2019-2020年高三理科(数学部分)纠错卷一 集合、常用逻辑用语(含解析)
高考数学真题分项汇编 专题01 集合与常用逻辑用语 理(含解析)-人教版高三全册数学试题

专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】∵{1,3}UA =-,∴(){1}U A B =-.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 7.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.9.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.10.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.11.【2018年高考全国Ⅰ卷理数】已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥【答案】B【解析】解不等式U 2−U −2>0得U <−1或U >2,所以U ={U |U <−1或U >2}, 所以可以求得{}|12A x x =-≤≤R.故选B .【名师点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.12.【2018年高考全国Ⅲ卷理数】已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 【答案】C【解析】易得集合{|1}A x x =≥, 所以{}1,2AB =.故选C .【名师点睛】本题主要考查交集的运算,属于基础题.13.【2018年高考天津理数】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R ABA .{01}x x <≤B .{01}x x <<C .{12}x x ≤<D .{02}x x <<【答案】B【解析】由题意可得:B R={U |U <1}, 结合交集的定义可得:()=R A B {0<U <1}.故选B.【名师点睛】本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.14.【2018年高考全国Ⅱ卷理数】已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【答案】A【解析】∵U 2+U 2≤3,∴U 2≤3,∵U ∈U ,∴U =−1,0,1,当U=−1时,U=−1,0,1;当U=0时,U=−1,0,1;当U=−1时,U=−1,0,1,所以共有9个元素.选A.【名师点睛】本题考查集合与元素的关系,点与圆的位置关系,考查学生对概念的理解与识别. 15.【2018年高考北京理数】已知集合A={x||x|<2},B={–2,0,1,2},则A B= A.{0,1} B.{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A【解析】∵|U|<2,∴−2<U<2,因此A∩B=(−2,2)∩{−2,0,1,2}={0,1}.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为U⊄U,U⊂U,U//U,所以根据线面平行的判定定理得U//U.由U//U不能得出U与U内任一直线平行,所以U//U是U//U的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U则U”、“若U则U”的真假.并注意和图示相结合,例如“U⇒U”为真,则U是U的充分条件.(2)等价法:利用U⇒U与非U⇒非U,U⇒U与非U⇒非U,U⇔U与非U⇔非U的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件. 17.【2018年高考天津理数】设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】绝对值不等式|U −12|<12⇔−12<U −12<12⇔0<U <1, 由U 3<1⇔U <1.据此可知|U −12|<12是U 3<1的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.18.【2018年高考北京理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】2222223333699+6-=+⇔-=+⇔-⋅+=⋅+a b a b a b a b a a b b a a b b , 因为a ,b 均为单位向量,所以2222699+60=-⋅+=⋅+⇔⋅⇔a a b b a a b b a b ⊥a b , 即“33-=+a b a b ”是“a ⊥b ”的充分必要条件. 故选C.【名师点睛】充分、必要条件的三种判断方法:1.定义法:直接判断“若U 则U ”、“若U 则U ”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.2.等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件. 19.【2017年高考全国Ⅰ卷理数】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<, 所以{|1}{|0}AB x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 20.【2017年高考全国Ⅱ卷理数】设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C 【解析】由{}1AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =.故选C .【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.21.【2017年高考全国Ⅲ卷理数】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1D .0【答案】B【解析】集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合, 集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎛⎫ ⎪ ⎪⎝⎭,22⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 22.【2017年高考北京理数】若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则AB =A .{x |–2<x <–1}B .{x |–2<x <3}C .{x |–1<x <1}D .{x |1<x <3}【答案】A【解析】利用数轴可知{}21A B x x =-<<-.故选A.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =(1,2)-.故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24.【2017年高考天津理数】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R【答案】B 【解析】(){1,2,4,6}[1,5]{1,2,4}A B C =-=.故选B .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.25.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B =A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <, 故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<.选D.【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解. 26.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.27.【2017年高考北京理数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以“存在负数λ,使得λ=m n ”是“0<⋅m n ”的充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.28.【2017年高考山东理数】已知命题p :0,ln(1)0x x ∀>+>;命题q :若a >b ,则22a b >,下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x >时11,x +>得ln(1)0x +>,知p 是真命题.由12,->-但22(2)(1)->-可知q 是假命题,则p q ∧⌝是真命题.故选B.【名师点睛】解答有关逻辑联结词的相关问题,首先要明确各命题的真假,利用或、且、非的真值表,进一步作出判断.29.【2017年高考全国Ⅰ卷理数】设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p 【答案】B【解析】令i(,)z a b a b =+∈R ,则由2211i i a b z a b a b -==∈++R 得0b =,所以z ∈R ,故1p 正确; 当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确;当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确;对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确.故选B.【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.30.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB =▲. 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.31.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.32.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.33.【2018年高考北京理数】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =--(答案不唯一) 【解析】对于23()()2f x x =--,其图象的对称轴为32x =, 则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是单调函数.【名师点睛】解题本题需掌握充分必要条件和函数的性质,举出反例即可.。
2019-2020学年新教材高中数学第一章集合与常用逻辑用语1.5.1全称量词与存在量词

