微分方程的几个简单实例

合集下载

3.1微分方程模型-微分方程的几个简单实例

3.1微分方程模型-微分方程的几个简单实例

微分方程模型浙江大学数学建模实践基地§3.1 微分方程的几个简单实例在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题,本节将通过一些最简单的实例来说明微分方程建模的一般方法。

在连续变量问题的研究中,微分方程是十分常用的数学工具之一。

例1(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。

从图3-1中不难看出,小球所受的合力为mgsin θ,根据牛顿第二定律可得:sin ml mg θθ=- 从而得出两阶微分方程:0sin 0(0)0,(0)g l θθθθθ+==⎪=⎧⎪⎨⎩ (3.1)这是理想单摆应满足的运动方程(3.1)是一个两阶非线性方程,不易求解。

当θ很小时,sin θ≈θ,此时,可考察(3.1)的近似线性方程:00(0)0,(0)g l θθθθθ+==⎧=⎪⎨⎪⎩ (3.2)由此即可得出2g T l π=(3.2)的解为: θ(t )=θ0cosωtg l ω=其中当时,θ(t )=04T t =42g T l π=故有M Q P mgθl 图3-1(3.1)的近似方程例2我方巡逻艇发现敌方潜水艇。

与此同时敌方潜水艇也发现了我方巡逻艇,并迅速下潜逃逸。

设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。

这一问题属于对策问题,较为复杂。

讨论以下简单情形:敌潜艇发现自己目标已暴露后,立即下潜,并沿着直线方向全速逃逸,逃逸方向我方不知。

设巡逻艇在A 处发现位于B 处的潜水艇,取极坐标,以B 为极点,BA 为极轴,设巡逻艇追赶路径在此极坐标下的方程为r =r (θ),见图3-2。

B AA1dr ds dθθ图3-2由题意,,故ds =2dr 2ds dr dt dt =图3-2可看出,222()()()ds dr rd θ=+故有:2223()()dr r d θ=即:3rdr d θ=(3.3)解为:3r Ae θ=(3.4)先使自己到极点的距离等于潜艇到极点的距离然后按(3.4)对数螺线航行,即可追上潜艇。

高考数学中的微分方程应用及实例题解析

高考数学中的微分方程应用及实例题解析

高考数学中的微分方程应用及实例题解析一、微分方程的应用微分方程在数学中有着广泛的应用,而在高考数学中尤为重要。

微分方程可以用来描述各种物理和工程问题中的连续变化。

在高考数学中,微分方程的应用主要包括解决物理和工程问题,并用微分方程模型求解。

下面,我们将以几个实例来解释微分方程的应用。

二、实例题解析1. 一个水箱有一个进水口和一个排水口,进水口的水速是10升/分钟,排水口排水的速度是6升/分钟。

在水箱的初态下,水箱的水量是7升。

求15分钟之后水箱的水量是多少?解答:由于水箱的进水口和排水口都是连续变化的,因此可以用微分方程来模拟。

不妨设水箱的初始状态下的水量为y,当t时间后,进水和排水的水量都为10-6=4升/分钟,因此有:y'(t)=4根据微分方程得:y(t)=4t+C由于初态下,水量为7升,因此C=7。

当t=15时,有:y(15)=4*15+7=67因此,15分钟后水箱的水量是67升。

2. 某商品的回报率为r,市场容量有限,其市场占有率y变化满足dy/dt=ry(1-y),y初始为0.2,求当市场占有率达到60%时所需的时间。

解答:由于市场占有率随时间的变化是连续变化的,因此可以用微分方程来模拟。

设市场占有率为y,时间为t,有:dy/dt=ry(1-y)将该微分方程分离变量得:1/(y(1-y))dy=rdt两边积分得:ln|y/(1-y)|=rt+C由于当y=0.2时,t=0,因此C=ln(1/4)。

当y=0.6时,有:ln|0.6/(1-0.6)|=0.4r+C代入C得:ln(3/2)=0.4r+ln(1/4)解得r=ln3/16,因此所需的时间为:t=[ln(3/2)-ln(1/4)]/0.4ln3/16≈8.25因此,市场占有率达到60%时所需的时间为8.25。

三、总结微分方程在高考数学中的应用极为广泛,需要考生有扎实的微积分和数学建模的基础。

通过多做微分方程的实例题目,可以帮助考生更好地掌握微分方程的应用方法和技巧。

高考数学中的微分方程分析及应用实例

高考数学中的微分方程分析及应用实例

高考数学中的微分方程分析及应用实例微分方程是数学的一个分支,可以用来描述物理世界中的许多现象和规律。

在高中数学中,微分方程也是一个非常重要的知识点,尤其是在高考数学中,微分方程的考查频率也很高。

本文将从微分方程的定义、解法以及应用实例三个方面进行阐述,帮助大家更好地理解和应用微分方程。

一、微分方程的定义微分方程是描述一个未知函数及其导数之间关系的数学方程。

简而言之,微分方程就是“导数方程”。

形式化地表述,设$ y=f(x)$ ,则微分方程一般可以写成如下形式:$$F(x,y,y',y'',\cdots,y^{(n)})=0$$其中,$ y^{(i)} $表示$ y $的$i$阶导数,$ F $是关于$ x,y,y',y'',\cdots,y^{(n)} $的函数。

