实数综合提高习题(有答案)
实数总复习题及答案

实数总复习题及答案一、选择题1. 下列哪个数不是实数?A. √2B. πC. -3D. 1/02. 实数集R中的元素包括:A. 有理数B. 无理数C. 复数D. A和B3. 以下哪个表达式等于0?A. √4B. 1 - 1C. 2^0D. 1/∞4. 绝对值的定义是什么?A. 一个数的平方B. 一个数的立方C. 一个数的平方根D. 一个数的正数或05. 如果a是一个正实数,那么1/a是一个:A. 正实数B. 负实数C. 零D. 复数二、填空题6. 一个实数的绝对值总是_________或0。
7. 两个相反数的和是_________。
8. 无理数是_________的数。
9. 实数的运算包括加法、减法、乘法、除法以及_________。
10. 一个数的相反数是_________。
三、解答题11. 证明:对于任意实数a和b,如果a > b,则a - b > 0。
12. 解释实数的完备性。
13. 给出一个无理数的例子,并说明为什么它是无理数。
14. 计算下列表达式的值:(-3)^2 + √4 - 2π。
15. 讨论实数集R的性质。
四、应用题16. 一个圆的半径是5,求圆的周长和面积。
17. 如果一个物体从静止开始以恒定加速度运动,经过2秒后,求其位移和速度。
18. 一个水库的水位在24小时内下降了3米,如果下降速率是恒定的,求每小时的平均下降速率。
答案一、选择题1. D2. D3. B4. D5. A二、填空题6. 非负数7. 08. 不能表示为两个整数的比9. 幂运算10. 与原数符号相反的数三、解答题11. 证明:设a和b是任意实数,且a > b。
根据实数的性质,我们可以定义一个数c = a - b。
由于a > b,c是一个正数。
因此,a - b > 0。
12. 实数的完备性指的是,任意实数序列的极限仍然是一个实数。
这意味着实数集没有“漏洞”,即不存在任何“缺失”的数。
第三章 实数综合测试(含答案)

第三章 实数本章综合测试一、选择题(本题共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请将正确的答案选出来! 1.下列各组数中,不相等的一组是( )A 、(-2)3和-23B 、(-2)2和-22C 、+(-2)和-2D 、|-2|3和|2|3A .11B .-11C .11±D .11± 3.下列各数0,,57, 3.14-,2π中,是无理数的有( )A .5个B .4个C .个D .2个 4.估计-10的值在( )A 、-1至-2之间B 、-2至-3之间C 、-3至-4之间D 、-4至-5之间 5.下列说法错误的是( )A 、一个数的平方与这个数互为相反数的是0和-1B 、一个数的立方等于这个数的倒数的是1和-1C 、一个数的倒数小于这个数那么这个数大于1D 、一个数的算术平方根等于它本身的数是0和1 6.下列各式,正确的是( ) A 、3273-=- B4=±C、2=±D4=-7.下列说法正确的是( ) A 、81-的立方根是-12B 、 16 的平方根是±4C 、一个数的算术平方根必定是正数D 、 5的平方根是 58.如图,网格中的每个小正方形的边长为1,如果把阴影部分剪拼成一个正方形,那么这 第8题A .6B .7C .8D .39.下列叙述正确的是( )①数轴上的点与实数一一对应;②若b a <则b a <;③若五个数的积为负数,则其中正因数有2个或4个;④近似数3.70是由a 四舍五入得到的,则a 的范围为705.3695.3<≤a ;⑤连结两点的线段叫两点间的距离。
A 、①②③⑤ B 、①②④ C 、②④⑤ D 、①④10.若a ,b 互为相反数,m ,n 互为倒数,k ,则210099a b m nb k +++的值为 ( )A .-4B .4C .-96D .104 二、填空题(本题共6小题,每小题4分,共24分) 温馨提示:要求将最简洁、最正确的答案填在空格处!11.a 是9-的相反数,b 的立方根为2-,则b a +的倒数为 。
第六章 实数(提高卷)(解析版)

