三角形边角关系-第3讲的角与边学
第三讲 直角三角形的边角关系讲义

第三讲 直角三角形的边角关系知识点一 正切,正弦及余弦的定义1、正切的定义的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作例1 如图,△ABC 是等腰直角三角形,求tanC.例2 如图, 已知在Rt △ABC 中,∠C=90°,CD ⊥AB ,AD=8,BD=4,求tanA 的值。
C B A有什么发现?请加以证明。
3、三角函数的定义(重点)能判断谁的木棒更陡吗?说明理由。
同步练习:1、∠C=90°,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,求CD 的长。
2、P 是a 的边OA 上一点,且P 点的坐标为(3,4),求sina 、tana 的值。
3、在△ABC 中,D 是AB 的中点,DC ⊥AC ,且tan ∠BCD=31,求tanA 的值。
4、在Rt △ABC 中,∠C=90°,tanA=125,周长为30,求△ABC 的面积。
5、(2008·浙江中考)在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则sinB 的值是多少?知识点二 30°,45°,60°角的三角函数值例 求下列各式的值。
(1)︒︒-︒60tan 30sin 60sin ;(2)︒-+︒-︒45sin 22460tan 460tan 2。
同步练习:1、 求下列各式的值。
(1)︒+︒+︒45tan 30tan 330sin 2; (2)︒⋅︒+︒30cos 60tan 45cos 2。
(3) 6tan 2 30°-3sin 60°+2tan45°(4)022)30tan 45(sin )60cos (160sin 260sin 60tan 245tan o o o o o oo-+-++----2、 已知a 为锐角,且tana=5,求aa aa sin cos 2cos 3sin +-的值。
八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段教案

第3课时三角形中几条重要线段教学目标【知识与技能】1.了解并掌握三角形的高、中线和角平分线的概念,会用直尺、量角器等工具作出三角形的高、中线与角平分线.2.通过作图了解三角形的三条高、三条中线与三条角平分线分别交于一点.【过程与方法】经历探究三角形的高、角平分线、中线的过程,掌握其应用方法,发展空间观念.【情感、态度与价值观】1.经历作图的实践过程,认识三角形的高、中线与角平分线,帮助学生养成实事求是、具体问题具体分析的习惯.2.发展学生合情推理的能力,提高学生学习数学的兴趣,形成合作交流的意识.重点难点【重点】三角形的三条高、中线和角平分线的画法.【难点】钝角三角形三条高的画法.教学过程一、创设情境,导入新知师:我们在上节课把三角形按角进行了分类,我请几个同学回答一下什么是锐角三角形、什么是直角三角形、什么是钝角三角形.生甲:在三角形中,三个角都是锐角的三角形叫做锐角三角形.生乙:在三角形中,有一个角是直角的三角形叫做直角三角形.生丙:在三角形中,有一个角是钝角的三角形叫做钝角三角形.师:很好!我们上节课学习了一个重要的定理,大家还记得吗?生:记得.三角形三个内角的和等于180°.师:很好!这节课我们继续学习三角形的有关知识.二、共同探究,获取新知师:三角形中三条边、三个角是它的六个基本元素,除此之外,同学们通过预习,知道它还有什么元素吗?生:角平分线.师:什么是角平分线呢?生:三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线.师:还有什么元素?生:中线.师:什么是中线呢?生:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线. 师:还有什么元素呢?生:高.师:什么是高呢?生:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高. 学生熟记定义.师:你能根据这些线的定义作出这些线吗?生:能.师:现在请大家画一个三角形,并作出各个角的平分线.学生操作,教师巡视.教师在黑板上演示画一个角的平分线.∠1=∠2,BD是∠ABC的平分线.师:现在请大家重新画一个三角形,并作出这个三角形的三条中线.学生操作,教师巡视.教师在黑板上演示画一条中线.BD=DC,AD是BC边上的中线.师:现在请大家重新画一个三角形,并作出这个三角形的三条高.