b 2-2|ab |=|a |2-2|ab |+|b |2=(|a |-|b |)2≥0,故选A. 答案 A2.函数y =x 2·(1-5x )⎝ ⎛⎭⎪⎫0≤x ≤15的最大值为( )A.4675 B. 2657 C.4645D.2675解析 由y =x 2·(1-5x )=425·52x ·52x (1-5x ) ≤425⎝⎛⎭⎪⎪⎫52x +52x +1-5x 33=4675.答案 A3.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________. 解析 利用不等式求解.因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63,所以a max =63. 答案63知识点1 利用平均值不等式证明不等式 【例1】 已知a 、b 、c ∈R +,且a +b +c =1. 求证:1a +b +1b +c +1c +a ≥92. 证明 a +b +c =1⇒(a +b )+(b +c )+(c +a )=2, [(a +b )+(b +c )+(c +a )]⎝⎛⎭⎪⎫1a +b +1b +c +1c +a≥33(a +b )(b +c )(c +a )·313(a +b )(b +c )(c +a )=9⇒1a +b +1b +c +1c +a ≥92. ●反思感悟:认真观察要证的不等式的结构特点,灵活利用已知条件构造出能利用平均值不等式的式子.1.证明(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92(a ,b ,c ∈R +).证明 ∵(a +b )+(b +c )+(c +a ) ≥33(a +b )(b +c )(c +a ),1a +b +1b +c +1a +c ≥331a +b ·1b +c ·1a +c , ∴(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.当且仅当a =b =c 时,等号成立.知识点2 利用平均值不等式求最值【例2】 若正数a ,b 满足ab =a +b +3,求ab 的取值范围. 解 方法一:∵a 、b ∈R +,且ab =a +b +3≥333ab , ∴a 3b 3≥81ab .又ab >0,∴a 2b 2≥81. ∴ab ≥9(当且仅当a =b 时,取等号). ∴ab 的取值范围是[9,+∞). 方法二:∵ab -3=a +b ≥2ab , ∴ab -2ab -3≥0且ab >0,∴ab ≥3,即ab ≥9(当且仅当a =b 时取等号) ∴ab 的取值范围是[9,+∞).●反思感悟:注意平均值不等式应用的条件是三个正数在求最值时,一定要求出等号成立时未知数的值,如果不存在使等号成立的未知数的值,则最值不存在.2.求y =sin x cos 2x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最大值.解 ∵x ∈⎝⎛⎭⎪⎫0,π2,∴sin x >0,y >0.y 2=sin 2x cos 4x =2sin 2x cos 2x cos 2x2≤12⎝ ⎛⎭⎪⎫2sin 2x +cos 2x +cos 2x 33=12⎝ ⎛⎭⎪⎫233=854=427.故y ≤427=239,此时,2sin 2x =cos 2x ,tan 2x =12, y 有最大值239. 知识点3 平均值不等式的实际应用【例3】 某产品今后四年的市场需求量依次构成数列{a n },n =1,2,3,4,并预测到年需求量第二年比第一年增长的百分率为P 1,第三年比第二年增长的百分率为P 2,第四年比第三年增长的百分率为P 3,且P 1+P 2+P 3=1.给出如下数据: ①27,②25,③13,④12,⑤23, 则其中可能成为这四年间市场需求量的年平均增长率的是( ) A.①② B.①③ C.②③④D.②⑤解析 设这四年间市场年需求量的年平均增长率为x (x >0),则a 4=a 1(1+x )3=a 1(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3)≤⎝ ⎛⎭⎪⎫1+P 1+1+P 2+1+P 333=⎝ ⎛⎭⎪⎫433. ∴1+x ≤43,即x ≤13,对比所给数据,只有①③满足条件,故选B. 答案 B3.设长方体的体积为1 000 cm 3,则它的表面积的最小值为__________ cm 2. 解析 设长方体的长、宽、高分别为a 、b 、c , 则abc =1 000,且a >0,b >0,c >0.∴它的表面积S =2(ab +bc +ca )≥2×33(abc )2=600. 当且仅当a =b =c =10 (cm)时取“=”号. 所以它的表面积S 的最小值为600 cm 2. 答案 600课堂小结利用基本不等式解决实际问题的步骤:(1)理解题意,设出变量,一般设变量时,把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)回答实际问题.随堂演练1.设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A.q =r <p B.p =r <q C.q =r >pD.p =r >q解析 利用对数的运算性质和对数函数的单调性判断p ,q ,r 之间的相等与不等关系. 因为b >a >0,故a +b2<ab .又f (x )=ln x (x >0)为增函数,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p .答案 B2.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A.最大值54B.最小值54C.最大值1D.最小值1解析f (x )=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1(x -2),又∵x ≥52,x -2≥12,则f (x )≥12·2(x -2)1(x -2)=1.答案 D3.函数y =x 2·(1-3x )在⎝ ⎛⎭⎪⎫0,13上的最大值是________.解析 由y =x 2·(1-3x ) =49·32x ·32x (1-3x ) ≤49⎝⎛⎭⎪⎪⎫32x +32x +1-3x 33=3243.答案32434.用长为16 cm 的铁丝围成一个矩形,则可围成的矩形的最大面积是________ cm 2. 解析 设矩形长为x cm(0<x <8),则宽为(8-x ) cm , 面积S =x (8-x ).由于x >0,8-x >0,可得S ≤⎝ ⎛⎭⎪⎫x +8-x 22=16,当且仅当x =8-x 即x =4时,S max =16. 