1.5.1 全称量词与存在量词1.能够记住全称量词和存在量词的概念.2.学会用符号语言表达全称量词命题和存在量词命题,并判断真假.3.理解全称量词命题、存在量词命题与其否定的关系,能正确对含有一个量词的命题进行否定.1.全称量词与全称量词命题2.存在量词与存在量词命题1.x>2是命题吗?对任意的x∈R,x>2是命题吗?[答案] x>2不是命题,不能判断真假,而对任意的x∈R,x>2则是命题2.全称量词命题和存在量词命题中是否一定含有全称量词和特称量词?[答案] 命题“正方形是特殊的菱形”,该命题中没有全称量词,即全称量词命题不一定含有全称量词3.判断正误(正确的打“√”,错误的打“×”)(1)在全称量词命题和存在量词命题中,量词都可以省略.( )(2)“三角形内角和是180°”是存在量词命题.( )(3)“有些三角形没有内切圆”是存在量词命题.( )(4)内错角相等是全称量词命题.( )[答案] (1)×(2)×(3)√(4)√题型一全称量词命题与存在量词命题【典例1】判断下列语句是全称量词命题,还是存在量词命题.(1)凸多边形的内角和等于360°;(2)有的力的方向不定;(3)矩形的对角线不相等;(4)存在二次函数y=ax2+bx+c与x轴无交点.[思路导引] 找命题中的量词及其命题的含义.[解] (1)可以改为所有的凸多边形的内角和等于360°,故为全称量词命题.(2)含有存在量词“有的”,故是存在量词命题.(3)可以改为所有矩形的对角线不相等,故为全称量词命题.(4)含有量词“存在”,是存在量词命题.判定命题是全称量词命题还是存在量词命题,主要方法是看命题中含有全称量词还是存在量词.要注意的是有些全称量词命题并不含有全称量词,这时我们就要根据命题涉及的意义去判断.[针对训练]1.用全称量词或存在量词表示下列语句 (1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数;(3)方程3x -2y =10有整数解;(4)若一个四边形是菱形,则这个四边形的对角线互相垂直. [解] (1)对任意实数x ,不等式x 2+x +1>0成立. (2)对任意有理数x ,13x 2+12x +1是有理数.(3)存在一对整数x ,y ,使3x -2y =10成立.(4)若一个四边形是菱形,则所有这样菱形的对角线互相垂直. 题型二判断全称量词命题的真【典例2】 判断下列全称量词命题的真假. (1)任意实数的平方均为正数. (2)函数y =kx +b 为一次函数. (3)同弧所对的圆周角相等. (4)∀x ∈R ,x 2+3≥3.[解] (1)假命题.若这个实数为0,则其平方为0,不是正数.所以“任意实数的平方均为正数”为假命题.(2)假命题.当k =0时,y =kx +b 不是一次函数,为常函数.所以“函数y =kx +b 为一次函数”是假命题.(3)真命题.根据圆周角的性质可知其为真命题. (4)真命题.∀x ∈R ,x 2≥0,故有x 2+3≥3成立.判断全称量词命题真假的方法要判定一个全称量词命题为真命题,需要进行推理证明,或用前面已经学过的定义、定理作证明,而要判断其为假命题,只需举出一个反例即可.[针对训练]2.判断下列全称量词命题的真假. (1)对每一个无理数x ,x 2也是无理数. (2)末位是零的整数,可以被5整除. (3)∀x ∈R ,有|x +1|>1.[解] (1)因为2是无理数,但(2)2=2是有理数,所以全称量词命题“对每一个无理数x,x2也是无理数”是假命题.(2)因为每一个末位是零的整数,都能被5整除,所以全称量词命题“末位是零的整数,可以被5整除”是真命题.(3)当x=0时,不满足|x+1|>1,所以“∀x∈R,有|x+1|>1”为假命题.题型三存在量词命题真假的判断【典例3】判断下列存在量词命题的真假.(1)有的集合中不含有任何元素.(2)存在对角线不互相垂直的菱形.(3)∃x∈R,满足3x2+2>0.(4)有些整数只有两个正因数.[解] (1)由于空集中不含有任何元素.因此“有的集合中不含有任何元素”为真命题.(2)由于所有菱形的对角线都互相垂直.所以不存在对角线不垂直的菱形.因此存在量词命题“存在对角线不互相垂直的菱形”为假命题.(3)∀x∈R,有3x2+2>0,因此存在量词命题“∃x∈R,3x2+2>0”是假命题.(4)由于存在整数3只有正因数1和3.所以存在量词命题“有些整数只有两个正因数”为真命题.判断存在量词命题真假的方法判断存在量词命题“∃x∈M,p(x)”的真假性的关键是探究集合M中x的存在性.若找到一个元素x∈M,使p(x)成立,则该命题是真命题;若不存在x∈M,使p(x)成立,则该命题是假命题.[针对训练]3.判断下列存在量词命题的真假.(1)有些二次方程只有一个实根.(2)某些平行四边形是菱形.(3)存在实数x1、x2,当x1<x2时,有x21>x22.[解] (1)由于存在二次方程x2-4x+4=0只有一个实根,所以存在量词命题“有些二次方程只有一个实根”是真命题.(2)由于存在邻边相等的平行四边形是菱形,所以存在量词命题“某些平行四边形是菱形”是真命题.(3)当x1=-2,x2=1时有x21>x22,故“存在实数x1、x2,当x1<x2时,有x21>x22”为真命题.题型四含有量词的命题的应用【典例4】已知命题“∀1≤x≤2,x2-m≥0”为真命题,求实数m的取值范围.[解] ∵“∀1≤x≤2,x2-m≥0”成立,∴x2-m≥0对1≤x≤2恒成立.又y=x2在1≤x≤2上y随x增大而增大,∴y=x2-m的最小值为1-m.∴1-m≥0.解得m≤1.∴实数m的取值范围是{m|m≤1}.[变式] 若把本例中的“∀”改为“∃”,其他条件不变,求实数m的取值范围.[解] ∵“∃1≤x≤2,x2-m≥0”成立,∴x2-m≥0在1≤x≤2有解.又函数y=x2在1≤x≤2上单调递增,∴函数y=x2在1≤x≤2上的最大值为22=4.∴4-m≥0,即m≤4.∴实数m的取值范围是{m|m≤4}.求参数范围的2类题型(1)全称量词命题的常见题型是“恒成立”问题,全称量词命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以利用代入可以体现集合中相应元素的具体性质;也可以根据函数等数学知识来解决.(2)存在量词命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表述.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.[针对训练]4.是否存在实数m,使不等式m+x2-2x+5>0对于任意x∈R恒成立,并说明理由.[解] 不等式m+x2-2x+5>0可化为m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m使不等式m+x2-2x+5>0对于任意x∈R恒成立,此时需m>-4.5.若存在一个实数x,使不等式m-x2-2x+5>0成立,求实数m的取值范围.[解] 不等式m-(x2-2x+5)>0可化为m>x2-2x+5.令t=x2-2x+5,若存在一个实数x使不等式m>x2-2x+5成立,只需m>t min.又t=(x-1)2+4,∴t min=4,∴m>4.所以所求实数m的取值范围是{m|m>4}.课堂归纳小结1.判断全称量词命题的关键:一是先判断是不是命题;二是看是否含有全称量词.2.判定全称量词命题的真假的方法:定义法:对给定的集合的每一个元素x,p(x)都为真;代入法:在给定的集合内找出一个x,使p(x)为假,则全称量词命题为假.3.判定存在量词命题真假的方法:代入法,在给定的集合中找到一个元素x,使命题p(x)为真,否则命题为假.1.下列命题中,不是全称量词命题的是( )A.任何一个实数乘0都等于0B.自然数都是正整数C.对于任意x∈Z,2x+1是奇数D.一定存在没有最大值的二次函数[解析] D选项是存在量词命题.[答案] D2.下列命题中,存在量词命题的个数是( )①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④任意x∈R,y∈R,都有x2+|y|>0.A.0 B.1C.2 D.3[解析] 命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形”,故为全称量词命题;命题③可以叙述为“一切能被6整除的数也能被3整除”,是全称量词命题;命题④是全称量词命题.故有1个存在量词命题.[答案] B3.下列命题是“∀x∈R,x2>3”的另一种表述方法的是( )A.有一个x∈R,使得x2>3B .对有些x ∈R ,使得x 2>3 C .任选一个x ∈R ,使得x 2>3 D .至少有一个x ∈R ,使得x 2>3[解析] “∀x ∈R ,x 2>3”是全称量词命题,改写时应使用全称量词. [答案] C4.对任意x >8,x >a 恒成立,则实数a 的取值范围是________. [解析] ∵对于任意x >8,x >a 恒成立,∴大于8的数恒大于a ,∴a ≤8. [答案] a ≤85.判断下列命题是全称量词命题还是存在量词命题?并判断其真假. (1)∃x ∈R ,|x |+2≤0;(2)存在一个实数,使等式x 2+x +8=0成立;(3)在平面直角坐标系中,任意有序实数对(x ,y )都对应一点. [解] (1)存在量词命题.∵∀x ∈R ,|x |≥0,∴|x |+2≥2,不存在x ∈R , 使|x |+2≤0.故命题为假命题. (2)存在量词命题.∵x 2+x +8=⎝ ⎛⎭⎪⎫x +122+314>0,∴命题为假命题.(3)在平面直角坐标系中,任意有序实数对(x ,y )与平面直角坐标系中的点是一一对应的,所以该命题是真命题.课后作业(八)复习巩固一、选择题1.下列量词是全称量词的是( ) A .至少有一个 B .存在 C .都是 D .有些[答案] C 2.下列命题:①中国公民都有受教育的权利; ②每一个中学生都要接受爱国主义教育; ③有人既能写小说,也能搞发明创造; ④任何一个数除0,都等于0. 其中全称量词命题的个数是( )A .1B .2C .3D .4[解析] ①②④都是全称量词命题,③是存在量词命题. [答案] C3.下列命题是存在量词命题的是( ) A .一次函数的图象都是上升的或下降的 B .对任意x ∈R ,x 2+x +1<0 C .存在实数大于或者等于3 D .菱形的对角线互相垂直[解析] 选项A ,B ,D 中的命题都是全称量词命题,选项C 中的命题是存在量词命题. [答案] C4.下列是全称量词命题并且是真命题的是( ) A .∀x ∈R ,x 2>0 B .∀x ,y ∈R ,x 2+y 2>0 C .∀x ∈Q ,x 2∈QD .∃x ∈Z ,使x 2>1[解析] 首先D 项是存在量词命题,不符合要求;A 项不是真命题,因为当x =0时,x 2=0;B 项也不是真命题,因为当x =y =0时,x 2+y 2=0;只有C 项是真命题,同时也是全称量词命题.[答案] C5.下列四个命题中,既是全称量词命题又是真命题的是( ) A .斜三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2>0 C .任意无理数的平方必是无理数 D .存在一个负数x ,使1x>2[解析] 只有A ,C 两个选项中的命题是全称量词命题;且A 显然为真命题.因为2是无理数,而(2)2=2不是无理数,所以C 为假命题.