学生操作,教师巡视.教师在黑板上演示画三种类型的三角形的一条高线.锐角三角形BC边上的高直角三角形BC边上的高钝角三角形BC边上的高师:你能用折叠的方法作出一个角的平分线吗?学生思考,交流.生:能.师:你是怎样做的?生:先作出一个三角形,把它裁剪下来,我折叠要平分的这个角使它的两边重合,这样得到的折痕与这个角的对边有一个交点,连接这个角的顶点与这个交点得到的线段就是这个三角形的角平分线.师:你太聪明了.大家现在都知道怎么作的吗?生:知道.师:那么请同学们动手做一做.学生操作.师:你能用折叠的方法作出三角形的一条中线吗?学生思考,交流.生:能.师:你是怎么做的?生:要作出三角形一边上的中线,我折叠这条边,使其两端点重合,折痕与这条边的交点,就是这条边的中点.连接这条边所对角的顶点与这个中点,所得的线段就是这条边上的中线.师:现在请大家动手作出中线.学生操作.师:你能用折叠的方法作出三角形一边上的高吗?学生讨论.生:过这边所对角的顶点折叠三角形,使这条边的两段重合,这样就得到了三角形的高.师:很好,请大家动手做一做.学生操作,教师巡视指导.三、作图练习,理解定义师:三角形的角平分线的定义给出了角平分线的作法,请同学们在纸上画出一个三角形,并根据角平分线的定义,画出三个角的平分线.学生操作,教师巡视指导.师:请同学们再画出一个三角形,然后根据中线的定义,作出中线.学生操作,教师巡视指导.师:请同学们完成教材上“操作”的第1题.学生操作,教师巡视指导,最后集体订正.师:直角三角形的高中,有两条和边重合;钝角三角形的高中,有两条在三角形的外部.请同学们观察一下,你们作出的三条角平分线、三条中线和三条高,它们有什么特点?生甲:三条角平分线交于一点.生乙:三条中线交于一点.生丙:三条高交于一点.师:很好!之前学过的说明三角形意义的语句、本节中说明三角形角平分线意义的语句:“不在同一直线上的三条线段首尾依次相接所组成的图形叫做三角形”,“三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线”,分别是三角形、三角形角平分线的定义.七年级时我们也学过一些定义,如“整数和分数统称为有理数”是有理数的定义.前两个定义揭示了对象的特征性质,后一个定义明确了所指对象的范围.给出定义,就是在于明确研究对象是什么.四、课堂小结师:本节课我们学习了什么内容?生:我们学习了三角形的角平分线、中线和高的定义以及画法.师:对,我们由作图过程知道了三角形的三条角平分线、三条中线和三条高是交于一点的.教学反思本节课通过让学生自己动手作图,作出三角形三个角的平分线、三条中线和三条高,让学生深刻理解它们的定义.通过画图和观察图形让学生自己去发现同一三角形的这些线是交于一点的,培养他们观察、总结的能力.通过实际动手得到的结论,他们的印象会更深刻,理解更透彻.这节课所讲授的三种线段中的两种,即三角形的角平分线和高线都是建立在以往旧知识的基础上的,学生对这两种线段已经有了一定的认识,学习起来更容易.强调三角形中的三种线是“线段”,而不是以往的“射线”.。
北师大版九年级数学下册第一章:三角形的边角关系3、三角函数的计算(教案)

3.实践活动中,学生们的参与度较高,但在小组讨论过程中,部分学生表现较为沉默。为了提高学生的积极性,我将在下次活动中增加互动环节,鼓励学生发表自己的观点,培养他们的团队协作能力。
2.教学难点
-理解锐角三角函数的定义:对于初学者来说,正弦、余弦、正切的概念较为抽象,需要通过直观的图形和具体实例来帮助学生理解。
-计算方法的应用:在实际计算中,学生可能会对如何选择正确的边长进行计算感到困惑。例如,在给定斜边和锐角的情况下,如何求出邻边或对边的长度。
-特殊角的记忆:特殊角的三角函数值需要记忆,但学生可能会混淆,教学中需提供有效的记忆策略。
(3)通过特殊角的三角函数值和诱导公式的学习,增强学生对数学结构与关系的理解,提高数学运算和直观想象能力;
(4)培养学生团队协作、交流表达的能力,激发学生探索数学问题的兴趣,形成正确的数学观念和价值观。
三、教学难点与重点
1.教学重点
-锐角三角函数的定义:正弦(sin)、余弦(cos)、正切(tan),这是本节课的核心内容。通过具体实例和直角三角形的边长关系,让学生深入理解这些基本概念。
北师大版九年级数学下册第一章:三角形的边角关系3、三角函数的计算(教案)
一、教学内容
北师大版九年级数学下册第一章:三角形的边角关系3、三角函数的计算
(1)锐角三角函数的定义:正弦(sin)、余弦(cos)、正切(tan);
(2)锐角三角函数的计算方法:利用直角三角形的边长关系进行计算;