第六章实数(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题2分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.在实数中无理数的个数为()A.1个B.2个C.3个D.4个【答案】B【分析】根据无理数的定义求解即可.【解答】解:在实数中,无理数有,共2个,故选:B.【知识点】立方根、无理数、算术平方根2.已知m=,则下列对m值的范围估算正确的是()A.1<m<2B.2<m<3C.3<m<4D.4<m<5【答案】C【分析】估算确定出m的范围即可.【解答】解:∵1<<2,,∴3<<4,即3<m<4,故选:C.【知识点】估算无理数的大小3.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2B.0C.﹣2a D.2b【答案】A【分析】根据实数a和b在数轴上的位置,确定出其取值范围,再利用二次根式和绝对值的性质求出答案即可.【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【知识点】二次根式的性质与化简、实数与数轴4.已知无理数x=+2的小数部分是y,则xy的值是()A.1B.﹣1C.2D.﹣2【答案】A【分析】因为4<+2<5,所以+2的整数部分是4,小数部分是﹣2,由此代入求得数值即可.【解答】解:∵4<+2<5,∴+2的整数部分是4,小数部分是﹣2,则xy=.故选:A.【知识点】估算无理数的大小5.已知等腰三角形的两边长满足+b2﹣4b+4=0,那么这个等腰三角形的周长为()A.8B.10C.8或10D.9【答案】B【分析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【解答】解:根据题意得,a﹣4=0,b﹣2=0,解得a=4,b=2,①4是腰长时,三角形的三边分别为4、4、2,∵4+2=6>4,∴能组成三角形,周长=4+4+2=10,②4是底边时,三角形的三边分别为4、2、2,∵2+2=4,∴不能组成三角形,所以,三角形的周长为10.故选:B.【知识点】等腰三角形的性质、三角形三边关系、非负数的性质:算术平方根、非负数的性质:偶次方6.已知(1﹣x)2+,则x+y的值为()A.1B.2C.3D.5【答案】C【分析】根据非负数的性质:它们相加和为0时,必须满足其中的每一项都等于0.即可求得x,y的值.【解答】解:∵(1﹣X)2+∴解得∴x+y=1+2=3.故选:C.【知识点】非负数的性质:绝对值、非负数的性质:算术平方根7.对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:2※5=2×5﹣2﹣5+3=6.请根据上述定义解决问题:若5<2※x<7的整数解为()A.4B.5C.6D.7【答案】B【分析】根据新定义可得出关于x的一元一次不等式组,解之取其中的整数即可得出结论.【解答】解:由题意得,解得4<x<6,则该不等式组的整数解为5,故选:B.【知识点】一元一次不等式组的整数解、实数的运算8.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第10行从左至右第5个数是()A.﹣2B.﹣5C.D.【答案】B【分析】根据题意可以发现每行数字个数的变化规律和每行中的数的特点,从而可以求得第10行从左至右第5个数是哪个数,本题得以解决.【解答】解:由图可得,被开方数是偶数时,值为负,奇数时值为正,第一行1个数,第二行2个数,第三行3个数,…,则第10行10个数,故前9行的数的个数一共有:1+2+3+…+9=45个,则第10行从左至右第5个数是:﹣=﹣5,故选:B.【知识点】算术平方根、规律型:数字的变化类9.类比平方根和立方根,我们定义n次方根为:一般地,如果x n=a,那么x叫a的n次方根,其中n>1,且n是正整数.例如:因为(±3)4=81,所以±3叫81的四次方根,记作:,因为(﹣2)5=﹣32,所以﹣2叫﹣32的五次方根,记作:,下列说法不正确的是()A.负数a没有偶数次方根B.任何实数a都有奇数次方根C.D.【答案】D【分析】根据根式定义逐项判断.