[答案] A 二、填空题6.“任意一个不大于0的数的立方不大于0”用“∃”或“∀”符号表示为________________.[解析] 命题“任意一个不大于0的数的立方不大于0”,表示只要小于等于0的数,它的立方就小于等于0,用“∀”符号可以表示为∀x ≤0,x 3≤0.[答案] ∀x ≤0,x 3≤0 7.给出下列四个命题:①y =1x⇔xy =1;②矩形都不是梯形;③∃x ,y ∈R ,x 2+y 2≤1;④等腰三角形的底边的高线、中线重合.其中全称量词命题是________.[解析] ①②④是全称量词命题,③是存在量词命题. [答案] ①②④8.四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∀x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.[解析] ①当x =1时,x 2-3x +2=0,故①为假命题;②因为x =±2时,x 2=2,而±2为无理数,故②为假命题;③因为x 2+1>0(x ∈R )恒成立,故③为假命题;④原不等式可化为x 2-2x +1>0,即(x -1)2>0,当x =1时(x -1)2=0,故④为假命题.[答案] 0 三、解答题9.判断下列命题是不是全称量词命题或存在量词命题,并判断真假. (1)存在x ,使得x -2≤0; (2)矩形的对角线互相垂直平分; (3)三角形的两边之和大于第三边; (4)有些素数是奇数.[解] (1)存在量词命题.如x =2时,x -2=0成立,所以是真命题.(2)全称量词命题.因为邻边不相等的矩形的对角线不互相垂直,所以全称量词命题“矩形的对角线互相垂直平分”是假命题.(3)全称量词命题.因为三角形的两边之和大于第三边,所以全称量词命题“三角形的两边之和大于第三边”是真命题.(4)存在量词命题.因为3是素数,3也是奇数,所以存在量词命题“有些素数是奇数”是真命题.10.用量词符号“∀”“∃”表述下列命题,并判断真假. (1)所有实数x 都能使x 2+x +1>0成立;(2)对所有实数a ,b ,方程ax +b =0恰有一个解; (3)一定有整数x ,y ,使得3x -2y =10成立; (4)所有的有理数x 都能使13x 2+12x +1是有理数.[解] (1)∀x ∈R ,使x 2+x +1>0;真命题.(2)∀a ,b ∈R ,使ax +b =0恰有一解;假命题.如当a =0,b =0时,该方程的解有无数个.(3)∃x ,y ∈Z ,使3x -2y =10;真命题. (4)∀x ∈Q ,使13x 2+12x +1是有理数;真命题.综合运用11.下列命题中,是全称量词命题且是真命题的是( ) A .对任意的a ,b ∈R ,都有a 2+b 2-2a -2b +2<0 B .菱形的两条对角线相等 C .∀x ∈R ,x 2=xD .平面内,不相交的两条直线是平行直线[解析] A 中的命题是全称量词命题,但是a 2+b 2-2a -2b +2=(a -1)2+(b -1)2≥0,故是假命题;B 中的命题是全称量词命题,但是是假命题;C 中的命题是全称量词命题,但x 2=|x |,故是假命题;很明显D 中的命题是全称量词命题且是真命题,故选D.[答案] D12.已知a >0,则“x 0满足关于x 的方程ax =b ”的充要条件是( ) A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 0[解析] 由于a >0,令函数y =12ax 2-bx =12a ⎝⎛⎭⎪⎫x -b a 2-b22a ,故此函数图象的开口向上,且当x =b a 时,取得最小值-b 22a ,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,故∀x ∈R ,12ax2-bx ≥12ax 20-bx 0,故选C.[答案] C13.已知函数y =x 2+bx +c ,则“c <0”是“∃x 0∈R ,使x 20+bx 0+c <0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] ∃x 0∈R ,使x 20+bx 0+c <0的充要条件是x 20+bx 0+c <0有解,即b 2-4c >0,4c <b 2.所以当c <0时,一定有4c <b 2,即∃x 0∈R ,使x 20+bx 0+c <0.反之当∃x 0∈R ,使x 20+bx 0+c <0时,只要4c <b 2即可,不一定c <0.故选A.[答案] A14.若对于任意x∈R,都有ax2+2x+a<0,则实数a的取值范围是________.[解析] 依题意,得⎩⎪⎨⎪⎧a<0,Δ=4-4a2<0,即⎩⎪⎨⎪⎧a<0,a<-1或a>1,∴a<-1.[答案] {a|a<-1}15.已知命题“∃x∈R,2x+(a-1)x+12≤0”是假命题,求实数a的取值范围.[解] 由题意可得“对∀x∈R,2x2+(a-1)x+12>0恒成立”是真命题,令Δ=(a-1)2-4<0,得-1<a<3,即{a|-1<a<3}.。
2020年高考数学(理)之纠错笔记专题01 集合与常用逻辑用语

1 y
或
x2 xy
y 1
,解得
x
y
1 R
或
x
y
1 0
或
x
y
1 1
,所以选
D.
【错因分析】在实际解答过程中,很多同学只是把答案算出来后就不算了,根本不考虑求解出来的答案
是不是合乎题目要求,有没有出现遗漏或增根.在实际解答中要根据元素的特征,结合题目要求和隐含
x 1
x 1
条件,加以重视.当
专题 01 集合与常用逻辑用语
易错点 1 忽略集合中元素的互异性
设集合 A {x2 , x, xy}, B {1, x, y} ,若 A B ,则实数 x, y 的值为
x 1
A.
y
Rx 1B.源自y0x 1
C.
y
1
x 1 x 1 x 1
D.
y
R
或
y
0
或
y
1
【错解】由
A
B
得
x2 xy
分别是什么;(2)两个集合中元素之间的关系是什么.本题比较特殊,集合 B 中的元素就是集合,当集合 A 是集合 B 的元素时,A 与 B 是从属关系.
【试题解析】因为 x A ,所以 B {,0,1,0,1},则集合 A 0,1 是集合 B 中的元素,所以 A B ,
故选 D. 【参考答案】D
2.已知集合 A x | x2 4x 5 , B {x | x 2} ,则下列判断正确的是
A. 1.2 A
B. 15 B
C. B A
D. A B {x | 5 x 4}
【解析】 A x 1 x 5, B x 0 x 4 , B A.
【答案】C
2019-2020年高考数学四海八荒易错集专题01集合与常用逻辑用语理

2019-2020年高考数学四海八荒易错集专题01集合与常用逻辑用语理1.【xx 高考新课标1理数】设集合 ,,则 ( ) (A ) (B ) (C ) (D ) 【答案】D【解析】因为23{|430}={|13},={|},2A x x x x xB x x =+<<<>-所以33={|13}{|}={|3},22A B x x x x x x <<><<I I 故选D.2.【xx 高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则( ) (A) [2,3] (B)(- ,2] [3,+) (C) [3,+ ) (D)(0,2] [3,+) 【答案】D【解析】由解得或,所以,所以{|023}S T x x x =<≤≥I 或,故选D . 3.【xx 年高考四川理数】设集合,Z 为整数集,则中元素的个数是( ) (A )3 (B )4 (C )5 (D )6 【答案】C【解析】由题意,,故其中的元素个数为5,选C.4.【xx 高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则=( ) (A )(B )(C )(D )【答案】C【解析】,,则,选C.5.【xx 高考新课标2理数】已知集合,{|(1)(2)0,}B x x x x =+-<∈Z ,则( )(A ) (B )(C ) (D )【答案】C【解析】集合{|12,}{0,1}B x x x =-<<∈=Z ,而,所以,故选C. 6.【xx 年高考北京理数】已知集合,,则( ) A.B. C. D. 【答案】C【解析】由,得,故选C.7.【xx 高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则( ) A .[2,3] B .( -2,3 ] C .[1,2) D . 【答案】B【解析】根据补集的运算得.故选B .8. 【xx 高考浙江理数】命题“,使得”的否定形式是( ) A .,使得 B .,使得 C .,使得 D .,使得 【答案】D【解析】的否定是,的否定是,的否定是.故选D .9.【xx 高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】直线a 与直线b 相交,则一定相交,若相交,则a,b 可能相交,也可能平行,故选A.10.【xx 高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a qq q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.易错起源1、集合的关系及运算 例1、(1)已知集合A ={x |x -1x +2<0},B ={y |y =sin n π2,n ∈Z },则A ∩B 等于( ) A .{x |-1<x <1}B .{-1,0,1}C .{-1,0}D .{0,1}(2)若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合X ={a ,b ,c },对于下面给出的四个集合τ:①τ={∅,{a },{c },{a ,b ,c }}; ②τ={∅,{b },{c },{b ,c },{a ,b ,c }}; ③τ={∅,{a },{a ,b },{a ,c }};④τ={∅,{a ,c },{b ,c },{c },{a ,b ,c }}.其中是集合X 上的一个拓扑的集合τ的所有序号是__________. 答案 (1)C (2)②④【变式探究】(1)已知集合A ={y |y =sin x ,x ∈R },集合B ={x |y =lg x },则(∁R A )∩B 为( ) A .(-∞,-1)∪(1,+∞) B .[-1,1] C .(1,+∞)D .[1,+∞)(2)设集合M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b-a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( )A.13 B.23 C.112D.512答案 (1)C (2)C解析 (1)因为A ={y |y =sin x ,x ∈R }=[-1,1],B ={x |y =lg x }=(0,+∞).所以(∁R A )∩B =(1,+∞). 故答案为C.(2)由已知,可得⎩⎪⎨⎪⎧m ≥0,m +34≤1,即0≤m ≤14,⎩⎪⎨⎪⎧n -13≥0,n ≤1,即13≤n ≤1,取m 的最小值0,n 的最大值1,可得M =⎣⎢⎡⎦⎥⎤0,34,N =⎣⎢⎡⎦⎥⎤23,1. 所以M ∩N =⎣⎢⎡⎦⎥⎤0,34∩⎣⎢⎡⎦⎥⎤23,1=⎣⎢⎡⎦⎥⎤23,34. 