所以矩形的最大面积是16 cm 2. 答案 16基础达标1.若x >0,则4x +9x2的最小值是( )A.9B.3336C.13D.不存在解析 ∵x >0,∴4x +9x 2=2x ·2x ·9x2≥332x ·2x ·9x2=3336.答案 B2.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎪⎫1a -1·⎝⎛⎭⎪⎫1b -1⎝⎛⎭⎪⎫1c-1,则x 的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,18B.⎣⎢⎡⎭⎪⎫18,1 C.[1,8)D.[8,+∞)解析 ∵x =⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1=1-a a ·1-b b ·1-cc=(b +c )(c +a )(a +b )abc ≥2bc ·2ca ·2ab abc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案 D3.已知x ,y 都为正数,且1x +4y=1,则xy 有( )A.最小值16B.最大值16C.最小值116D.最大值116解析 ∵x ,y ∈(0,+∞)且1x +4y=1,∴1=1x +4y ≥24xy=4xy,∴xy ≥4,∴xy ≥16,当且仅当⎩⎪⎨⎪⎧1x =4y ,1x +4y =1,x ,y ∈(0,+∞),即⎩⎪⎨⎪⎧x =2,y =8,时取等号,此时(xy )min =16. 答案 A4.已知a ,b ,∈R *,则⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c ≥________.解析 ⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c =1+1+1+ac b 2+a 2bc +b 2ac +ab c 2+bc a 2+c 2ab ≥3+2ac b 2·b 2ac+2a 2bc ·bc a 2+2abc 2+c 2ab=9. 答案 95.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元). 解析 利用均值(基本)不等式解决问题.设该长方体容器的长为x m ,则宽为4xm.又设该容器的造价为y 元,则y =20×4+2⎝ ⎛⎭⎪⎫x +4x ×10,即y =80+20⎝ ⎛⎭⎪⎫x +4x (x >0).因为x +4x≥2x ·4x =4⎝ ⎛⎭⎪⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元). 答案 1606.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1. (2)-3t +12+t=34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4.综合提高7.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A.V ≥π B.V ≤π C.V ≥18πD.V ≤18π解析 设圆柱的底面半径为r ,高为h , 则由题意得:4r +2h =6,即2r +h =3,于是有V =πr 2h ≤π·⎝ ⎛⎭⎪⎫r +r +h 33=π⎝ ⎛⎭⎪⎫333=π,当且仅当r =h 时取等号. 答案 B8.如果圆柱的轴截面周长l 为定值,那么圆柱的体积最大值是( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析 l =4r +2h ,即2r +h =l2,V =πr 2h ≤⎝ ⎛⎭⎪⎫r +r +h 33π=⎝ ⎛⎭⎪⎫l 63π.答案 A9.定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析 先利用新定义写出解析式,再利用重要不等式求最值.因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy .又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy=x 2+2y 22xy ≥22xy 2xy=2,当且仅当x =2y 时,等号成立. 答案210.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000 v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为______辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 解析 把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值. (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=76 00022+18=1 900.当且仅当v =11米/秒时等号成立,此时车流量最大为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v+18≤76 0002v ·100v+18=76 00020+18=2 000.当且仅当v =10米/秒时等号成立,此时车流量最大为2 000辆/时,比(1)中的最大车流量增加100辆/时.答案 (1)1 900 (2)10011.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上且对角线MN 过C 点,已知|AB |=3米,|AD |=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积;(3)若AN 的长度不少于6米,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.解 设AN 的长为x 米(x >2),矩形AMPN 的面积为y . ∵|DN ||AN |=|DC ||AM |,∴|AM |=3x x -2, ∴S 矩形AMPN =|AN |·|AM |=3x 2x -2(x >2)(1)由S 矩形AMPN >32得3x2x -2>32,∵x >2,∴3x 2-32x +64>0,即(3x -8)(x -8)>0,∴2<x <83或x >8,即AN 的长的取值范围是⎝ ⎛⎭⎪⎫2,83∪(8,+∞). (2)令y =3x 2x -2=3(x -2)2+12(x -2)+12x -2=3(x -2)+12x -2+12≥23(x -2)·12x -2+12=24, 当且仅当3(x -2)=12x -2, 即x =4时,y =3x2x -2取得最小值,即S 矩形AMPN 取得最小值24平方米.