【解答】解:A.负数a没有偶数次方根,正确;B.任何实数a都有奇数次方根,正确;C.=a,正确;D.=|a|,故错误,故选:D.【知识点】立方根、分数指数幂、平方根10.a2=2,b3=3,c4=4,d5=5,且a、b、c、d为正数,则()A.a<b<c<d B.b<a<c<d C.d<a=c<b D.a=c<d<b【答案】C【分析】根据题意,比较a、b、c、d的大小关系,可以比较它们的相同的次幂,乘方的值大,则对应的数就大,据此即可作出判断.【解答】解:∵a2=2,c4=4,∴c2=2=a2,a=c,又∵a6=(a2)3=8,b6=(b3)2=9,∴b>a=c,比较b与d的大小:∵b15=(b3)5=243,d15=(d5)3=125,∴b>d,比较a与d的大小:∵a10=(a2)5=32,d10=(d5)2=25,∴a>d∴d<a=c<b.故选:C.【知识点】实数大小比较11.观察:=1+,=1+,s=+++…+,则s的整数部分是()A.2016B.2015C.2014D.2013【答案】C【分析】根据关系式,得到s的规律,再经过裂项计算即可.【解答】解:由规律可知s=1++1++1++…+1+(共有2014个1)=2014+1…+=2014+则s的整数部分为2014故选:C.【知识点】规律型:数字的变化类、估算无理数的大小12.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[﹣1.2}=﹣2.对数字65进行如下运算:①[]=8:②[]=2:③[]=1,这样对数字65运算3次后的值就为1,像这样对一个正整数总可以经过若干次运算后值为1,则数字255经过()次运算后的结果为1.A.3B.4C.5D.6【答案】A【分析】根据[x]表示不超过x的最大整数计算,可得答案.【解答】解:255→第一次[]=15→第二次[]=3→第三次[]=1,则数字255经过3次运算后的结果为1.故选:A.【知识点】估算无理数的大小、实数的运算二、填空题(本大题共4小题,每小题2分,共8分.不需写出解答过程,请把答案直接填写在横线上)13.计算:=.【答案】-1【分析】直接利用零指数幂的性质和负整数指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:1﹣2=﹣1.故答案为:﹣1.【知识点】实数的运算14.若有理数a,b满足a+b+3=a﹣b+7,则a=,b=.【答案】【第1空】7【第2空】2【分析】根据无理数的概念列出算式,分别求出a、b.【解答】解:∵a、b是有理数,b+3+a=a﹣b+7,∴b+3=a﹣b,a=7,解得,a=7,b=2,故答案为:7;2.【知识点】实数的运算15.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为.【答案】16【分析】利用非负数的性质求出b的值,推出a=c,推出PQ=6,根据PQ向右平移a个单位长度,其扫过的面积为24,推出a=4即可解决问题.【解答】解:∵|a﹣c|+=0,又∵|a﹣c|≥0,≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,∴a=4,∴a=c=4,∴a+b+c=4+8+4=16,故答案为16.【知识点】坐标与图形变化-平移、非负数的性质:绝对值、非负数的性质:算术平方根16.设2016a3=2017b3=2018c3,abc>0,且=++,则++=【答案】1【分析】充分利用2016a3=2017b3=2018c3这个关系,对=++中的a、b都用c进行替换即可求解.【解答】解:===(),++=+=(),即:=,解得:=1.故答案为1.【知识点】分式的加减法、立方根三、解答题(本大题共7小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1);(2)﹣;(3).【分析】(1)直接利用算术平方根的性质化简得出答案;(2)直接利用立方根的定义化简得出答案;(3)直接利用算术平方根的性质、立方根的定义化简得出答案.【解答】解:(1)=0.9﹣0.2=0.7;(2)﹣=﹣=﹣;(3)=﹣11+﹣6﹣0.5=﹣16.