此时集合M ∩N 的“长度”的最小值为34-23=112.故选C. 【名师点睛】(1)关于集合的关系及运算问题,要先对集合进行化简,然后再借助Venn 图或数轴求解.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证. 【锦囊妙计,战胜自我】 1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解. 易错起源2、四种命题与充要条件 例2 (1)下列命题:①已知m ,n 表示两条不同的直线,α,β表示两个不同的平面,并且m ⊥α,n ⊂β,则“α⊥β”是“m ∥n ”的必要不充分条件;②不存在x ∈(0,1),使不等式log 2x <log 3x 成立;③“若am 2<bm 2,则a <b ”的逆命题为真命题.其中正确的命题序号是________.(2)已知ξ服从正态分布N (1,σ2),a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式⎝ ⎛⎭⎪⎫ax +1x 23的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件 D .充要条件 答案 (1)① (2)A【变式探究】(1)下列四个结论中正确的个数是( ) ①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“∀x ∈R,sin x ≤1”的否定是“∃x 0∈R,sin x 0>1”; ③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0. A .1B .2C .3D .4 (2)已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞) D .(-∞,-1]答案 (1)A (2)A解析 (1)对于①,x 2+x -2>0⇔x >1或x <-2,故“x 2+x -2>0”是“x >1”的必要不充分条件,所以①错误;对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,∵tan x =1推出的是x =π4+k π,k ∈Z.所以③错误.对于④,log 32≠-log 23,所以④错误.②正确.故选A.(2)由3x +1<1,可得3x +1-1=-x +2x +1<0, 所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2. 【名师点睛】充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题. 【锦囊妙计,战胜自我】1.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.2.若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p ,q 互为充要条件. 易错起源3、逻辑联结词、量词例3、(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列选项中正确的是( ) A .p 真q 假 B .p 假q 真 C .“p ∧q ”为假D .“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a >1D .-2≤a ≤1答案 (1)C (2)C解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B . 故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ⇏ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题,故选C.(2)命题p 为真时a ≤1;“∃x 0∈R,x 20+2ax 0+2-a =0”为真,即方程x 2+2ax +2-a =0有实根,故Δ=4a 2-4(2-a )≥0,解得a ≥1或a ≤-2.(綈p )∧q 为真命题,即(綈p )真且q 真,即a >1.【变式探究】(1)已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,x >sin x ,则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为真D .p ∨q 为假(2)若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π4,m ≤tan x +1”为真命题,则实数m 的最大值为________.答案 (1)B (2)0【名师点睛】(1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立; (2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算. 【锦囊妙计,战胜自我】1.命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.2.命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ).3.“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”.1.已知集合A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B 等于( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}答案 A解析 A ={x |x >-1},所以∁R A ={x |x ≤-1}, 所以有(∁R A )∩B ={-2,-1},故选A.2.已知集合M ={x |log 2x <3},N ={x |x =2n +1,n ∈N },则M ∩N 等于( ) A .(0,8) B .{3,5,7} C .{0,1,3,5,7} D .{1,3,5,7}答案 D解析 由M 中不等式变形得:log 2x <3=log 28, 即0<x <8,∴M ={x |0<x <8}, ∵N ={x |x =2n +1,n ∈N }, ∴M ∩N ={1,3,5,7},故选D.3.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为( )A .5B .6C .12D .13 答案 D4.已知集合M ={x |y =lg 1-x x},N ={y |y =x 2+2x +3},则(∁R M )∩N 等于( )A .{x |0<x <1}B .{x |x >1}C .{x |x ≥2}D .{x |1<x <2}答案 C解析 由1-x x>0得0<x <1,故M ={x |0<x <1},∁R M ={x |x ≤0或x ≥1},y =(x +1)2+2≥2, 故N ={y |y ≥2},则(∁R M )∩N ={x |x ≥2}.5.设命题甲:ax 2+2ax +1>0的解集是实数集R ;命题乙:0<a <1,则命题甲是命题乙成立的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既非充分又非必要条件 答案 C解析 由命题甲ax 2+2ax +1>0的解集是实数集R ,可知a =0时,原式=1>0恒成立, 当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=2a2-4a <0,解得0<a <1,所以0≤a <1,所以由甲不能推出乙,而由乙可推出甲,因此命题甲是命题乙成立的必要不充分条件,故选C. 6.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真答案 C解析 p 是假命题,q 是假命题,因此只有C 正确. 7.已知命题p :2xx -1<1,命题q :(x +a )(x -3)>0,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .(-3,-1]B .[-3,-1]C .(-∞,-1]D .(-∞,-3] 答案 C 解析 由p :2x x -1<1,得x +1x -1<0,-1<x <1,而p 是q 的充分不必要条件,即p ⇒q ,q ⇏p ,所以-a ≥1,a ≤-1.故选C.8.①命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”; ②“x =1”是“x 2-4x +3=0”的充要条件; ③若p ∧q 为假命题,则p 、q 均为假命题;④对于命题p :∃x 0∈R ,x 20+2x 0+2≤0,则綈p :∀x ∈R ,x 2+2x +2>0. 上面四个命题中正确的是( ) A .①②B .②③C.①④D.③④答案 C9.下列说法中,不正确的是( )A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题B.命题“∃x0∈R,x20+x0-2>0”的否定是:“∀x∈R,x2+x-2≤0”C.命题“p或q”为真命题,则命题p和命题q均为真命题D.“x>3”是“x>2”的充分不必要条件答案 C解析A正确,因为此时m2>0;B正确,特称命题的否定就是全称命题;C不正确,因为命题“p或q”为真命题,那么p,q有一个真,p或q就是真命题;D项,小集合是大集合的充分不必要条件.故选C.10.已知p:∃x0∈R,mx20+2≤0,q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是( )A.[1,+∞) B.(-∞,-1]C.(-∞,-2] D.[-1,1]答案 A解析∵p∨q为假命题,∴p和q都是假命题.由p:∃x0∈R,mx20+2≤0为假命题,得綈p:∀x∈R,mx2+2>0为真命题,∴m≥0.①由q:∀x∈R,x2-2mx+1>0为假命题,得綈q:∃x0∈R,x20-2mx0+1≤0为真命题,∴Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1.②由①和②得m≥1.故选A.11.下列选项错误的是( )A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”B.“x>2”是“x2-3x+2>0”的充分不必要条件C .若“命题p :∀x ∈R ,x 2+x +1≠0”,则“綈p :∃x 0∈R ,x 20+x 0+1=0”D .若“p ∨q ”为真命题,则p ,q 均为真命题答案 D解析 对于若“p ∨q ”为真命题,则p 、q 中至少有一个为真命题,∴D 选项错误.故选D.12.已知集合M =⎩⎨⎧⎭⎬⎫x |ax -5x 2-a <0,若3∈M,5∉M ,则实数a 的取值范围是____________. 答案 ⎣⎢⎡⎭⎪⎫1,53∪(9,25] 解析 ∵集合M =⎩⎨⎧⎭⎬⎫x |ax -5x 2-a <0, 得(ax -5)(x 2-a )<0,当a =0时,显然不成立,当a >0时,原不等式可化为⎝ ⎛⎭⎪⎫x -5a ()x -a (x +a )<0, 若a <5a ,只需满足⎩⎪⎨⎪⎧ a <3<5a ,a ≥1,解得1≤a <53; 若a >5a ,只需满足⎩⎪⎨⎪⎧ 5a <3<a ,a ≤5,解得9<a ≤25,当a <0时,不符合条件, 综上,答案为⎣⎢⎡⎭⎪⎫1,53∪(9,25]. 13.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x ,y )∈{(x ,y )|x 3+y 3-x 2y =0},对于k ∈(0,1),因为(kx )3+(ky )3-(kx )2·(ky )=0⇒x 3+y 3-x 2y =0,所以(kx ,ky )∈{(x ,y )|x 3+y 3-x 2y =0}, 故④是具有性质P 的点集.综上,具有性质P 的点集是②④.。