(3)令g (x )=3x +12x(x ≥4),设x 1>x 2≥4,则g (x 1)-g (x 2)=3(x 1-x 2)+12(x 2-x 1)x 1x 2=3(x 1-x 2)(x 1x 2-4)x 1x 2,∵x 1>x 2≥4,∴x 1-x 2>0,x 1x 2>16,∴g (x 1)-g (x 2)>0,∴g (x )在[4,+∞)上递增. ∴y =3(x -2)+12x -2+12在[6,+∞)上递增. ∴当x =6时,y 取得最小值,即S 矩形AMPN 取得最小值27平方米.12.甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (km/h)的平方成正比,比例常数为b ,固定部分为a 元.(1)把全程运输成本y 元表示为速度v (km/h)的函数,并指出函数的定义域; (2)为了使全程运输成本最少,汽车应以多大的速度行驶? 解 (1)因为汽车每小时的运输成本为bv 2+a (元), 全程时间为sv (小时),故y =s v(bv 2+a ),即y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ].(2)由于a v+bv ≥2ab ,当且仅当v = ab时取等号,故 ①若 ab ≤c ,则当v = ab时,y 取最小值. ②若a b >c ,则先证y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ]为单调减函数,事实上,当v 1、v 2∈(0,c ],且v 1<v 2,则y 1-y 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1+bv 1-⎝ ⎛⎭⎪⎫a v 2+bv 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1-a v 2+(bv 1-bv 2)=s (v 1-v 2)⎝⎛⎭⎪⎫b -a v 1v 2 =sb (v 1-v 2)·v 1v 2-abv 1v 2,∵v 1、v 2∈(0,c ],v 1<v 2, ∴v 1-v 2<0,v 1v 2>0,v 1<ab ,v 2< a b. 进而v 1v 2<a b,从而y 1-y 2>0.故y =s ⎝ ⎛⎭⎪⎫a v+bv ,v ∈(0,c ]为单调减函数,由此知当v =c 时,y 取得最小值. 综上可知,若ab ≤c ,则当v = ab时,y 取得最小值;a b >c,则当v=c时,y取得最小值.若。
基本不等式(2)

基本不等式(二)教学目标:掌握基本不等式2a b +(a ≥0,b ≥0);能用基本不等式求解简单的最大(小)值问题(指只用一次基本不等式即可解决的问题),重点解决如何出现定值,验证等号成立条件;2010年考试说明要求C 。
知识点回顾:○1基本不等式中第一条件x 为负值,那么-x 为正值,再用基本不等式。
○2构造定值是重点。
○3一定要验证等号成立条件,不满足用单调性求最值。
○4函数)0(>+=a x a x y 的图像要作为重点;函数)0(>-=a x a x y 用单调性求最值。
基础训练:1.若x ∈+R 则x x 42--的最大值 .2. 已知-2π<x <2π,则函数y=cosx+x cos 2的最小值是 .3.若4x >,则函数14y x x =-+-的值域为____________4. 若点(a ,b )在直线的最小值是则上b a y x 22,2+=+____________.5.函数2++=x a x y 的图像过点(2,6),2-≠x ,则此函数的值域为__________典型例题:设A 为锐角三角形的内角,a 是大于0的正常数,函数A a A y cos 1cos 1-+=的最小值是9,则a =___某厂家拟在2008年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足 ,如果不搞促销活动,则该产品的年销售量只能是1万件,已知2008年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元。
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用)。
(I )将2008年该产品的利润y 万元表示为年促销费用m 万元的函数;(II )该厂家2008年的促销费用投入多少万元时,厂家的利润最大?课堂检测:1. 若|(2)|0x x ->,则234x x y x-+=的取值范围是 .2. 函数y=182-+x x ,x ≠1时的值域为3.若函数2()x f x x a=+(0a >)在[)1,+∞上的最大值为3,则a 的值为 .4.已知不等式(x+y )⎪⎪⎭⎫ ⎝⎛+y a x 1≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为______5. 已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是 14.已知函数b a b f a f b a xx f +=<<-=2),()(,0,11)(则且若的最小值为________。
基本不等式(2)

请问:你能自己设计一个有关最值问题的实际问题吗?并解决 它.你可以改变上述问题二中的某个条件或某些条件,或者另外设 计一个问题.
归纳小结
归纳小结
(1)基本不等式:如果a>0,b>0,那么 ab a b ,当且仅当a=b
x y 2 xy , 所以 720(x+y) ≥720× 2 xy ,
3
y
x
思维提升
问题二 所以z=240000+720(x+y) . 根据基本不等式可知, x y 2 xy , 所以 720(x+y) ≥720× 2 xy ,
所以 240000+720(x+y)
≥240000+720× 2 xy.
复习引入
1.基本不等式: 如果a>0,b>0,那么 ab a b ,当且仅当a=b时,等号成立. 2
复习引入
1.基本不等式: 如果a>0,b>0,那么 ab a b ,当且仅当a=b时,等号成立. 2
2.已知x,y都是正数, (1)如果积xy等于定值P,那么当x=y时,和x+y有最小值2 P . (2)如果和x+y等于定值S,那么当x=y时,积xy有最大值S2 .
为多少时,所用篱笆最短?最短篱笆的长度是多少? (2)用一段长为36 m的篱笆围成一个矩形菜园,当这个矩形的边
长为多少时,菜园的面积最大?最大面积是多少?
当两个正数变量的积或和为定值时, 它们的和有最小值或积有最大值.