【知识点】实数的运算、立方根18.有理数a和b对应点在数轴上如图所示:(1)大小比较:a、﹣a、b、﹣b,用“<”连接;(2)化简:|a+b|﹣|a﹣b|﹣2|b﹣1|.【分析】(1)先根据数轴的特点判断出a、b的符号,再根据两点到原点的距离判断出﹣b与a的大小即可.(2)根据数轴点的特点可以得到a+b<0,a﹣b<0,b﹣1<0,再把要求的式子进行化简即可得出答案.【解答】解:(1)根据数轴上点的特点可得:a<﹣b<b<﹣a;(2)根据数轴给出的数据可得:a+b<0,a﹣b<0,b﹣1<0,则|a+b|﹣|a﹣b|﹣2|b﹣1|=﹣a﹣b﹣(b﹣a)﹣2(1﹣b)=a﹣b﹣b+a﹣2+2b=﹣2.【知识点】实数大小比较、绝对值、数轴19.已知A=是2x﹣y+4的算术平方根,B=是y﹣3x的立方根,试求A+B的平方根.【分析】先根据题意列方程组,解方程组求出对应的x和y的值,再计算A和B的值,最后计算其结果.【解答】解:由题意得:,方程组整理,得,,②﹣①,得3y=3,解得y=1,把y=1代入①,得x﹣1=2,解得x=3,∴A==,B==,∴A+B=3﹣2=1,∴A+B的平方根为:.【知识点】立方根、平方根、算术平方根20.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.【分析】(1)根据二次根式有意义的条件列出不等式,解不等式求出x,进而求出y,根据平方根的概念解答;(2)根据平方根的概念列出方程,解方程求出a,根据有理数的平方法则计算即可.【解答】解:(1)由题意得,x﹣2020≥0,2020﹣x≥0,解得,x=2020,则y=﹣2019,∴x+y=2020﹣2019=1,∵1的平方根是±1,∴x+y的平方根±1;(2)由题意得,a+2+a+5=0,解得,a=﹣,则a+2=﹣+2=﹣,∴x=(﹣)2=.【知识点】二次根式有意义的条件、平方根21.已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是的整数部分.(1)求a,b,c的值;(2)求2a﹣b+的平方根.【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵<<,∴6<<7,∴的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+=﹣6﹣5+×6=16,2a﹣b+的平方根为±=±4.【知识点】估算无理数的大小、平方根22.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:①(2+i)+(3﹣4i)=(2+3)+(i﹣4i)=5﹣3i②(5+i)(3﹣4i)=5×3﹣5×4i+3i﹣4i2=15﹣20i+3i﹣4×(﹣1)=19﹣17i③(5+i)(5﹣i)=52﹣i2=25﹣(﹣1)=26(1)填空:i6=,i4n+3=(n为正整数)(2)填空:①=;②(1+2i)2=.(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知(1﹣i)x+(﹣i﹣1)y=1﹣3i,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式.(5)解方程:x2﹣x+1=0.【答案】【第1空】-1【第2空】-i【第3空】1【第4空】4i-3【分析】(1)把i2=﹣1代入求出即可;(2)①先根据平方差公式进行计算,再把i2=﹣1代入求出即可;②先根据完全平方公式进行计算,再把i2=﹣1代入求出即可;(3)根据两个复数相等的定义得出方程组,求出方程组的解即可;(4)根据分子和分母都乘以1﹣i,再进行计算即可;(5)原式化为x2﹣x=i,利用配方法求解即可.【解答】解:(1)i6=(i2)3=﹣1,i4n+3=(i2)2n×i2×i=﹣i,故答案为:﹣1,﹣i;(2)①=﹣i2=+=1;②(1+2i)2=1+4i+4i2=1+4i+4×(﹣1)=4i﹣3;故答案为1;4i﹣3;(3)(1﹣i)x+(﹣i﹣1)y=1﹣3i,(x﹣y)﹣(x+y)i=1﹣3i,∴解得:x=2,y=1;(4)=====﹣i;(5)x2﹣x+1=0,x2﹣x=﹣1,∵i2=﹣1,∴x2﹣x=i2,x2﹣x+=i2+,(x﹣)2=i2+x﹣=±,x1=,x2=.