(3)三角函数在生活中的应用:测量物体的高度、距离等;
(4)特殊角的三角函数值:30°、45°、60°角的正弦、余弦、正切值;
三角形的边角关系定理

三角形的边角关系定理三角形是初中数学中重要的几何形体之一,它的边角关系定理是我们学习三角形的基础。
在这篇文章中,我将为大家详细介绍三角形的边角关系定理,并通过实例和分析来说明其应用。
希望这些知识对中学生和他们的父母有所帮助。
1. 三角形的内角和定理三角形的内角和定理是指三角形内角的度数之和等于180度。
这个定理对于解决三角形的角度问题非常有用。
例如,我们可以用内角和定理来求解一个已知两个角度的三角形的第三个角度。
假设一个三角形的两个角度分别是60度和80度,那么第三个角度可以通过180度减去这两个角度的和来得到,即180度 - 60度 - 80度= 40度。
2. 三角形的外角和定理三角形的外角和定理是指三角形的一个外角等于其余两个内角的和。
这个定理可以用来求解三角形的外角度数。
例如,如果一个三角形的两个内角分别是60度和80度,那么它的一个外角可以通过将这两个内角相加来得到,即60度 + 80度 = 140度。
3. 直角三角形的边角关系定理直角三角形是一种特殊的三角形,其中一个角是90度。
直角三角形的边角关系定理包括勾股定理和正弦定理。
勾股定理是指直角三角形的两条直角边的平方和等于斜边的平方。
这个定理可以用来求解直角三角形的边长。
例如,如果一个直角三角形的两条直角边分别是3和4,那么斜边的长度可以通过计算3的平方加上4的平方,再开平方根来得到,即√(3^2 + 4^2) = √(9 + 16) = √25 = 5。
正弦定理是指直角三角形中,正弦值与边长之间的关系。
根据正弦定理,直角三角形中一个锐角的正弦值等于与该角对应的直角边与斜边之间的比值。
这个定理可以用来求解直角三角形中的角度。
例如,如果一个直角三角形的斜边长度是5,而一个锐角的对边长度是3,那么这个锐角的正弦值可以通过计算3除以5来得到,即sinθ = 3/5。
4. 三角形的角平分线定理三角形的角平分线定理是指三角形的内角的平分线相交于三角形的内心,且内心到三个顶点的距离相等。
第3课时“角边角”和“角角边”习题课件

解析:根据SSA全等条件,如果两条边和一个非夹角分别相等,那么这两个三角形不一定全等。
题目:两个三角形中,如果两条边和它们的夹角分别相等,那么这两个三角形是否全等? 解析: 根据SAS全等条件,如果两条边和它们的夹角分别相等,那么这两个三角形全等。
相关定理的拓展学习
角边角定理的推广: 在三角形中,如果 两个角和一边相等, 则三角形全等。
角角边定理的推广: 在三角形中,如果 两个角和一边相等, 则三角形相似。
边边角定理的推广: 在三角形中,如果两 边和一边的对角相等, 则三角形相似。
三角形相似的判定定理: 如果两个三角形的两组 对应边成比例,且夹角 相等,则三角形相似。
掌握常见的解题方 法,如构造辅助线、 利用公共边和公共 角等。
学会分析题目中 的条件,寻找合 适的解题思路。
解题思维训练
掌握基本概念:理解角边角和角角边的定义及判定定理,是解题的基础。 分类讨论:根据不同情况,进行分类讨论,是解题的关键。 综合运用:综合运用相关知识,是解题的核心。 思维拓展:通过解题训练,拓展思维,提高解题能力。
添加副标题
角边角和角角边习题课件
汇报人:
目录
CONTENTS
01 添加目录标题
02 角边角定理及其应 用
03 角角边定理及其应 用
04 习题解答与解析
05 解题思路与技巧
06 习题拓展与延伸
添加章节标题
角边角定理及其应用
定义:角边角定理是指两个三角形 如果有两个角和一边分别相等,则 这两个三角形全等。
三角形角与边的关系公式

三角形角与边的关系公式三角形是几何中最基本的形状之一,由三条边和三个内角组成。
在三角形中,角与边之间有许多重要的关系公式。
这些公式对于计算和解决三角形相关的问题非常重要。
在本文中,我们将介绍一些最常用的三角形角与边的关系公式。
一、三角形的角度关系:1.三角形内角和:三角形的内角和等于180度。
即三个内角的和等于180度。
可以表示为:A+B+C=180°。
2.三角形的外角和:三角形的外角和等于360度。
即三个外角的和等于360度。
可以表示为:A'+B'+C'=360°。
3.三角形的对顶角:三角形的一内角和另外两个内角的补角相等。
即三角形的对顶角相等。
可以表示为:A=B',B=A',C=C'。
4.三角形的同位角:同位角是指两个三角形中分别相对的内角或外角。