思维提升
问题二 某工厂要建造一个长方体形无盖贮水池,其容积为4800 m3,
基本不等式(二)

基本不等式:ab ≤a +b2(二)[学习目标] 1.熟练掌握基本不等式及其变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点一 基本不等式求最值 1.理论依据:(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值,且这个值为s 24. (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值,且这个值为2p .2.基本不等式求最值的条件: (1)x ,y 必须是正数;(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.3.利用基本不等式求最值需注意的问题: (1)各数(或式)均为正. (2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性.知识点二 基本不等式在实际中的应用基本不等式在实际中的应用是指利用基本不等式解决生产、科研和日常生活中的问题.解答不等式的应用题一般可分为四步:(1)阅读并理解材料;(2)建立数学模型;(3)讨论不等关系;(4)作出结论.题型一 利用基本不等式求最值例1 (1)已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1(2)已知t >0,则函数y =t 2-4t +1t的最小值为____.(3)已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为____.答案 (1)-2 (2)3 (3)3解析 (1)y =t 2+1-4t t =t +1t-4≥2-4=-2,当且仅当t =1t,即t =1或t =-1(舍)时,等号成立,∴y 的最小值为-2.(2)xy =12·⎝ ⎛⎭⎪⎫x 3·y 4≤12·⎝ ⎛⎭⎪⎪⎫x 3+y 422=12·⎝ ⎛⎭⎪⎫122=3,当且仅当x 3=y 4=12,即x =32,y =2时,等号成立,∴xy 的最大值为3.(3)f (x )=x 2-4x +52x -4=x -22+12x -2=12⎣⎢⎡⎦⎥⎤x -2+1x -2≥1. 当且仅当x -2=1x -2,即x =3时,等号成立. 跟踪训练1 (1)设a >b >0,则a 2+1ab +1aa -b的最小值是( ) A .1 B .2 C .3D .4(2)已知x ,y 为正数,且2x +y =1,则1x +1y的最小值为________.答案 (1)D (2)3+22解析 (1)a 2+1ab +1aa -b=a 2-ab +ab +1ab +1aa -b=a (a -b )+1aa -b+ab +1ab≥2+2=4.当且仅当a (a -b )=1且ab =1,即a =2,b =22时取“=”. (2)由2x +y =1,得1x +1y =2x +y x +2x +yy=3+y x+2xy ≥3+2y x ·2xy=3+22, 当且仅当y x =2xy, 即x =2-22,y =2-1时,等号成立.题型二 基本不等式的综合应用例2 (1)已知x >1,y >1,且14ln x 、14、ln y 成等比数列,则xy ( )A .有最大值eB .有最大值eC .有最小值eD .有最小值e 答案 C解析 由题意得⎝ ⎛⎭⎪⎫142=14ln x ln y ,∴ln x ln y =14,∵x >1,y >1,∴ln x ln y >0, 又ln(xy )=ln x ln y ≥2ln x ln y =1, ∴xy ≥e,即xy 有最小值为e.(2)若对任意x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.解 设f (x )=x x 2+3x +1=1x +1x+3,∵x >0,∴x +1x≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.跟踪训练2 (1)设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .2B .4C .1(2)函数y =kx +2k -1的图象恒过定点A ,若点A 又在直线mx +ny +1=0上,则mn 的最大值为________. 答案 (1)B (2)18解析 (1)由题意得,3a·3b=(3)2,即a +b =1, ∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4, 当且仅当b a =a b ,即a =b =12时,等号成立.(2)y =k (x +2)-1必经过(-2,-1),即点A (-2,-1), 代入得-2m -n +1=0, ∴2m +n =1,∴mn =12(2mn )≤12·⎝ ⎛⎭⎪⎫2m +n 22=18,当且仅当2m =n =12时,等号成立.题型三 基本不等式的实际应用例3 要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm ,请确定广告的高与宽的尺寸(单位:cm),使矩形广告面积最小,并求出最小值.解 设矩形栏目的高为a cm ,宽为b cm ,ab =9 000.① 广告的高为a +20,宽为2b +25,其中a >0,b >0. 广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500 =18 500+25a +40b ≥18 500+225a ×40b =18 500+2 1 000ab =24 500.当且仅当25a =40b 时,等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a=120,b =75时,S 取得最小值24 500,故广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小,最小值为24 500 cm 2.跟踪训练3 一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时. 答案 8解析 设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝ ⎛⎭⎪⎫v 202v =400v +16v400≥2400v ×16v400=8(小时), 当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时.1.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x+4e-xD .y =log 3x +log x 812.函数y =x 2-x +1x -1(x >1)在x =t 处取得最小值,则t 等于( )A .1+ 2B .2C .3D .43.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A . m B . m C .7 m D . m 4.函数f (x )=x (4-2x )的最大值为________.5.当x <54时,函数y =4x -2+14x -5的最大值为________.一、选择题1.已知正数x ,y 满足8x +1y=1,则x +2y 的最小值是( )A .18B .16C .8D .102.已知点P (x ,y )在经过A (3,0),B (1,1)两点的直线上,则2x+4y的最小值为( ) A .2 2 B .4 2 C .16 D .不存在3.下列命题正确的是( ) A .函数y =x +1x的最小值为2B .若a ,b ∈R 且ab >0,则b a +a b≥2C .函数x 2+2+1x 2+2的最小值为2 D .函数y =2-3x -4x的最小值为2-434.设x ,y 为正数,则(x +y )⎝ ⎛⎭⎪⎫1x +4y 的最小值为( )A .7B .8C .9D .105.