【知识点】二元一次方程的解、实数的运算23.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为,当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a﹣b例如:T(1,3)=1+3=4:T(2,﹣1)=2﹣(﹣1)=3材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?(1+100)据说,当其他同学忙于把100个数还项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:+(2+99)+…+(50+51)=101×50=5050也可以这样理解:令S=1+2+3+…+100,则S=100+99+…+3+2+1②①+②:2S==100×101=10100,即S==5050.根据以上材料,回答下列问题:(1)已知x+y=10,且x>y,求T(5,x)﹣T(5,y)的值;(2)对于正数m,有T(m2+1,﹣1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.【分析】(1)根据x+y=10,且x>y,可得x>5,y<5,再根据当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a﹣b,即可求解;(2)由于m2+1≥1,由T(m2+1,﹣1)=3,可得m2+1﹣(﹣1)=3,根据m是正数可求m,再代入T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)得到原式=1+100+2+100+3+100+…+199﹣100,再根据高斯求和公式即可求解.【解答】解:(1)∵x+y=10,且x>y,∴x>5,y<5,∴T(5,x)﹣T(5,y)=5+x﹣(5﹣y)=x+y=10;(2)∵m是正数、m2+1≥1,T(m2+1,﹣1)=3,∴m2+1﹣(﹣1)=3,解得m=±1(负值舍去),∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=1+100+2+100+3+100+…+199﹣100=(1+2+3+…+199)+100×99﹣100×100=(1+199)×199÷2﹣100=100×199﹣100=100×198=19800.【知识点】数学常识、实数的运算、规律型:数字的变化类。
第2章实数基础提高含答案

A.0 B. C. D.
二、填空题
7.在数轴上与原点的距离是2 的点所表示的实数是.
8. 的相反数是,绝对值是,倒数是.
9. 49的平方根是,64的算术平方根是,-64的立方根是.
10.已知a=2,则代数式 - 的值等于.
11.一个正数的平方根为x+3与2x-6,则x=,这个正数是.
(2)利用4 4方格,作出面积为10的正方形,然后在数轴上表示实数 。
23.已知实数a使 成立,求 的值。
学以致用
1.估算 的值在()
A. 7和8之间B. 6和7之间
C. 3和4之间D. 2和3之间
2.若 ,则 =
3.当m<0时,则 + 的值为______
4.如果 是 的整数部分, 是 的小数部分, =_______
第二章实数综合练习题
1.实数a、b、c在数轴上的对应点如图,求
a+ 的值。
a b0 c
2.(1)9的平方根是()。
A.-3 B.3 C.±3 D.81
(2)16算术平方根是()。
A. ±4 B.-4 C.4 D.2
3.已知 ,求 的值。
4.若a+b<0,a<0,b>0,则a,-a,b,-b的大小关系为()。
则 =
9.现在要将一个边长为 m的正方形的铁板锻造成一个面积是它2倍的圆形铁板(厚度一样),则这个铁板的半径为_____m.
10.如图所示,将两个边长为 的正方形沿对角线剪开,拼成一个大正方形,这个大正方形的边长是.