同位角之和等于180度。
即同位角之和等于180度。
可以表示为:A+A'=180°,B+B'=180°,C+C'=180°。
二、三角形的边长关系:1.余弦定理:余弦定理是用来计算三角形一边的长度的定理。
它表示为:c^2 =a^2 + b^2 - 2abcosC,其中c为三角形的斜边,a和b为三角形的两边,C为两边夹角的余弦。
2.正弦定理:正弦定理是用来计算三角形两边与其对应角度的比例的定理。
它表示为:a/sinA = b/sinB = c/sinC。
其中a、b、c为三角形的三条边,A、B、C为三角形的三个角度。
3.正切定理:正切定理是用来计算三角形两边与其夹角正切值的比例的定理。
它表示为:tanA = (a/b),tanB = (b/a)。
其中a和b为三角形的两边,A和B为三角形的两个夹角。
4.边角关系定理:边角关系定理是用来计算三角形边与角度之间的关系的定理。
它表示为:a/sinA = b/sinB = c/sinC = 2R。
三角形中的边角关系

三角形中的边角关系知识点梳理一、 边1、根本概念〔三角形、边、 顶点的定义;三角形的符号表示〕2、按边对三角形的分类:≠⎧⎪⎨⎧⎨⎪⎩⎩不等边三角形三角形腰底等腰三角形等边三角形☆3、三边关系:〔1〕任意两边之和大于第三边 〔2〕任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角1、根本概念〔内角、外角〕2、按角对三角形的分类:⎧⎧⎪⎨⎩⎨⎪⎩锐角三角形斜三角形三角形钝角三角形直角三角形3、三角形的内角和〔1〕三角形三个内角和等于180°; 〔2)直角三角形的两个锐角互余; 〔3〕一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角。
三、线1、中线(1) 定义 〔2〕 重心 〔3〕中线是线段 〔4〕 表示方法 2、高线〔1〕定义 〔2〕垂心 (3〕高是线段,垂线是直线 〔4〕表示方法 〔5〕钝角三角形高的画法 3、角平分线〔1〕定义 (2)外心 〔3〕画法 〔4〕表示方法 四、方法技能归纳法在规律探索中的应用。
根底练习第1题-〔1〕 第1题-〔2〕 第1题-〔2〕1、〔1〕以AB 为边的三角形有______________;含∠ACB 的三角形有 ;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________.〔2〕图〔1〕中三角形的个数是____________;★图〔2〕中三角形的个数是____________。
2、三角形按角分类可以分为〔 〕A .锐角三角形、直角三角形、钝角三角形;B .等腰三角形、等边三角形、不等边三角形;C .直角三角形、等边直角三角形;D .以上答案都不正确3、一个等腰三角形的两边长分别是4和9,那么它的周长是___________________________4、假设三角形的三边长分别为3,4,x -1,那么x 的取值范围是_________________________5、有3cm,6cm,8cm,9cm 长的四条线段,任选其中的三条线段组成一个三角形,那么最多能组成_____个三角形6、,,a b c 是ABC 的三条边,且()()0a b c a b ++-=,那么ABC 是__________三角形7、以下说法正确的选项是_____________________〔1〕等边三角形是等腰三角形; 〔2〕三角形的两边之差大于第三边;〔3〕有两边相等的三角形一定是等腰三角形; 〔4〕一个钝角三角形一定不是等腰三角形。
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计3

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计3一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册第13.1节的内容,本节课主要让学生掌握三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。
通过本节课的学习,学生能够进一步理解三角形的性质,为后续学习三角形的相关知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念,如三角形的定义、三角形的分类等。
同时,学生也已经学习了角的性质,如角的度量、角的分类等。
但是,学生对于三角形中的边角关系还没有深入的了解,需要通过本节课的学习来掌握。