二、微分方程的解法微分方程的解法主要有三种方法:分离变量法、齐次方程和一阶线性微分方程。

1. 分离变量法所谓“分离变量”,就是把方程中的$ x $和$ y $分别独立出来。

具体来说,就是在微分方程两边同时乘上$ dx $,然后把所有包含$ y $的项移到等号右边,所有包含$ x $的项移到等号左边,形如:$$F(y)dy=G(x)dx$$然后两边同时积分即可求得$ y $的解。

需要注意的是,这个方法只适用于能够分离变量的微分方程。

2. 齐次方程所谓“齐次方程”,就是系数和次数都相同的微分方程。

对于这类方程,我们可以进行一些变换,将其转化为可分离变量的形式。

具体方法是令$ y=vx $,然后把微分方程中的$ y $用$ v $和$ x $表示出来,形如:$$ y'=v+xv'$$将其代入微分方程中,消去$ v $得到一个可分离变量的方程。

3. 一阶线性微分方程所谓“一阶线性微分方程”,就是可以写成如下形式的微分方程:$$\frac{dy}{dx}+P(x)y=Q(x)$$其中,$ P(x) $和$ Q(x) $都是已知函数。

微分方程型建模实例题

微分方程型建模实例题

一个数学问题都可以用不同的方法来求解的,不同的方法做出来效果不同,效率也不同。

下面就微分方程模型建模展开建模。

下面给出些微分方程建立模型的实例,供大家参考。

1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。

设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间?2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少?3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间?4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。

5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度?6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。

8.1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。

9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常数,()10.实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为0.005。

微分生活实例

微分生活实例

微分生活实例
例子一:火力发电厂的冷却塔的外形要做成弯曲的原因就是冷却塔体积大,自重非常大,如果直上直下,那么最下面的建筑材料将承受巨大的压力,以至于无法承受(地球上的山峰最高只能达到3万米,否则最下面的岩石都要融化了)。

把冷却塔的边缘做成双曲线的性状,正好能够让每一截面的压力相等,冷却塔就能做的很大。

例子二:计算机内部指令需要通过硬件表达,把信号转换为能够让我们感知的信息。

Windows系统带了一个计算器,可以进行一些简单的计算,比如算对数。

计算机是计算是基于加法的,运用微积分的级数理论,可以把对数函数转换为一系列乘法和加法运算。

微积分理论可以粗略的分为几个部分,微分学研究函数的一般性质,积分学解决微分的逆运算,微分方程(包括偏微分方程和积分方程)把函数和代数结合起来,级数和积分变换解决数值计算问题,另外还研究一些特殊函数,这些函数在实践中有很重要的作用。