11.如果 +2=0,则 +17的平方根是____________
12.已知 是小于 的整数,且 ,那么 的所有可能值是______
实数复习题含答案

实数复习题含答案一、选择题1. 下列各数中,是实数的是()A. -3√2B. √(-1)C. √2D. 1/0答案:A2. 若a是实数,下列表达式中不可能为实数的是()A. a^2B. a^3C. a^4D. 1/a答案:D3. 实数x满足|x-2| < 1,则x的取值范围是()A. 1 < x < 3B. 0 < x < 4C. 1 ≤ x ≤ 3D. 0 ≤ x ≤ 4答案:A二、填空题1. 若实数x满足x^2 - 4x + 4 = 0,那么x的值为____。
答案:22. 一个实数的绝对值等于它自己,那么这个实数是____。
答案:非负数3. 若实数a和b满足a + b = 5,且a - b = 3,那么a和b的值分别是____和____。
答案:4,1三、解答题1. 证明:对于任意实数a和b,(a+b)^2 ≤ 2(a^2 + b^2)。
证明:根据平方和公式,有(a+b)^2 = a^2 + 2ab + b^2而2(a^2 + b^2) = 2a^2 + 2b^2由于2ab ≤ 2a^2 + 2b^2(根据基本不等式),所以(a+b)^2 ≤ 2(a^2 + b^2)。
2. 已知实数x满足x^2 - 5x + 6 = 0,求x的值。
解:将方程x^2 - 5x + 6 = 0进行因式分解,得到(x-2)(x-3) = 0因此,x的值为2或3。
四、应用题1. 一个长方形的长是宽的两倍,且面积为24平方米。
求长方形的长和宽。
解:设长方形的宽为x米,则长为2x米。
根据面积公式,有x * 2x = 24即 x^2 = 12解得x = √12 = 2√3因此,长方形的宽为2√3米,长为4√3米。
五、综合题1. 已知实数a,b,c满足a < b < c,且a + b + c = 1。
证明:1/a > 1/b + 1/c。
证明:由于a < b < c,所以1/a > 1/b > 1/c。
实数计算题专题训练(含答案)

实数计算题专题训练(含答案)实数计算题专题训练(含答案)在数学学习中,实数计算题是一个重要的训练内容。
通过解答实数计算题,可以提高我们的计算能力和逻辑思维能力。
本文将为大家提供一些实数计算题的专题训练,以帮助大家巩固和提升自己的实数计算能力。
一、有理数运算1. 计算:(-2/3) + (5/6) - (1/4)解:首先,将两个分数的分母取最小公倍数4,然后进行计算:(-2/3) + (5/6) - (1/4) = (-8/12) + (10/12) - (3/12) = (-1/12)答案:(-1/12)2. 计算:-3/5 × 4/7 ÷ (-2/3)解:首先,将除法转化为乘法,然后计算:-3/5 × 4/7 ÷ (-2/3) = -3/5 × 4/7 × (-3/2) = (-36/70)答案:(-36/70)二、无理数运算1. 计算:√2 + √18 - √8解:将每个无理数化简到最简形式,然后进行计算:√2 + √18 - √8 = √2 + 3√2 - 2√2 = 2√2答案:2√22. 计算:4√5 × √8 ÷ (√20)²解:首先,将除法化简为乘法,然后计算:4√5 × √8 ÷ (√20)² = 4√5 × √8 ÷ 20 = 4/5 × 2√2 = 8/5√2答案:8/5√2三、复数运算1. 计算:(3 + 2i) + (4 - 5i)解:将实部与虚部相加,得到结果:(3 + 2i) + (4 - 5i) = (3 + 4) + (2i - 5i) = 7 - 3i答案:7 - 3i2. 计算:(2 + 3i) × (-4 - i)解:使用分配律展开并进行计算:(2 + 3i) × (-4 - i) = -8 - 2i - 12i - 3i² = -11 - 14i + 3 = -8 - 14i 答案:-8 - 14i四、实数绝对值计算1. 计算:|3 - 7|解:将绝对值内的表达式求值:|3 - 7| = |-4| = 4答案:42. 计算:|4 - 6| + |8 - 10|解:将绝对值内的表达式求值,并进行加法运算:|4 - 6| + |8 - 10| = |-2| + |-2| = 2 + 2 = 4答案:4通过以上的实数计算题的专题训练,我们可以加深对有理数、无理数和复数的运算规则和性质的理解,并提高自己的计算技巧。
实数练习题及答案

实数练习题及答案实数是数学中非常重要的概念,它们包括有理数和无理数。
掌握实数的概念和运算是解决许多数学问题的基础。
下面是一些实数的练习题,以及相应的答案,供学习者练习和参考。
练习题1:判断下列数中哪些是有理数,哪些是无理数。
- √2- π- 1/3- 0.5- √3- √8答案1:- √2(无理数)- π(无理数)- 1/3(有理数)- 0.5(有理数,即1/2)- √3(无理数)- √8(无理数,因为8可以分解为2^3,而√8 = 2√2)练习题2:计算下列表达式的值。
- √4 + √9- √16 - √25- (√2)^2- √(1/4)答案2:- √4 + √9 = 2 + 3 = 5- √16 - √25 = 4 - 5 = -1- (√2)^2 = 2- √(1/4) = 1/2练习题3:解下列方程。