三. 教学目标1.知识与技能:让学生掌握三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。
2.过程与方法:通过观察、操作、推理等方法,让学生发现并证明三角形中的边角关系。
3.情感态度与价值观:培养学生对数学的兴趣,让学生感受数学的美妙,培养学生的团队协作能力。
四. 教学重难点1.教学重点:让学生掌握三角形中的边角关系。
2.教学难点:证明三角形中的边角关系,并能够灵活运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现三角形中的边角关系。
2.探究教学法:让学生通过观察、操作、推理等方法,自主发现并证明三角形中的边角关系。
3.小组合作教学法:让学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.教学多媒体:PPT、视频等。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“在只知道三角形两边长度的情况下,如何判断第三边的长度?”来引导学生思考三角形中的边角关系。
2.呈现(10分钟)利用PPT或视频,展示三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。
同时,让学生观察并思考这些边角关系是否成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲三角形的角与边
一、基础知识
本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系.
1.边与边的关系
(1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?);
(2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方.
2.角与角的关系
(1)三角形的内角和为180︒;
(2)直角三角形中两锐角互余;
(3)三角形的一个外角大于任何一个与它不相邻的内角;
(4)三角形的一个外角等于与它不相邻的两内角之和.
3.边和角的关系
(1)在同一个三角形中,大边对大角,大角对大边;
(2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大.
4.不等式变形时常用的性质
(1)若a>b,c>d,则a+c>b+d;
(2)若a>b,c>d,则a-d>b-c;
(3)若a>b,c>0,则ac>bc;
若a>b,c<0,则ac<bc;
(4)若a>b>0,则11 a b <
;
(5)总量大于任何一个部分量.
5.三角形中的不等关系根源:
(1)两点之间线段最短;
(2)垂线段最短.
二、例题
第一部分边的问题
例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.
例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是()
A.直角三角形
B.等腰三角形
C.等边三角形
D.直角三角形或等腰三角形
例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( )
A.3
1 4
k
<<
B.
1
1
3
k
<<
C.12
k
<< D.
1
1
2
k
<<
例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( )
A.17cm
B.5cm
C.17cm或5cm
D.无法确定
例5. (★★★)如图3-1,已知P为三角形ABC内一点,
求证:
1
()
2
AB AC BC PA PB PC AB AC BC
++<++<++.
例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.
例7. (★★★)若三角形ABC 的三边长是a,b,c,且满足:
444224442244422,,a b c b c b c a a c c a b a b =+-=+-=+-,则ABC ∆是( )
A.钝角三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
第二部分 角的问题
例8. (★★)如图3-4,在三角形ABC 中,042A ∠= ,ABC ∠和ACB ∠的三等分线分别交于D,E,求
BDC ∠的度数.