已知a ,b ,c 都是正数,且a +2b +c =1,则1a +1b +1c的最小值是( )A .3+2 2B .3-22C .6-4 2D .6+426.已知a =(x -1,2),b =(4,y )(x ,y 为正数),若a ⊥b ,则xy 的最大值是( ) B .-12C .1D .-17.若直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b的最小值为( )C .2D .4 二、填空题8.设x >-1,则函数y =x +5x +2x +1的最小值是______.9.设a >b >c ,则a -c a -b +a -cb -c的最小值是________. 10.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(二次函数的图象如图所示),则每辆客车营运________年时,年平均利润最大.三、解答题11.已知x ,y >0,且x +2y +xy =30,求xy 的范围.12.已知正常数a ,b 和正变数x ,y 满足a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b 的值.13.某建筑公司用8 000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4 000平方米的楼房.经初步估计得知,如果将楼房建为x (x ≥12)层,则每平方米的平均建筑费用为Q (x )=3 000+50x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层每平方米的平均综合费用最小值是多少(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)当堂检测1.答案 C解析 A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C. 2.答案 B解析 y =x x -1+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立. 3.答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a+b +a 2+b 2≥2ab +2ab =4+22≈(m).∵要求够用且浪费最少,故选C. 4.答案 2解析 ①当x ∈(0,2)时, x,4-2x >0,f (x )=x (4-2x )≤12⎣⎢⎡⎦⎥⎤2x +4-2x 22=2, 当且仅当2x =4-2x ,即x =1时,等号成立.②当x ≤0或x ≥2时,f (x )≤0,故f (x )max =2.5.答案 1解析 ∵x <54,∴4x -5<0, ∴y =4x -5+14x -5+3 =-⎣⎢⎡⎦⎥⎤5-4x +15-4x +3 ≤-25-4x ·15-4x +3=1 当且仅当5-4x =15-4x,即x =1时,等号成立.课时精练答案一、选择题1.答案 A解析 x +2y =(x +2y )⎝ ⎛⎭⎪⎫8x +1y =10+16y x +x y≥10+216=18,当且仅当16y x =x y,即x =4y 时,等号成立. 2.答案 B解析 ∵点P (x ,y )在直线AB 上,∴x +2y =3.∴2x +4y ≥22x ·4y =22x +2y =4 2.当且仅当2x =4y ,即x =32,y =34时,等号成立. 3.答案 B解析 A 错误,当x <0时或x ≠1时不成立;B 正确,因为ab >0,所以b a >0,a b >0,且b a+a b≥2;C 错误,若运用基本不等式,需()x 2+22=1,x 2=-1无实数解;D 错误,y =2-(3x +4x )≤2-43,故最大值为2-4 3. 4.答案 C解析 由于x ,y 为正数,故(x +y )⎝ ⎛⎭⎪⎫1x +4y =1+4+y x +4x y ≥9.当且仅当y x =4x y,即y =2x 时取“=”.5.答案 D解析 1a +1b +1c =⎝ ⎛⎭⎪⎫1a +1b +1c (a +2b +c ) =4+2b a +c a +a b +c b +a c +2b c≥4+2 2b a ·a b +2 c a ·a c +2 c b ·2b c=6+42, 当且仅当2b a =a b ,c a =a c ,c b =2b c时,等号成立, 即a 2=c 2=2b 2时,等号成立.6.答案 A解析 ∵a ⊥b 则a ·b =0,∴4(x -1)+2y =0,∴2x +y =2,∴xy =12(2x )·y ≤12·⎝ ⎛⎭⎪⎫222=12, 当且仅当2x =y 时,等号成立.7.答案 D解析 圆方程为(x +1)2+(y -2)2=4,圆心为(-1,2),半径为2,若直线被截得弦长为4,说明圆心在直线上,即-2a -2b +2=0,∴a +b =1,∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b ) =2+b a +ab ≥2+2=4,当且仅当b a =ab,即a =b 时,等号成立. 二、填空题8.答案 9解析 ∵x >-1,∴x +1>0,设x +1=t >0,则x =t -1,于是有y =t +4t +1t=t 2+5t +4t =t +4t +5 ≥2 t ·4t+5=9, 当且仅当t =4t,即t =2时取“=”,此时x =1.∴当x =1时,函数y =x +5x +2x +1取得最小值9. 9.答案 4解析a -c a -b +a -c b -c =⎝ ⎛⎭⎪⎫1a -b +1b -c [(a -b )+(b -c )] =1+1+b -c a -b +a -b b -c ≥2+2 b -c a -b ·a -b b -c=4, 当且仅当b -c a -b =a -b b -c,即|a -b |=|b -c |, 又a >b >c ,∴b =a +c2时,等号成立.10.答案 5解析 二次函数顶点为(6,11),设为y =a (x -6)2+11,代入(4,7)得a =-1, ∴y =-x 2+12x -25, 年平均利润为y x =-x 2+12x -25x=-⎝ ⎛⎭⎪⎫x +25x +12≤-2 x ·25x +12=2, 当且仅当x =25x,即x =5时,等号成立. 三、解答题11.解 因为x ,y 是正实数,故30=x +2y +xy ≥22xy +xy ,当且仅当x =2y ,即x =6,y =3时,等号成立.所以xy +22xy -30≤0.令xy =t ,则t >0,得t 2+22t -30≤0,解得-52≤t ≤3 2.又t >0,知0<xy ≤32,即xy 的范围是(0,18]. 12.解 因为x +y =(x +y )·1=(x +y )·⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y≥a +b +2ab =(a +b )2, 当且仅当ay x =bx y ,即y x =b a时,等号成立, 所以x +y 的最小值为(a +b )2=18,又a +b =10,所以ab =16.所以a ,b 是方程x 2-10x +16=0的两根,所以a =2,b =8或a =8,b =2.13.解 设楼房每平方米的平均综合费用为f (x )元,依题意得,f (x )=Q (x )+8 000×10 0004 000x =50x +20 000x+3 000(x ≥12,x ∈N *), f (x )=50x +20 000x+3 000 ≥2 50x ·20 000x+3 000=5 000(元). 当且仅当50x =20 000x,即x =20时上式取“=”. 因此,当x =20时,f (x )取得最小值5 000(元).所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用最小值为5 000元.。
2.2基本不等式(二)

例4 某工厂要建造一个长方体无盖贮水池,其容积为4800 m3, 深为3m,如果池底每1 m2的造价为150元,池壁每1m2的造价为 120元,问怎样设计水池能使总造价最低?最低总造价是多少元?