理科数学真题分类汇编专题1 集合与常用逻辑用语答案部分

专题一集合与常用逻辑用语第一讲集合 答案部分 2019年1.解析:解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =−=−−=−<<,<<<, 所以 2|}2{M N x x =−I <<. 故选C .2.解析解析:由{}2560(,2)(3,)A x x x =−+>= −∞+∞, {}10(,1)A x x =−<= −∞,则 (,1)A B = −∞.故选A.3.解析 因为 {}1,0,1,2A =−,2 {|1}{|11}B x x x x ==−剟?, 所以 {}1,0,1AB =−.故选A .4.解析 因为 {}1,0,1,6A =−, {} |0,B x x x =>∈R , 所以{}{}{} 1,0,1,6|0,1,6A B x x x = −>∈=R . 5.解析:{1,3}U A =−ð, {1}U A B =−ð .A 故选.6. 解析设集合 {}1,1,2,3,5A =−, {}13C x x =∈<R …,则 {}1,2A C =.又 {}2,3,4B =, 所以 {}{}{}{} 1,22,3,41,2,3,4A C B ==. 故选D.2010-2018年1.A 【解析】{|||2}(2,2)A x x =<= −, {2,0,1,2}B =−,∴{0,1}A B =,故选A .2.B 【解析】因为2{20}=−−>A x x x ,所以2{|20}=−−R ≤A x x x ð={x |−1≤x ≤2},故选B .3.C 【解析】由题意知,A ={x |x −1≥0},则A B ={1,2}.故选C .4B .【解析】因为{1}B x x =≥,所以 {|1}R B x x =<ð,因为 {02}A x x =<<, 所以()=R I A B ð{|01}x x << ,故选B . 5C .【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð {2,,45}.故选.C6A .【解析】通解由 223+≤x y 知, 33−≤≤x , 33−≤≤y .又∈Z x ,∈Z y ,所以 {1,0,1}∈−x , {1,0,1}∈−y , 所以A 中元素的个数为1133 C C 9=,故选.A 优解根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图, O yx-1-111易知在圆223+=x y中有个整点,即为集合9A 的元素个数,故选.A 7A .【解析】∵ {|0}B xx =<,∴ {|0}A B x x =< ,选.A8C .【解析】∵ 1B ∈,∴21410m −⨯+=,即3m =,∴{1,3}B = .选.C 9B .【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以AB中元素的个数为.选.2B 10.D 【解析】由2 40x −≥得 22x − ≤≤,由10x −>得1x <,故A B={|22} {|1}{|21}x x x x x x −<=−<≤≤≤ ,选D.11.【解析】B (){1246} [15]{124}A B C =−=,,,,,, , 选B.12.A 【解析】由题意可知 {|12}P Q x x =−<< ,选.A13.A 【解析】{} 21A B x x =−<<−,故选A. 14.C 【解析】因为{|||2}{|22}A x x x x =<=−<<,所以 {1,0,1}A B =−.15.C 【解析】集合A 表示函数2x y =的值域,故 (0,)A =+∞.由210x −<,得 11x −<<,故 (1,1)B =−,所以 (1,)A B = −+∞.故选C .16D .【解析】由题意{1,4,7,10}B =,所以{1,4}AB =.17D .【解析】由题意得, {|13}A x x =<<,3{|}2B x x =>,则3( ,3)2AB =.选.D18C .【解析】由已知可得 ()() {}120B x x x x =+−<∈Z ,{} 12x x x =− <<∈Z ,, ∴ {} 01B =,,∴ {}0 1 23A B =,,, ,故选.C 19D .【解析】 (,2][3,)S = −∞+∞,所以 (0,2][3,)S T =+∞ ,故选.D20.A 【解析】由于{|21}B x x =-<<,所以 {1,0}A B =-.21.C 【解析】 {|02}R P x x =<<ð,故(){|1<<2}R P Q=x x ð. 22.A 【解析】{|12}A x x =-<<, {|13}B x x =<<,∴ {|13}A B x x =-<<.23.C 【解析】由已知得 {} ,1,,1A i i =−−,故A B = {} 1,1−,故选C . 24.D 【解析】由于 2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉ ,故A 、B 、C 均错,D 是正确的,选D. 25.C 【解析】∵A B A =,得A B Í,反之,若A B Í,则A B A =;故“A B A =”是“A B ⊆”的充要条件.26.D 【解析】由(4)(1)0x x ++=得4x =-或1x =-,得 {1,4}M =--. 由 (4)(1)0x x --= 得4x =或1x =,得{1,4}N =.显然=∅MN .27A .【解析】 {}{}2 0,1x x x M ===, {}{}lg 001x x x x N =≤=<≤, 所以 []0,1M N = ,故选A . 28A .【解析】{2,5,8}U B =ð,所以{2,5}U A B =ð ,故选A. 29.C 【解析】因为集合22 {(,)1,,}A x y x y x y =+≤∈Z ,所以集合A中有个元素(即个99点),即图中圆中的整点,集合 {(,)||2,||2, ,}B x y x y x y =≤≤∈Z 中有个元素(即2525个点):即图中正方形ABCD 中的整点,集合12121122 {(,)( ,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即 45477=−⨯个.30.A 【解析】 {} |13A x x x =−≤或≥,故A B ⋂=[--2,1].31.D 【解析】 {}|12N x x =≤≤,∴M N ⋂ =1{,2 }.32.B 【解析】∵ {}1,2B =−,∴A B ⋂={}2 33.C 【解析】|1|213x x −<⇒−<<,∴ (1,3)A =−,[1,4]B =.∴[1,3)A B ⋂=. 34.C 【解析】∵(0,2)A =,[1,4]B =,所以AB =[1,2).35.C 【解析】 {}{}{} 1,0,10,1,21,0,1,2M N ⋃= −⋃= −,选.C 36A .【解析】P Q ⋂=}{34x x ≤<37B .【解析】由题意知 {|2}U x N x =∈≥, {|5}A x N x =∈≥,所以=A C U {|25}x N x ∈<≤,选.B 38C .【解析】∵ {}{}2|200,2A x x x =−==.∴AB =={}0,2. 39C .【解析】A B ={|23}x x << 40.B 【解析】∵21x <,∴ 11x − <<,∴MN = {} |01x x <≤,故选.B 41.C 【解析】 {} |3,3A x x =−<, {} C |15R B x x x =−>≤或, ∴()R A C B = {} |31x x −−≤≤42.D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()UC A B = {|01}x x <<.43.A 【解析】 {|12}A x x =−≤≤,B Z =,故A B ⋂= {1,0,1,2}− 44.C 【解析】 {}2,4,7U A =ð. 45.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A ”,选.C 46B .【解析】A=(-∞,0)∪(2,+∞ )A B=R ,∴∪,故选B . 47A .【解析】 {}1,4,9,16B =,∴ {}1,4A B ⋂= 48A .【解析】∵ (1,3)M =−,∴ {}0,1,2MN =49.C 【解析】因为 {31}M x x =−<<, {3,2,1,0,1}N = −−−,所以M N{2,1,0}=−−, 选C.50.A 【解析】由题意 {}1,2,3AB =,且{1,2}B =,所以A中必有,没有,34 {}3,4U C B =,故U A B =ð {}3.51.C 【解析】0,0,1,2,0,1,2x y x y ==−=−−; 1,0,1,2,1,0,1x y x y ==−=−; 2,0,1,2,2,1,0x y x y ==−=.∴B 中的元素为 2,1,0,1,2−− 共个.552.A 【解析】:A 1−>x , }1|{−≤=x x A C R , }2,1{)(−−=B A C R ,所以答案选A53.D 【解析】由集合,A 14x <<;所以(1,2]A B ⋂= 54.B 【解析】集合B 中含,-10,故 {}1,0AB =−55.A 【解析】∵ {}2,0S =−, {}0,2T =,∴ST = {}0. 56.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则 ()() ,,3,4,1y z w S =∈, ()() ,,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈, (),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立配对后只有四种情况:第一种:①⑤成立,此时. w x y z <<<,于是 (),,y z w S ∈, (),,x y w S ∈;第二种:①⑥成立,此时 x y z w <<<,于是 (),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时 y z w x <<<,于是 (),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时 z w x y <<<,于是(),,y z w S ∈, (),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈, (),,x y w S ∈. 