例9. (★★★1999年重庆市竞赛题)三角形的三个内角分别为,,αβγ,且αβγ≥≥,2αγ=.则β的
取值范围是( )
A.003645β≤≤
B.004560β≤≤
C.006090β≤≤
D.004572β≤≤
例10. (★★★)如图3-7,延长四边形ABCD 对边AD,BC 交于F ;DC,AB 交于E,若AED ∠,AFB ∠平分线
交于O,求证:1()2EOF EAF BCD ∠=∠+∠
第三部分边角综合
24,例11. (★★★ 2000年江苏省竞赛题)在锐角三角形ABC中,AB>BC>AC,且最大内角比最小内角大0 的取值范围是( ).
则A
例12. (★★★★)如图3-2,在三角形ABC中,AB>AC>BC,P为三角形内任意一点,连结AP并延长交BC于点D.
求证:(1)AB+AC>AD+BC;
(2)AB+AC>AP+BP+CP.
例13. (★★★★)如图,在三角形ABC中,角A=90度,AD垂直于BC,求证:AB+AC<AD+BC
例14.(★★★★)如图,在三角形ABC中,AC>AB,在CA上截取CD=AB,E,F分别是BC,AD的中点,连接EF 并延长交BA的延长线于G,求证:AF=AG
例15. (★★★★★)设三角形的三个内角度数分别为A,B,C,相应的对边长分别为a,b,c,
求证:
60 aA bB cC
a b c
︒++
≥
++
三、练习题
1. (★★)设m,n,p均为自然数,满足m n p
≤≤,且m+n+p=15,试问以m,n,p为边长的三角形有多少个?
2.(★★ 1998年山东省竞赛题) 已知三角形三边的长均为整数,其中某两条边长之差为5,若此三角形周长为奇数,则第三边长的最小值为( )
** B.7 C.6 D.4
3.(★★★)一个三角形的周长为偶数,其中的两条边长分别为4和2003,则满足上述条件的三角形的个数为( )
A.1个
B.3个
C.5个
D.7个
4.(★ 2002,云南省中考题)两根木棒的长分别是7cm和10cm,要选择第三根木棒,将它们钉成一个三角形,若第三根木棒的长是acm,则a的取值范围是( ).
5. (★)ABC 的一个内角的大小是040,且A B ∠=∠,那么C ∠的外角的大小是( )
A.140︒
B.80︒或100︒
C.100︒或140︒
D.80︒或140︒
6. (★★★)如图3-5,在ABC ∆中,90ACB ︒∠=,D,E 为AB 上的两点,若AE=AC,45DCE ︒∠=则图中与BC 等长的线段是( ) A.CD B.BD C.CE D.AE-BE
7. (★★★)如图3-6,在ABC ∆中,B ∠的平分线与C ∠的外角平分线相交于D,40D ︒
∠=.则A ∠等于
( )
A.50︒
B. 60︒
C. 70︒
D.80︒
8. (★★ 第12届希望杯竞赛题)如图3-9,127.5︒∠=,295︒∠=,338.5︒
∠=求4∠的大小.
9. (★★★第5届希望杯竞赛题)如图3-8,BE 是ABD ∠的平分线,CF 是ACD ∠的平分线,BE 与CF 交于G,若140BDC ︒∠=,110BGC ︒
∠=,求A ∠的度数.
10. (★★★★)如图,三角形ABC 中,AB=BC=CA,AE=CD,AD,BE 相交于P,BQ 垂直于AD 于Q ,求证:BP=2PQ
课外小故事
五枚金币
有个叫阿巴格的人生活在内蒙古草原上.有一次,年少的阿巴格和他爸爸在草原上迷了路,阿巴格又累又怕,到最后快走不动了.爸爸就从兜里掏出5枚硬币,把一枚硬币埋在草地里,把其余4枚放在阿巴格的手上,说:“人生有5枚金币,童年、少年、青年、中年、老年各有一枚,你现在才用了一枚,就是埋在草地里的那一枚,你不能把5枚都扔在草原里,你要一点点地用,每一次都用出不同来,这样才不枉人生一世.今天我们一定要走出草原,你将来也一定要走出草原.世界很大,人活着,就要多走些地方,多看看,不要让你的金币没有用就扔掉.”在父亲的鼓励下,那天阿巴格走出了草原.长大后,阿巴格离开了家乡,成了一名优秀的船长.
珍惜生命,就能走出挫折的沼泽.。