解:设水池底面一边的长度为x m, 的总造价为y元,根据题意,得
则水池的宽为1600
x
m
,水池
y 150 4800 120(23x 23 1600)
(2)一段长为36 m的篱笆围成一个一边靠墙的矩形菜园, 问这个矩形的长、宽各为多少时,菜园的面积最大.最大面 积是多少?
例3 (1)用篱笆围成一个面积为100 m2的矩形菜园,问这 个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆长 是多少?
解: (1)设矩形菜园的长为x m,宽为y m,则xy=100,篱 笆的长为2(x+y) m.
小结
本节课我们用两个正数的算术平均数与几何平均数的 关系顺利解决了函数的一些最值问题。
在用基本不等式求函数的最值,是值得重视的一种方 法,但在具体求解时,应注意考查下列三个条件:
(1)函数的解析式中,各项均为正数;
(2)函数的解析式中,含变数的各项的和或积必须有一个为 定值;
(3)函数的解析式中,含变数的各项均相等,取得最值即用 均值不等式求某些函数的最值时,应具备三个条件:一正 二定三取等。
解: 设矩形菜园的长为x m,宽为ym,则2 (x+y)=36,
其中x+y=18,矩形的面积为xy m. 2
由 xy x y 18 9, 22
可得xy 81,
当且仅当x y 9时,等号成立.
题后反思:通 过这道例题的 学习,你有什 么收获?
即菜园长、宽都为9m时,菜园面积最大,最大面 积为81 m2.
高中数学《基本不等式》(2课时)教学设计

基本不等式(2课时)教学设计一、内容和内容解析1.内容:基本不等式的定义、几何解释、证明方法与应用.2. 内容解析:相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础.基本不等式是一种重要而基本的不等式类型,在中学数学知识体系中也是一个非常重要的、基础的内容.基本不等式与很多重要的数学概念和性质相关. 从数与运算的角度,是两个正数a,b的“算术平均数”,是两个正数a,b,的“几何平均数”.因此,不等式中涉及的是代数中的“基本量”和最基本的运算. 从几何图形的角度,“周长相等的矩形中,正方形的面积最大”,“等圆中,弦长不大于直径”,等等,都是基本不等式的直观理解.其次,基本不等式的证明或推导方法很多,上面的分析也是基本不等式证明方法的来源.利用分析法,从数量关系的角度,利用不等式的性质来推导基本不等式;从平面几何图形的角度,借助几何直观,通过数形结合来探究不等式的几何解释;从函数的角度,通过构造函数,利用函数性质来证明基本不等式;等等. 这些方法也是代数证明和推导的典型方法.此外,基本不等式是几何平均数不大于算术平均数的最基本和最简单的情形,可以推广至n个正数的几何平均值不大于算术平均值. 基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值. 同时,在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法. 因此,基本不等式的内容可以培养学生的逻辑推理、数学运算和数学建模素养.基于以上分析,确定本节课的教学重点:基本不等式的定义、几何解释和证明方法,用基本不等式解决简单的最值问题.本单元教学建议课时数:2课时.二、目标和目标解析1.目标:(1)理解基本不等式,发展逻辑推理素养.(2)结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.2.目标解析:达成上述目标的标志是:(1)知道基本不等式的内容,明确基本不等式就是“两个正数的算术平均数不小于它们的几何平均数”;会利用不等式的性质证明基本不等式,能说明基本不等式的几何意义.(2)能结合具体实例,明确基本不等式的使用条件和注意事项,即“一正、二定、三相等”;能用基本不等式模型识别和理解实际问题,能用基本不等式求最大值或最小值;在解决具体问题的过程中,体会基本不等式的作用,提升数学运算、数学建模等核心素养.三、教学问题诊断分析由于学生缺少代数式证明的经验,所以基本不等式的证明是本节课的一个难点.基本不等式的几何解释也是学生不容易想到的,需要数形结合地去理解,所以这也是本节课的一个难点.此外,在利用基本不等式研究最值问题时,学生容易出现忽视使用条件,不验证等号是否成立,甚至出现没有确认和或积为定值就求“最值”等问题,这也是学生思维不够严谨的表现,因此基本不等式的证明和利用基本不等式求最值也是本节课的难点.四、教学支持条件分析在进行基本不等式的几何解释的教学时,为了帮助学生直观地观察图形中几何元素之间的动态关系,并将其转化为代数表示,可以利用信息技术制作一个动态图形,以帮助学生直观理解.五、教学过程设计第一课时(一)课时教学内容本节课的主要教学内容有:基本不等式的定义;基本不等式的证明;基本不等式的几何解释;运用基本不等式求最值;基本不等式求最值的两种模型.(二)课时教学目标1.理解基本不等式,发展逻辑推理素养;2.了解基本不等式的几何解释;3.结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.(三)教学重点与难点教学重点:基本不等式的定义及运用基本不等式解决简单的最值问题.教学难点为:基本不等式的证明和运用基本不等式求最值.(四)教学过程设计1.基本不等式的定义导入语:我们知道,乘法公式在代数式的运算中有重要作用.