常微分方程中的一些简单例子和方法

常微分方程中的一些简单例子和方法

常微分方程中的一些简单例子和方法常微分方程是数学中的一个重要分支,它涉及到很多实际问题的数学模型解析和数值求解。

常微分方程可以用于描述很多自然现象,比如物理、生物、经济和工程学等领域。

它是应用数学中的一部分,也是数学中比较重要的一部分,今天我们就来介绍一下常微分方程中的一些简单例子和方法。

一、一阶常微分方程一阶常微分方程形如: $\frac{dy}{dx}=f(x,y)$,其中y是未知函数,x是自变量,f(x,y)是已知函数。

这种方程的解就是y(x)。

下面我们来看几个例子。

1. 求解方程$y'=3x^2$。

对方程两边求积分,得到$y=\int3x^2dx=x^3+C$。

其中C是常数,可以通过初始条件来确定。

比如,如果y(x)在x=0处等于2,则$y(0)=2$,代入求解得到$C=2$,所以完整的解为$y=x^3+2$。

2. 求解方程$y'=2xy$。

对方程两边分离变量,得到$\frac{dy}{y}=2xdx$,对两边求积分,得到$\ln|y|=x^2+C$。

移项得到$y=Ce^{x^2}$,其中C是常数。

3. 求解方程$y'+2xy=x$。

这是一个非齐次线性微分方程,首先求解它的齐次方程$y'+2xy=0$,这个方程的解是$y=Ce^{-x^2}$。

然后我们要找到一个特殊解,这个特殊解满足非齐次方程。

我们可以猜测特殊解为$y=A+Bx$,代入非齐次方程得到$B=1$,$A=-\frac{1}{2}$,因此特殊解为$y=-\frac{1}{2}+x$。

因为非齐次方程的通解等于它的齐次解加上特殊解,所以得到通解为$y=Ce^{-x^2}-\frac{1}{2}+x$。

二、二阶常微分方程二阶常微分方程形如:$y''+p(x)y'+q(x)y=f(x)$。

其中y是未知函数,x是自变量,f(x)、p(x)和q(x)都是已知函数。

这种方程的解是y(x)。

微分方程例题范文

微分方程例题范文

微分方程例题范文微分方程是描述物理学、化学、经济学、生物学等领域中变化规律的重要数学工具。

下面我将给出几个微分方程的例题,解析其求解过程。

例题1:一般线性微分方程已知其中一种细菌种群的个体数量N(t)随时间t的变化符合以下微分方程:dN(t)/dt = k*N(t)其中k为常数。

求解该微分方程,并给出其通解。

解析:思路:这是一个一阶线性微分方程,可以使用分离变量法进行求解。

将方程进行分离变量:dN(t)/N(t) = k*dt两边同时积分:∫ (1/N(t)) dN(t) = ∫ k dt得到:ln,N(t), = kt + C1其中C1为常数。

对上式两边取指数:N(t), = e^(kt+C1) = e^C1 * e^kt = C * e^kt其中C=e^C1为常数。

由于细菌数量N(t)永远为正数,所以可以去掉绝对值符号,得到通解:N(t) = C * e^kt其中C为常数。

例题2:二阶常系数齐次线性微分方程已知其中一振动系统满足以下微分方程:d²x(t)/dt² + 4dx(t)/dt + 5x(t) = 0求解该微分方程,并给出其通解。

解析:思路:这是一个二阶常系数齐次线性微分方程,可以使用特征根法进行求解。

将方程转化为特征方程:λ²+4λ+5=0求解特征方程的解,得到特征根:λ₁=(-4+√(-4²-4*5))/2=-2+iλ₂=(-4-√(-4²-4*5))/2=-2-i特征根为复数,分别为共轭复数对。

根据特征根的性质,解的形式为:x(t) = e^(-2t) (C₁cos(t) + C₂sin(t))其中C₁、C₂为常数。

例题3:二阶常系数非齐次线性微分方程已知其中一电路中的电流I(t)满足以下微分方程:d²I(t)/dt² + 3dI(t)/dt + 2I(t) = 6e²求解该微分方程,并给出其通解。

微分方程的常用数值解法

微分方程的常用数值解法

微分方程的常用数值解法摘要:微分方程是数学中的一种重要的方程类型,它能描述自然现象和工程问题中的许多变化规律。

但是大多数微分方程解法是无法用解析的方式求解的,因此需要借助数值解法来近似求解。

本文将介绍微分方程的常用数值解法。

关键词:欧拉方法;龙格-库塔方法;微分方程;常用数值解法一、微分方程数值解方法微分方程数值解法是数学中的重要部分。

欧拉方法、龙格-库塔方法和二阶龙格-库塔方法是常用的微分方程数值解法,下面就分别介绍这三种方法。

(一)欧拉方法欧拉方法是解初值问题的一种简单方法,它是欧拉用的第一种数值方法,也叫向前欧拉法。

欧拉方法是利用微分方程的定义式y’=f(x, y),将它带入微分方程初值问题y(x_0)=y_0中,以y_0为初始解,在每一步上通过沿着切线的方法进行估计并推进新的解y_{i+1}:y_i+1=y_i+hf(x_i,y_i)其中,x_i和y_i是我们知道的初始条件,h是求解过程中的步长,f是微分方程右端项。