57D .【解析】()f x 的定义域为M =[−1,1],故R M ð=(,1)(1,)−∞−⋃+∞ ,D 选. 58A .【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.59C .【解析】[) 0,A =+∞,[]2,4B =,[ )()0,24,R A C B ∴=+∞. 60.A 【解析】U C M = {,,}246 61.D 【解析】{}3,4,5Q =,∴U Q ð= {}1,2,6,∴ U P Q ⋂ð= {}1,2.62.D 【解析】由,M ={12,3,4},N ={−2,2},可知−2∈,但是N −2∉ M N ,则⊄M ,故错误.∵A M N ={1,,,,234− 2}≠M ,故B 错误.M∩N ={2}≠N C ,故错误,.故选D 正确 D63.B 【解析】(A =− 1,2),故B ⊂≠A ,故选B. 64.D 【解析】 {3213} [1,2]A x x =−≤−≤=−, (1,)(1,2]B A B =+∞⇒=65.C 【解析】根据题意,容易看出x y +只能取− 1,1,33.等个数值故共有个元素3.66D .【解析】 {|1}P x x =< ∴{|1}R C P x x =≥,又∵ {|1}Q x x =>,∴R Q C P ⊆, 故选.D 67B .【解析】{1,3}P M N ==,故P 的子集有个.468D .【解析】因为集合[1,1]P =−,所以 (,1)(1,)U C P =−∞−+∞. 69D .【解析】因为{1,2,3,4}MN =,所以 ()()n n C M C N ⋂=()UC M N ={5,6}.70.B 【解析】因为U C M N ⊂,所以 ()()()U U U UN N C M C C N C M == = [()]U U N M 痧={1,3,5}. 71.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x −=,解得0x =或1x =, 这时1y = 或0y =,即{(0,1),(1,0)}A B ⋂=,有个元素.2 72.A 【解析】集合 {1,0,1} {0,1,2}={0,1}M N =−.73.C 【解析】因为P M P =,所以M P ⊆,即a P ∈,得21a ≤,解得 11a − ≤≤,所以a 的取值范围是[1,1]−. 74.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复数模的计算方法得不等式212x +<,即21x <,所以 (1,1)N =−,则[0,1]MN =.75.A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.76C .【解析】{}{}{} 1,2,32,3,42,3MN == 故选C. 77D .【解析】 {}{} |1,|12R RB x x A B x x =≥⋂=≤≤痧 78B .【解析】 {}22<<x x Q −=,可知正确,B 79A .【解析】不等式121log 2x …,得12112201 log log ()2x >⎧⎪⎨⎪⎩…,得22x …, 所以R A ð=2 (,0],2⎛⎫−∞+∞ ⎪ ⎪⎝⎭.80.D 【解析】因为{3}AB = ,所以∈3A ,又因为{9}U BA =ð ,所以∈,所以选9A D .本题也可以用V enn 图的方法帮助理解. 818}.{1,【解析】由集合的交运算可得AB ={1,8}.82.1【解析】由题意 1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 83.5【解析】 {1,2,3}{2,4,5} {1,2,3,4,5}AB == ,个元素.584. {}1,3−【解析】=B A {}1,3−85. {}7,9【解析】 {}1,2,3,4,5,6,7,8,9,10U =, {}4,6,7,9,10U A =ð,{} ()7,9U A B ⋂=ð.86.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是.6 87. {}6,8【解析】()U A B ð={6,8} {2,6,8}{6,8}=. 88.【解析】(1 5 )根据k 的定义,可知1131225k −−=+=; ()2 12578 {,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又89 2,2 均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578 {,,,,}a a a a a . 891.【解析】考查集合的运算推理.3∈B ,23a +=,1a =. 90.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(, )[(11|11|)(11|11|)(00)|00|)]22M αα =+−−++−−++−−=, 1 (,)[(1 0|1 0|)(11|11|)(0 1|01|)]12M αβ =+−−++−−++−−=. (2)设 1234 ( ,,,)x x x x B α=∈,则 1234 (,)M x x x x αα =+++. 由题意知1x ,2x ,3x ,4x ∈,{01},且 (, )M αα为奇数,所以1x ,2x ,3x ,4x中的个数为或.113 所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,01(1,,1),,101),,,(1,,,110)} . 将上述集合中的元素分成如下四组:(,100,,0),(1,,11,0);,(01,0,0),(1,,10,1);(0,0,1,0),(1,0,1(0,1);,00(0,,1),,11,,1).经验证,对于每组中两个元素α,β,均有 (,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素. 所以集合B中元素的个数不超过.4 又集合,,{(1000)(010,,,,,,,0)(0010),,,,(00,,满足条件,01)} 所以集合B中元素个数的最大值为.4 (3)设1212121 {( ,,,)|( ,,,),1,0}k n n k k S x x x x x x A x x x x − =⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅== (1,2,,)k n =⋅⋅⋅,11212 {( ,,,)|0}n n n S x x x x x x + =⋅⋅⋅==⋅⋅⋅==, 则 121n A S S S + =⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅−)中的不同元素α,β,经验证, (, )1M αβ≥. 所以k S (1,2,,1k n =⋅⋅⋅−)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过1n +.取12 ( ,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x + =⋅⋅⋅==( 1,2,,1k n =⋅⋅⋅−). 令 1211 (,,,)n n n B e e e S S −+ =⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件.故B 是一个满足条件且元素个数最多的集合.。
2019年高考真题和模拟题分项汇编数学(理)专题01集合与常用逻辑用语

专题01集合与常用逻辑用语1.【2019年高考全国I 卷理数】已知集合M 二{x|-4 ::: x ::: 2}, N 二{x|x 2-X-6 ::: 0},则M 门N =A . {x -4 e x c 3} C . {x -2 vx c2} 【答案】C【解析】由题意得 M 叫x | -4 :: x :: 2}, N ={ x | x 2 - x - 6 :: 0} ={x | -2 :: x :: 3}, 则 M "N 珂x| _2 ::x ::: 2}. 故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分.22 .【2019年高考全国H 卷理数】设集合 A={x|x 吒x+6>0} , B={x|x -<0},则A A B=A . (-°, 1)B . ( Z 1)C . 2 -)D . (3, + g )【答案】A【解析】由题意得, A ={x|x 2 -5x 6 0} ={x|^::2 或 x 3}, B 二{x| x-1 ::: 0} = {x |x ::: 1},则A^B 二{x|x :::1} =(」:,1).故选A .【名师点睛】本题考点为集合的运算,为基础题目. 3.【2019年高考全国川卷理数】已知集合A ={-1,0,1,2},B ={x|x^1},则A 「| B =A .〈-1,0,仃B .9,1C . 1-1,1?D . 0,1,2?【答案】A【解析】••• X 2 兰 1,.・.T 兰x 兰1,二 B ={x —1^x 2},B .{x -4 : xD . {x2vxc3}又A={-1,0,1,2} A^B -「-1,0,1故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019 年高考天津理数】设集合A 二{-1,1,2,3,5}, B 二{2,3,4}, C ={x R |1 乞x ::: 3},则(A「|C)UB二 A •② B • :2,3?C • ;、-1,2,3?D • ^,2,3,4 /【答案】D【解析】因为A「|C ={1,2},所以(A「|C) JB 二{1,2,3,4}.故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算•5 •【2019 年高考浙江】已知全集U - \-1,0,1,2,3?,集合A・0,1,2f , B - \-1,0,V,则(e u A)P|B =A •「-1?B •「0,1C • 〈一1,2,3?D • 〈—1,0,1,31【答案】A【解析】••• e u A ={ -1,3} ,••• e U AnB={—1}.故选A.【名师点睛】注意理解补集、交集的运算•6 •【2019年高考浙江】若a>0, b>0,则“ a+b w 4”是“ab w 4”的A •充分不必要条件B •必要不充分条件C •充分必要条件D •既不充分也不必要条件【答案】A【解析】当a> 0, b> 0时,a ■ b _ 2: ab,则当a • b乞4时,有2、. ab _ a ■ b _ 4,解得ab乞4,充分性成立;当a=1, b=4时,满足ab乞4,但此时a+b =5>4,必要性不成立,综上所述,“ a_4”是“ ab_4”的充分不必要条件•故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取a,b的特殊值,从假设情况下推出合理结果或矛盾结果【答案】C27 .