那么,是否也有一些不等式,它们在解决不等式问题时有着与乘法公式类似的作用呢?下面就来研究这个问题.问题1:提到两个数的乘法,在上一节我们利用完全平方差公式得出了一类重要不等式中含有ab乘法,是什么不等式?2.基本不等式的证明问题2:上节课我们看到,证明不等关系,还可以运用不等式性质,你能否利用不等式的性质推导出基本不等式呢?预设方案一:学生根据两个实数大小关系的基本事实,用作差比较证明.教师给予肯定,是否还有其它证法?预设方案二:由于没有已知条件,学生不知从何入手.追问2:上述证明中,每一步推理的依据是什么?师生活动:学生分别回答由⑤→④,由④→③,由③→②,由②→①的依据.追问3:上述证明叫做“分析法”.你能归纳一下用分析法证明命题的思路吗?师生活动:学生讨论后回答.教师总结:分析法是一种“执果索因”的证明方法,即从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.追问4:你能说说分析法的证明格式是怎样的吗?师生活动:学生思考后回答.教师总结:由于分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,所以分析法在书写过程中必须有相应的文字说明:一般每一步的推理都用“要证……只要证……”的格式,当推导到一个明显成立的条件之后,指出“显然×××成立”.追问5:基本不等式成立的条件是什么?如果a<0或b<0基本不等式是否成立?师生活动:学生通过证明发现,a,b均为非负数,如果a,b存在负数时,该不等式不成立.教师指出基本不等式的定义要求a,b均为正数.设计意图:根据不等式的性质,用分析法证明基本不等式,同时引导学生认识分析法的证明过程和证明格式,为学生高中阶段的推理和证明提供了更丰富的策略.追问4:通过本例的解答,你能说说满足什么条件的代数式能够利用基本不等式求最值吗?师生活动:学生讨论后回答.教师总结:代数式能转化为两个正数的和或积的形式,它们的和或者积是一个定值,不等式中的等号能取到,通俗的说,就是“一正、二定、三相等”.设计意图:引导学生根据所求代数式的形式,判断是否能利用基本不等式解决问题,同时强调代数式的最值必须是代数式能取到的值,为学生求解代数式的最值问题提供示范.同时,在本题之后,引导学生总结能应用基本不等式求最值的代数式满足的条件.例2 已知x,y都是正数,求证:(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值;(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值 .师生活动:师生一起分析后,由学生思考并书写证明过程后展示,师生共同补充完善.追问:通过本题,你能说说用基本不等式能够解决什么样的问题吗?师生活动:学生思考后回答,教师总结:满足“两个正数的积为定值,当这两个数取什么值时,求它们的和的最小值”,或者“两个正数的和为定值,当这两个数取什么值时,求它们的积的最大值”的问题,能够用基本不等式解决.设计意图:在例1的基础上,再利用一道例题示范如何直接利用基本不等式解决问题,同时借此题的题干指出用基本不等式能够解决的两类问题,为用基本不等式解决实际问题创造了条件.(五)目标检测设计设计意图:考查学生对基本不等式的理解,及运用“分析法”证明问题的能力.第二课时(一)课时教学内容利用基本不等式解决实际问题中最值问题.(二)课时教学目标1.运用基本不等式解决生活中的最值问题,发展数学建模素养;2.理解基本不等式的数学模型,提高学生模型思想解决问题的能力.(三)教学重点与难点教学重点:运用基本不等式的模型思想解决生活中的最值问题.教学难点:应用基本不等式解决实际问题.(四)教学过程设计1.复习引入问题1:基本不等式的内容是什么?它有何作用?如何利用基本不等式求最值?需要注意什么?师生活动:学生根据教师提出的问题梳理上节课的知识,教师对学生遇到的困难给予帮助.特别是强调利用基本不等式求最值的方法,即两个变量均为正数是前提,发现“定值”是关键,验证等号成立是求最值的必要条件,即运用“一正、二定、三相等”的方法可以解决最值问题.2.利用基本不等式解决生活问题导入语:运用数学知识解决生活中的最值问题,也就是最优化的问题,特别能体现数学应用价值.基本不等式是求最值的工具,特别是对求代数式的最值问题有重要的意义.问题2:(1)用篱笆围一个面积为100m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36 m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?追问1:前面我们总结了能用基本不等式解决的两类最值问题,本例的两个问题分别属于哪类问题吗?师生活动:学生思考后回答:属于。
3.4基本不等式2

推广: (1)两个正数积为定值,和有最小值。
(2)两个正数和为定值,积有最大值。
变式:
a b (当a b时取“ ”号) (1)当a, b R 时, 2 . b a
1 2. (2)当a, b R 时, a a
练习:
1 1、若x 3,函数y x ,当x为何值时, x 3
函数有最值,并求其最值。 归纳:见和想积,乘积为定值,则和有最小值。
练习:
2: 设x,y满足x+y=40且x,y都是正数,则xy的最大值是( ) A.400 B.100 C.40 D。20