它是一种时间迭代的算法,易于实现,但存在着精度不高的缺点。

(二)龙格-库塔方法龙格-库塔方法是一种经典迭代方法,也是近代微分方程数值解法发展的里程碑之一。

龙格-库塔方法的主要思想是利用规定的阶码及阶向量,通过递推求解微分方程数值解的近似值。

龙格-库塔方法的方式不同,其步骤如下:第一步:根据微分方程,计算出在x_i和y_i的值。

第二步:在x_i处对斜率进行估计,并利用这个斜率来求解下一步所需的y_i+1值。

第三步:使用x_i和y_i+1的值来重新估计斜率。

第四步:使用这个新的斜率来更新y_i+1的值。

(三)二阶龙格-库塔方法二阶龙格-库塔方法是龙格-库塔方法的一种变体,它根据龙格-库塔方法的思想,使用更好的步长来提高数值解的精度。

二阶龙格-库塔方法的基本思路是,在第一次迭代时使用一个阶段小一半的y_i+1,然后使用这个估算值来计算接下来的斜率。

通过这种方法,可以提高解的精度。

二阶龙格-库塔方法的步骤如下:第一步:计算出初始阶段的y_i+1值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2 5 2
O
x
S
图3-3
例4 一根长度为l的金属杆被水平地夹在两端垂直的支架上,一
端的温度恒为T1,另一端温度恒为T2,(T1、T2为常数,T1> T2)。 金属杆横截面积为A,截面的边界长度为B,它完全暴露在空气中, 空气温度为T3,(T3< T2,T3为常数),导热系数为α,试求金属 杆上的温度分布T(x),(设金属杆的导热率为λ) dt时间内通过距离O点x处截面的热量为: AT '( x)dt 热传导现象机理:当温差在一定范围内时,单位时间里由温度高
微分方程模 型
浙江大学数学建模实践基地
§3.1 微分方程的几个简单实例
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
本节将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
例3 一个半径为Rcm的半球形容器内开始时盛满了
水,但由于其底部一个面积为Scm2的小孔在t=0时刻 被打开,水被不断放出。问:容器中的水被放完总共 需要多少时间?
解: 以容器的底部O点为 原点,取坐标系如图3.3所示。 令h(t)为t时刻容器中水的高度,现建立h(t)满足的微分 方程。 设水从小孔流出的速度为v(t),由力学定律,在不计水 即: dh 0.6S 2hg 2 的内部磨擦力和表面张力的假定下,有: dt [ R2 ( R h) ] (t ) 0.6 2gh 这是可分离变量的一阶微分方程,得 y 2 2 0 [ R ( R h) ] 因体积守衡,又可得: dh T 易见:
敌潜艇发现自己目标已暴露后,立即下潜,并沿着直 线方向全速逃逸,逃逸方向我方不知。 设巡逻艇在A处发现位于B处的潜水艇,取极坐标,以B 为极点,BA为极轴,设巡逻艇追赶路径在此极坐标下的方 程为r=r(θ),见图3-2。 A1 dr ds dr 由题意, 2 ,故ds=2dr ds dt dt

T2 T 系统处于热平衡状态,故有: AT ( x)dxdt1 Bdx[T ( x) T3 ]dt l
所以金属杆各处温度T(x)满足的微分方程: o
这是一个两阶常系数线 性方程,很容易求解
T ( x)
B T3 (T T3 ) 单摆运动)建立理想单摆运动满足的微
分方程,并得出理想单摆运动的周期公式。 从图3-1中不难看出,小球所受的合力为mgsinθ, g 根据牛顿第二定律可得: 0 (3.2) (3.1)的 l 近似方程 ml mg sin 从而得出两阶微分方程: (3.2)的解为: θ(t)= θ0cosωt 这是理想单摆应 g sin 0 其中 g 满足的运动方程 (3.1) l l T 当t 时,θ(t)=0 (0) 0, (0) 0 4 gT 故有 l 4 2 (3.1)是一个两阶非线性方程,不 由此即可得出 易求解。当θ很小时,sinθ≈θ,此时, g T 2 可考察(3.1)的近似线性方程:
( 图3-2可看出,ds)2 (dr)2 (rd )2
B
θ 图3-2
A
故有: 3(dr )2 r 2 (d )2 即:
r dr d 3

(3.3) (3.4)
解为:r
Ae
3
追赶方法如下:
先使自己到极点的距离等于潜艇到极点的距离然后按(3.4) 对数螺线航行,即可追上潜艇。
但由题意可以看出,因金属 一般情况下,在同一截面上 的一侧向温度低的一侧通过单位面积的热量与两侧的温差成正比, dt时间内通过距离O点x+dx处截面的热量为: AT '( x dx)dt 杆较细且金属杆导热系数又 的各点处温度也不尽相同, 比例系数与介质有关。 由泰勒公式: AT '( x dx)dt A[T '( x) T ( x)dx]dt 较大,为简便起见,不考虑 如果这样来考虑问题,本题 这方面的差异,而建模求单 要建的数学模型当为一偏微 金属杆的微元[x,x+dx]在dt内由获得热量为: AT ( x)dxdt 变量函数T(x)。 分方程。 同时,微元向空气散发出的热量为: Bdx[T ( x) T3 ]dt
l
(0) 0, (0) 0
l
M P Q
mg
图3-1
例2 我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了
我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最 大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜 水艇。
这一问题属于对策问题,较为复杂。讨论以下简单情形:
(2 R hR2 h h )dh 2 r0.6SR 2 g( R )
dV 0.6dh 2 gh dt r 2 S s 0
R

3 2
R r h
5 2
故有:
4 2 14 R [R (R h)2 ]dh 0.6S 2ghdt Rh h 0 R 5 0.6S 2 g 3 9S 2 g
相关文档
最新文档