- √x = 4- x^2 = 16- √(x - 3) = 2答案3:- √x = 4,两边平方得 x = 16- x^2 = 16,解得x = ±4- √(x - 3) = 2,两边平方得 x - 3 = 4,解得 x = 7练习题4:将下列无理数化为最简二次根式。
- √48- √75答案4:- √48 = √(16 * 3) = 4√3- √75 = √(25 * 3) = 5√3练习题5:求下列表达式的值。
- √(√3 + 1)^2- √(√2 - 1)^2答案5:- √(√3 + 1)^2 = √3 + 1- √(√2 - 1)^2 = √2 - 1练习题6:判断下列表达式是否正确。
- √(-4) 是否有实数解?- √(-9) 是否有实数解?答案6:- √(-4) 没有实数解,因为负数没有实数平方根。
- √(-9) 同样没有实数解。
通过这些练习,可以帮助学习者更好地理解实数的概念和运算规则。
希望这些练习题和答案对学习者有所帮助。
在数学学习中,不断的练习和思考是提高解题能力的关键。
人教版七年级数学下册 第六章《 实数》综合练习(附答案)

人教版七年级数学下册 第六章《实数》综合练习一、单选题1.9的平方根是( )A .±√3B .3C .±81D .±322 ,则a 的值为( )A .-4B .4C .-2 D3)A .±2B .±4C .4D .2 4.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 55.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或7 6.下列实数中,无理数是( )A .3.14B .2.12122CD .2277.实数a b c d ,,,在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d8.下列说法正确的是()A.无理数都是无限不循环小数B.无限小数都是无理数C.有理数都是有限小数D.带根号的数都是无理数9.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10.在实际生活中,八点五十五通常说成九点差五分,受此启发,我们设计了一种新的加减计数法,比如:7写成13,即13=10-3=7;191写成209,即209=200-9=191,按这个方法计算2019等于( )A.2020B.2001C.1991D.1981二、填空题11.一个正数的两个平方根分别是3a+2和a-4.则a的值是.12-125的立方根的和为______.13的整数部分是m,小数部分是n,则n2﹣2m﹣1的值为_____.14.====,…,则第8个等式是__________.三、解答题15.求出下列x的值.(1)16x2﹣49=0;(2)24(x﹣1)3+3=0.16.已知一个正数的平方根分别是32x +和49x -,求这个数.17.观察下列计算过程,猜想立方根.13=123=833=2743=6453=12563=21673=34383=51293=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为______,又由203<19000<303,猜想19683的立方根的十位数为_____,验证得19683的立方根是______.(2)请你根据(1)中小明的方法,求﹣373248的立方根.18.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________;你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321①由①式左右两边分别减去①式左右两边,得3S -S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程. 19.阅读下面文字,然后回答问题.的小数部分我们不可能全部的整数部分是1 减去它的整数部分,差就是它的小数部分,因此﹣1表示.由此我们得到一个真命题:=x +y ,其中x 是整数,且0<y <1,那么x =1,y ﹣1.请解答下列问题:(1a +b ,其中a 是整数,且0<b <1,那么a = ,b = ;(2c +d ,其中c 是整数,且0<d <1,那么c = ,d = ;(3)已知m+n ,其中m 是整數,且0<n <1,求|m ﹣n |的值答案1.D 2.B 3.D 4.C 5.D 6.C 7.D 8.A 9. B 10.D11.-12.12.-3或-713.5-14=15.(1)x=±74;(2)x=12.16.2517.(1)7,2,27;(2)-72.18.(1) 3, a n =13n -;(2) ()1011651S =-;(3) ()1111-n m S m +=-.19.(1)a =2,b 2;(2)c =﹣3,d =3(3)6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为
,
所以
.又
,
所以
.