【2019年高考天津理数】设 x ・R ,则“ x -5x :::0 ”是“ |x-1|:::1 ”的A •充分而不必要条件B •必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由 x 2 _5x ::: 0 可得 0 :: x :: 5,由 | x -1| ::: 1 可得 0 :: x : 2 , 易知由0 :: x 5推不出0 :: x 2,由 0 ::: x ::: 2 能推出 0 ::: x 5 , 故0 x :: 5是0 . x 2的必要而不充分条件,即“ x 2 -5x ::: 0 ”是“丨x -卅:::1 ”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到 x 的取值范围.8.【2019年高考全国n 卷理数】设a, B 为两个平面,则 all B 的充要条件是A . a 内有无数条直线与B 平行 B . a 内有两条相交直线与 B 平行C . a, B 平行于同一条直线D . a, B 垂直于同一平面【答案】B【解析】由面面平行的判定定理知: > 内有两条相交直线都与 1平行是:l 1的充分条件; 由面面平行的性质定理知,若:7/ 1,则〉内任意一条直线都与 1平行,所以:内有两条相交直线都与-平行是■■ / ■的必要条件故a// B 的充要条件是 a 内有两条相交直线与 B 平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.9.【2019年高考北京理数】设点A , B , C 不共线, 则“ AB 与AC 的夹角为锐角是 “ | AB AC | | BC |【答案】CA .充分而不必要条件 D .既不充分也不必要条件【解析】••• A?B?C 三点不共线,••• I AB +AC |>|£C |二I 天B +KC |>|无-天B I二 IA B +AC I 2>I AC -AB I ^ A B • TC >0:= AB 与K C 的夹角为锐角,故“AB 与 AC 的夹角为锐角"是“A B +KC I >I BC I '的充分必要条件.故选C.【名师点睛】本题考查充要条件的概念与判断 ?平面向量的模?夹角与数量积,同时考查了转化与化归的数学思想.10. 【2019年高考江苏】已知集合 A ={-1,0,1,6} , B 二{x|x O,x ・R },则AR B = ▲_.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可 由题意知,A 「|B 二{1,6}.【名师点睛】本题主要考查交集的运算,属于基础题.11. 【辽宁省沈阳市2019届高三教学质量监测 (三)数学】已知集合A 二{(x,y)|x • y 空2,x,y ・N },则A 中元素的个数为 A . 1 B . 5 C . 6 D .无数个【答案】C【解析】由题得 A ={(0,0),(0,1),(0,2),(1 ,0),(1,1),(2,0)}, 所以A 中元素的个数为6. 故选C.【名师点睛】本题主要考查集合的表示和化简,意在考查学生对这些知识的理解掌握水平和分析推理能 力. 12.【云南省玉溪市第一中学 2019届高三上学期第二次调研考试数学】命题 “ X 。
【最易丢分的送分题】2019届高三数学(理)三轮:集合与常用逻辑用语(含解析)

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》全集汇编及答案解析

【高中数学】数学《集合与常用逻辑用语》期末复习知识要点一、选择题1.已知集合{}|3x M y y ==,{|N x y ==,则M N =I ( )A .{|01}x x <<B .{|01}x x <≤C .{|1}x x ≤D .{|0}x x > 【答案】B【解析】【分析】根据函数的定义域和值域,求得集合,M N ,再结合集合的交集的运算,即可求解.【详解】由题意,集合{}|3{|0}x M y y y y ===>,{|{|1}N x y x x ===≤, 所以{|01}M N x x ⋂=<≤.故选:B .【点睛】本题主要考查了集合的交集的运算,其中解答中根据函数的定义域和值域的求法,正确求解集合,M N 是解答的关键,着重考查了计算能力.2.给出下列说法:①定义在[],a b 上的偶函数()()24f x x a x b =-++的最大值为20; ②“4x π=”是“tan 1x =”的充分不必要条件;③命题“()00,x ∃∈+∞,0012x x +≥”的否定形式是“()0,x ∀∈+∞,12x x +<”. 其中正确说法的个数为( )A .0B .1C .2D .3【答案】D【解析】【分析】 根据偶函数的定义求得a 、b 的值,利用二次函数的基本性质可判断①的正误;解方程tan 1x =,利用充分条件和必要条件的定义可判断②的正误;根据特称命题的否定可判断③的正误.综合可得出结论.【详解】对于命题①,二次函数()()24f x x a x b =-++的对称轴为直线42a x +=, 该函数为偶函数,则402a +=,得4a =-,且定义域[]4,b -关于原点对称,则4b =, 所以,()24f x x =+,定义域为[]4,4-,()()max 420f x f ∴=±=,命题①正确;对于命题②,解方程tan 1x =得()4x k k Z ππ=+∈, 所以,tan 14x x π=⇒=,tan 14x x π=⇐=/, 则“4x π=”是“tan 1x =”的充分不必要条件,命题②正确;对于命题③,由特称命题的否定可知③正确.故选:D.【点睛】本题以考查命题真假性的形式,考查函数奇偶性、二次函数最值,充分条件与必要条件 还有特称命题的否定,考查的知识点较多,能较好地检测考生的逻辑推理能力,属中等题.3.已知集合{}0lg 2lg3P x x =<<,212Q xx ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( ) A .()0,2B .()1,9C .()1,4D .()1,2 【答案】D【解析】【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分.【详解】 解:{}19P x x =<<,{}02Q x x =<<; ()1,2P Q ∴⋂=.故选:D.【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”.简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.4.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假【答案】D【解析】【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假.【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”; 由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假,故选:D.【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.5.“13m -<<”是“方程22117x y m m+=+-表示椭圆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】 方程22117x y m m+=+-表示椭圆解得13m -<<或37m <<,根据范围大小判断得到答案. 【详解】 因为方程22117x y m m +=+-表示椭圆,所以107017m m m m +>⎧⎪->⎨⎪+≠-⎩,解得13m -<<或37m <<. 故“13m -<<”是“方程22117x y m m+=+-表示椭圆”的充分不必要条件. 故选:A【点睛】本题考查了充分不必要条件,意在考查学生的推断能力.6.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x +≥”的充分不必要条件. A .1B .2C .3D .4【答案】C【解析】【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的; (2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】C【解析】【分析】利用基本不等式和充分,必要条件的判断方法判断.【详解】22x y +≥Q 且224x y +≤ ,422x y ∴≤≤⇒+≤ ,等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤, 反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件.故选:C【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.8.“4sin 25α=”是“tan 2α=”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】 直接利用二倍角的正弦公式换化简222sin cos 4sin 2sin cos 5ααααα==+,再利用齐次式进行弦切互化,得出22tan 4tan 15αα=+,即可求出tan α,即可判断充分条件和必要条件. 【详解】 解:2242sin cos 4sin 25sin cos 5ααααα=⇔=+Q , 则22tan 4tan 2tan 15ααα=⇔=+或12, 所以“4sin 25α=”是“tan 2α=”的必要不充分条件. 故选:B.【点睛】 本题考查必要不充分条件的判断,运用到三角函数中的二倍角正弦公式、同角平方关系、齐次式进行弦切互化.9.“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据直线与圆相切,求得1c =或3c =,结合充分条件和必要条件的判定,即可求解.【详解】由题意,圆()()22212x y -++=的圆心坐标为(2,1)-,当直线0x y c ++=与圆()()22212x y -++=相切,可得d r =,即d ==12c +=,解得1c =或3c =,所以“1c =”是“直线0x y c ++=与圆()()22212x y -++=”相切的充分不必要条件.故选:B.【点睛】本题主要考查了直线与圆的位置关系,以及充分条件、必要条件的判定,其中解答中熟练应用直线与圆的位置关系,列出方程求解是解答的关键,着重考查了推理与计算能力,属于基础题.10.已知实数a b 、满足0ab >,则“11a b <成立”是“a b >成立”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件 【答案】C【解析】【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可.【详解】 由11b a a b ab--=, 0ab >Q ,∴若11a b < 成立, 则0b a -< ,即a b >成立,反之若a b >,0ab >Q ,110b a a b ab-∴-=<,即11a b<成立, ∴“11a b<成立”是“a b > 成立”充要条件,故选C. 【点睛】本题主要考查不等式的性质以及充分条件和必要条件的应用,属于中档题. 