归纳:见积想和,和为定值,则乘积有最大值。 变式1: 已知x, y R , 且x 4 y 1, 则xy的最大值为________
a b ab 2(aFra bibliotek 0, b 0)
1. 重要不等式:若a,b∈R,则a + b ≥ 2ab (当且仅当a = b时,等号成立)
2
2
a+b 2. 基本不等式:若a,b∈R ,则 ≥ ab 2 (当且仅当a = b时,等号成立)
+
3. 注意:两个不等式的适用范围不同;
8 问题:a > 0, 当a取什么值,a + 的值 a 最小?最小值是多少?
(2)求y的最值.
解答
解: 设污水处理池的长为 x m, 总造价为y元,则 y=400· (2x+200/x×2)+248· (2×200/x)+80×200 =800x+259200/x+16000.
259200 16000 ≥ 2 800 x x
不等式公式四个

不等式公式四个一、基本不等式1:a^2 + b^2≥slant2ab(a,b∈ R),当且仅当a = b时取等号。
1. 推导。
- 对于(a - b)^2,因为任何实数的平方是非负的,所以(a - b)^2≥slant0。
- 展开(a - b)^2=a^2 - 2ab+b^2≥slant0,移项可得a^2 + b^2≥slant2ab。
2. 应用示例。
- 已知a = 3,b = 4,则a^2 + b^2=3^2+4^2 = 9 + 16=25,2ab = 2×3×4 = 24,满足a^2 + b^2≥slant2ab。
- 求y=x+(1)/(x)(x>0)的最小值。
- 根据a^2 + b^2≥slant2ab,这里a = x,b=(1)/(x),则x+(1)/(x)≥slant2√(x×frac{1){x}} = 2,当且仅当x=(1)/(x)即x = 1时取最小值2。
二、基本不等式2:(a + b)/(2)≥slant√(ab)(a>0,b>0),当且仅当a = b时取等号。
1. 推导。
- 由a^2 + b^2≥slant2ab,因为a>0,b>0,令A=√(a),B = √(b),则A^2=a,B^2 = b。
- 代入A^2 + B^2≥slant2AB得到a + b≥slant2√(ab),即(a + b)/(2)≥slant√(ab)。
2. 应用示例。
- 已知a = 4,b = 9,(a + b)/(2)=(4+9)/(2)=(13)/(2),√(ab)=√(4×9)=6,满足(a + b)/(2)≥slant√(ab)。
- 求y = x(1 - x)(0< x<1)的最大值。
- 因为y=x(1 - x),这里a=x,b = 1 - x,根据(a + b)/(2)≥slant√(ab),y=x(1 - x)≤slant((x+(1 - x))/(2))^2=(1)/(4),当且仅当x=1 - x即x=(1)/(2)时取最大值(1)/(4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式
[知识能否忆起] 一、基本不等式ab ≤a +b 2
1.基本不等式成立的条件:a >0,b >0.
2.等号成立的条件:当且仅当a =b 时取等号.
二、几个重要的不等式
a 2+
b 2≥2ab (a ,b ∈R );
b a +a b
≥2(a ,b 同号). ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );
⎝⎛⎭
⎫a +b 22≤a 2+b 22(a ,b ∈R ).
三、算术平均数与几何平均数
设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab , 基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.
四、利用基本不等式求最值问题
已知x >0,y >0,则:
(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)
(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24
.(简记:和定积最大)
[小题能否全取]
1.(教材习题改编)函数y =x +1x
(x >0)的值域为( ) A .(-∞,-2]∪[2,+∞)
B .(0,+∞)
C .[2,+∞)
D .(2,+∞)
2.(2012·佛山质检)若log m n =-1,则m +3n 的最小值等于( ) A.2 2 B .2 C.2 3 D.52
3.(教材习题改编)已知0<x <1,则x (3-3x )取得最大值时x 的值为( )
A.13
B.12
C.34
D.23
4.若x >1,则x +4x -1
的最小值为________.
5.已知x >0,y >0,lg x +lg y =1,则z =2x +5y
的最小值为________.
1.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.
2.对于公式a +b ≥2ab ,ab ≤⎝⎛
⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.
3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.。