所以 , , 能构成三角形,其周长为
.
8. 面积为,周长为Βιβλιοθήκη .9. 由题意得,
,
,
.
,
,
.
三角形的周长为
.
原式 10.
11. ( 1)
( 2) 12. 由数轴可知
,
.
13. ( 1)
( 2)
14.
,
,
,
,
.
15. ( 1)
( 2)
最全文档整理
学无止境
( 3) ( 4) ( 5) ( 6)
16. ( 1)
. . .
.
( 2)
原式 17. ( 1)
( 2) 原式
.
18. ( 1)
化简过程为:
( 2)
最全文档整理
学无止境
原式 19. ( 1)
( 2)
学无止境
最全文档整理
答案
学无止境
( 3)
( 4)
4. ( 1) 原式 ( 2) 原式 ( 3) 原式
( 4) 原式
5.
,
,
, ,
. .
.
学无止境
.
6. 因为 , 互为相反数,
所以
.
因为 , 互为倒数,
所以
.
因为 | | ,
所以
,
.
所以
7. ( 1) 因为
,
所以
,
,
所以
,
,
最全文档整理
,| .
.
|,
( 2) 能构成 . 理由:
可以用下面的方法解决上面的问题:
的结果吗 ?请写出化简过程. ?
学无止境
利用上面的方法解决问题: Ⅰ 计算 Ⅱ 当 _____时,等式
. 成立.
最全文档整理
第一部分 1. ( 1)
( 2) ( 3) ( 4) ( 5) ( 6) 2. ( 1) 原式
原式 ( 2)
3. ( 1)
( 2)
最全文档整理
实数培优练习题
一、解答题(共 19 小题;共 247 分)
1. 三、计算题 Ⅰ Ⅱ Ⅲ
. .
.
Ⅳ
.
Ⅴ Ⅵ 2. 计算: Ⅰ Ⅱ 3. 计算:
. .
.
Ⅰ
学无止境
Ⅱ
Ⅲ
Ⅳ
4. 计算: Ⅰ Ⅱ
; ;
Ⅲ
;
Ⅳ
.
5. 已知
,
,求
Ⅰ 答案:
6. 若 , 互为相反数, , 互为倒数,
的值. 的绝对值为 ,求
的值.
7. 若 , , 满足 Ⅰ 求 , , 的值;
化简: 13. 计算:
Ⅰ Ⅱ 14. 如果 15. 化简: Ⅰ Ⅱ
Ⅲ
;
Ⅳ
;
Ⅴ
Ⅵ
.
16. 计算:
Ⅰ
Ⅱ
17. 计算: Ⅰ Ⅱ
18.
; ;
; ;
; .
请回答下列问题:
.
,求
的值.
. .
最全文档整理
Ⅰ 观察上面的解题过程,你能直接给出 Ⅱ 利用上面提供的方法,你能化简下面的式子吗
.
19. 阅读学习
计算:
.
|
|.
Ⅱ 试问以 , , 为边能否构成三角形,若能构成求出三角形的周长;若不能构成请说明理由
.
最全文档整理
8. 一个长方形的两条边长分别是
和
9. 一个三角形的三边长分别是 的周长.
, , ,且
10. 计算:
11. 计算:
Ⅰ
;
Ⅱ
.
12. 已知:实数 , 在数轴上的位置如图所示,
学无止境
,求这个长方形的面积和周长. ,求这个三角形