判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.11.已知集合{}2|log ,1,|A y y x x B x y ⎧==>==⎨⎩,则A B =I ( ) A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .1,12⎛⎫ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭ 【答案】A【解析】 ∵集合{}2log ,1A y y x x ==∴集合(0,)A =+∞ ∵集合|B x y ⎧==⎨⎩ ∴集合1(,)2B =-∞ ∴1(0,)2A B ⋂=故选A.12.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)【答案】C【解析】【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解.【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1),∴A ∩B =(-1,1).【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.13.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð 【答案】A【解析】【分析】求函数定义域得集合M ,N 后,再判断.【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I .故选A .【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.14.设命题p:n ∃>1,n 2>2n ,则⌝p 为( )A .21,2n n n ∀>>B .21,2n n n ∃≤≤C .21,2n n n ∀>≤D .21,2n n n ∃>≤【答案】C【解析】根据命题的否定,可以写出p ⌝:21,2n n n ∀>≤,所以选C.15.已知集合{}260A x x x =--≤,(){}lg 2B x y x ==-,则A B =I ( ) A .[)2,2-B .[]2,3C .(]2,3D .()3,+∞【答案】C【解析】【分析】 根据一元二次不等式的解答和对数函数的性质,求得,A B ,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}{}26023A x x x x x =--≤=-≤≤,(){}{}lg 22B x y x x x ==-=>,所以(]2,3A B =I .故选:C .【点睛】本题主要考查了集合运算及性质,其中解答中熟记集合交集的概念及运算是解答的关键,着重考查数学运算能力.16.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】【分析】通过列举,和推理证明可以推出充要性.【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->;故“()0ab a b ->”是“0a b >>”的必要不充分条件,故选:B.【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.17.“1a <-”是“直线30ax y +-=的倾斜角大于4π”的() A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】【分析】设直线30ax y +-=的倾斜角为θ,则tan a θ=-,由“1a <-”,可得4πθ>,再举特例34πθ=,可得由“直线30ax y +-=的倾斜角大于4π” 不能得到“1a <-”,即可得解.【详解】解:设直线30ax y +-=的倾斜角为θ,则tan a θ=-,若“1a <-”,则tan 1a θ=->,即4πθ>,即由“1a <-”能推出“直线30ax y +-=的倾斜角大于4π”,若“直线30ax y +-=的倾斜角大于4π”,不妨令34πθ=, 则3tan 14a π=-=,则不能得到“1a <-”, 即“1a <-”是“直线30ax y +-=的倾斜角大于4π”的充分而不必要条件, 故选A.【点睛】 本题考查了直线的斜率与倾斜角、充分必要条件,重点考查了逻辑推理能力,属基础题.18.定义在R 上的函数()y f x =满足()555,0222f x f x x f x ⎛⎫⎛⎫⎛⎫+=--> ⎪ '⎪ ⎪⎝⎭⎝⎭⎝⎭,任意的12x x <都有()()12f x f x >是125x x +<的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】【详解】 因为()5,02x f x '>>; ()5,02x f x '<<,且()f x 关于52x =对称,所以12x x <时, ()()12f x f x > ()212212125555,555222f x x x x x x x x <>=-⇒⇒-<∴<-⇒+< 反之也成立: 12x x <时,()()()1212121225555,,55222x x x x x x f x f x f x +<⇒<⇒>-<-=<>,所以选C. 点睛:充分、必要条件的三种判断方法.19.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞ 【答案】B【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.20.已知命题:p 函数()20.5log 2y x x a =++的定义域为R ,命题:q 函数()52x y a =--是减函数.若p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,则实数a 的取值范围是( )A .1a ≤B .12a <<C .2a <D .1a ≤或2a ≥ 【答案】A【解析】【分析】由题意知p 为假命题,q 为真命题.由p 为假命题,即:220x x a ++>不恒成立,故4401a a ∆=-≥⇒≤ . q 为真命题,即: 5212a a ->⇒<.由此便可得出答案.【详解】由p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,得p 为假命题,q 为真命题. 由p :函数()20.5log 2y x x a =++为假命题得,220x x a ++>在R 上不恒成立.即4401a a ∆=-≥⇒≤.由:q 函数()52x y a =--是减函数,即:()52xy a =-是增函数,即5212a a ->⇒<. 两者取交集得:1a ≤.故选:A【点睛】本题主要考查逻辑联结词“或”、“且”、“非”,属于中档题目.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三理科(数学部分)纠错卷一 集合、常用逻辑用语(含
解析)
一、选择题(本大题共6个小题,每小题5分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、若集合2{|21,},{|,}A y y x x R B y y x x R ==+∈==-∈,则A
B =( ) A .{}1 B .{}1-
C .(],0-∞
D .{}(1,1)-
2、若集合2{|60,},{|10,}P x x x x R S x ax x R =+->∈=+<∈,且S
P S =,则实数a 的取值范围是( )
A .1(,)3-∞
B .1(,]3-∞
C .11(,)23-
D .11[,]23
-
3、下列命题中错误的是( )
A .命题“命题0xy =,则0x =或0y =”的你否命题是“若0x ≠且0y ≠,则0xy ≠”
B .若,x y R ∈,则“x y =”是“2(
)2
x y xy +≥”层理的充要条件; C .已知命题p 和q ,若p q ∨为假命题,则命题p 和q 中必一真一假; D .在ABC ∆中,,a b 是内角,A B 的对边,则“a b >”是“tan tan A B >”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
5、设平面点集221{(,)|()()0},{(,)|(1)(1)1}A x y y x y B x y x y x =--≥=-+-≤,则A B 所表示的平面图形的面积为( )
A .34π
B .35π
C .47π
D .2
π 6、对于集合,M N ,定义{|M N x x M -=∈且}x N ∉,()
()M N M N N M ⊕=--, 设{|11}A x x =-≤<,{|0}B x x =<,则A B ⊕为( )
A .(](,1)
0,1-∞- B .[)(,1)0,1-∞- C .[)(,1)
0,-∞-+∞ D .[](,1)0,1-∞-
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
.
7、已知集合{|{|2,0}x A x y B y y x ====>,R 是实数集,则()
R C B A = 8、已知命题2:,20P x R x ax a ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是
9、给出下列命题:
①向量,a b 满足a b a b ==-,则a 与a b +的夹角为30;
②0a b ⋅≥是,a b 的夹角为锐角的充要条件;
③将函数1y x =-的图象按向量(1,0)a =-平移,得到的图象对应的函数表达式为y x =; ④若()()0AB AC AB AC +⋅-=,则ABC ∆为等腰三角形。
以上命题正确的是 (把你热内正确的命题的序号填上)
10、有金盒、银盒、铅盒个一个,只有一个盒子里有肖像,金盒上写有命题:p 肖像在这个盒子里;银盒上写有命题q :肖像不在这个盒子里;铅盒上写有命题r :肖像不在金盒里,,,p q r 中有且只有一个真命题,则肖像在 盒里。
三、解答题:本大题共4小题,满分50分,解答应写出文字说明、证明过程或演算步骤
11、(本小题满分12分)
设2222{|190},{|560},{|280}A x x mx m B x x x C x x x =-+-==-+==+-=, 且,A
B A
C φφ≠=,求实数m 的值。
12、(本小题满分12分)
已知命题[]2:"1,2,0"p x x a ∀∈-≥,命题2000:",220"q x R x ax a ∃∈++-=,若命题“p 且q ”是真命题,求实数a 的取值范围。
13、(本小题满分12分)
已知
2{|11},{|1},{|l g 2l g (),1A x x B x C x a x a x a x =-<=≥=<+>-,若“x A B ∈”是“x C ∈”的充分不必要条件,求实数a 的取值范围。
14、(本小题满分14分)
已知集合2{|8200},{|1}P x x x S x x m =--≤=-≤
(1)若()P S P ⊆,求实数m 的取值范围;
(2)是否存在实数m ,使得“x P ∈”是“x S ∈”的充要条件?若存在,求出实数m 的取值范围;若不存在,请说明理由。