第25章 解直角三角形3-5节
第25章 解直角三角形

第25章解直角三角形一、地位与作用本章内容是《数学课程标准》中“空间与图形”领域的重要内容。
锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。
在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教材安排了一章的内容,就是本章“解直角三角形”。
在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。
无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学“相似三角形”“勾股定理”等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
二、教材说明本章的主要内容包括直角三角形的边角关系——锐角三角函数的概念和性质,利用各种条件解直角三角形,再灵活运用解直角三角形解决实际问题。
具体编排包括三节:测量;锐角三角函数;解直角三角形。
其中第一节主要学习测量,本节既是第24章相关内容的发展,同时又为后面两节内容创设了情境,起承上启下的作用;第二节研究三角函数的概念性质,特殊角的三角函数值外,还利用计算器由已知锐角求它的三角函数值和由已知三角函数值求它对应的锐角。
为下节运用锐角三角函数解直角三角形做好准备。
第三节是解直角三角形,主要综合运用直角三角形的勾股定理和边角关系解决简单的实际问题。
中考数学总复习 第五单元 三角形 第25课时 解直角三角形及其应用课件

地理位置设计的圭表,其中,立柱 AC 高为 a.已知冬至时北京的正午
日光入射角∠ABC 约为 26.5°,则立柱根部与圭表的冬至线的距离
(即 BC 的长)约为 (
)
图 25-3
A.asin26.5°
2021/12/9
B.
tan 26.5°
=x,
ta n45°
根据题意,得 AD-BD=4,即
-x=4.
tan 30°
果不取近似值)
解得 x=2 3+2.
答:雕塑的高 CD 为(2 3+2)米.
图 25-17
2021/12/9
第二十一页,共二十二页。
内容(nèiróng)总结
UNIT FIVE。第 25 课时 解直角三角形及其应用。高频考向探究。[方法模型] 转化思想——化实际问
第十三页,共二十二页。
高频考向探究
拓考向
1.[2018·朝阳一模] 如图 25-11,某数学小组要测量校园内旗
杆 AB 的高度,其中一名同学站在距离旗杆 12 米的点 C 处,测
得旗杆顶端 A 的仰角为 α,此时该同学的眼睛到地面的高 CD
为 1.5 米,则旗杆的高度为
米(用含 α 的式子表示).
近的湿地公园测量园内雕塑的高度.用测角仪在 A 处测得雕
塑顶端点 C 的仰角为 30°,再往雕塑方向前进 4 米至 B 处,
测得仰角为 45°.问:该雕塑有多高?(测角仪高度忽略不计,结
解:如图,设雕塑的高 CD 为 x 米.
在 Rt△ ACD 中,AD=
,在 Rt△ BCD
tan 30°
第25章解直角三角形教案

第25章解直角三角形教学内容本单元主要内容是锐角三角函数的概念,特殊角三角函数值,以及三角函数的有关计算和应用.直角三角形中边角之间的关系,是现实世界中应用广泛的关系之一,在现实生活中有着极为重要的作用.研究图形之中各个元素间的关系,将这种关系用数量的方式呈现出来,是分析问题和解决问题过程中常用的方法.在学习中,应进一步感受数形结合的思想,体会数形结合的方法.通过数学知识之间的联系,如比和比例、图形的相似、推理证明等,将为一般性地学习三角函数的知识及进一步学习数学知识打下坚实的基础.本单元从测量说起,引出三角函数,再从所熟悉的三角尺引入特殊角(30°、45°、60°)的三角函数值.对于一般锐角三角函数的计算问题,介绍了应用计算器来求三角函数值以及由锐角三角函数值求锐角的方法.解直角三角形是本单元的主要内容.知识结构三维目标1.知识与技能.理解锐角三角函数的概念,并能够解决实际问题,会计算特殊角的三角函数值;能借助计算器解决三角函数值的问题,或由已知三角函数值求出相应的锐角.2.过程与方法.经历探索直角三角形中边角之间关系的过程.发展学生观察、分析、应用能力,掌握解直角三角形的方法.3.情感、态度与价值观.能够运用三角函数解直角三角形,培养学生解决问题的能力,体会数形之间的联系,认识三角函数的应用价值.教学重点本单元的教学重点是锐角三角函数的概念及其应用于解直角三角形.教学难点从图形中找出相似三角形,解决这一难点是图形相似的前提.教学关键1.理解锐角三角函数(正切、余切、正弦、余弦),•并正确地使用它们解决实际问题.2.借助比、•比值以及比的概念的本质内涵建构出几种常见的锐角三角函数关系.课时安排§25.1 测量 1课时§25.2 锐角三角函数 4课时§25.3 解直角三角形 3课时复习与小结 1课时§25.1 测量【教学目标】一、知识目标1、复习巩固相似三角形知识。
解直角三角形教案

第25章解直角三角形图25.1.1.如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还是利用相似三角形的知识.图25.1.2而这一问题的解决将涉及到直角三角形中的边角关系.三条边有什么关系?它的边与角又有什么关系?这一切都是本章图25.2.1 不变时,三条边的比例也不变(即为一个固定值)。
图25.2.2三.课堂练习P91(练习):1~4(习题25.2):1~3显示再按下列顺序依次按键:显示结果为0.897 859 012.所以sin63゜52′41″≈0.8979(屏幕显示出显示结果为0.349 215 633.(屏幕显示出显示结果为36.538 445 77.再按键:≈36゜32′.图25.3.1.在解直角三角形的过程中,常会遇到近似计算,本书除特别说明外,图25.3.2图25.3.3为了测量电线杆的高度AB,在离电线杆22.7米的测得电线杆顶端B的仰角a=22°,求电线杆图25.3.4(米).2. AE图25.3.5图25.3.6︒=32tan概括1. 了解勾股定理的历史,经历勾股定理的探索过程;2. 理解并掌握直角三角形中边角之间的关系;3. 能应用直角三角形的边角关系解决有关实际问题.课堂练习1.求下列阴影部分的面积:(第2题)已知直角三角形两条直角边分别为6、8,求斜边上中线的长.cot 60°-2tan 45°;cos2 60°;tan260︒(第5题)6.小明放一个线长为125米的风筝,他的风筝线与水平地面构成39°角.的风筝有多高?(精确到1米)7. 在Rt△ABC中,∠C=90°,∠A=60°,∠A平分线AM的长为15 cm求直角边AC和斜边AB的长.(第9题)(第10题)一架25米的梯子靠在一座建筑物上,梯子的底部离建筑物7米.如果梯子的顶部滑下4米,梯子的底部滑开多远?如图,一段河坝的断面为梯形,试根据图中数据,求出坡角(第13题)两建筑物的水平距离BC为24米,从点A测得点的俯角b=60°,求AB和CD两座建筑物的高.(第14题)。
九年级数学上册25-3解直角三角形(巩固课)教案沪教版五四制

4、如图 所示,已知:在△ABC 中,∠A=60°,∠B=45°,AB= 8.求:△ABC 的面积(结果可保留根号).
三、作业布置 一张试卷
一.问题拓展
[说明] 通过这几道例题的分析和挖掘,使学生明确可以用解直角三角形的 知识解决一般三角 形中的计算问题.就是要把握好转化的技巧.
二、巩固练习 1、课本 25.3(2) 2、已知等腰△比值.
3、已知在直角梯形 ABCD 中,上底 CD=4,下底 AB=10,非直角腰 BC= , 则底角∠B=;
九年级数学上册 25-3 解直角三角形(巩固课)教案沪教版五四制
教学内容分析 本课时其实是安排了一个解直角三角形和应用的一节过度课,它起到了承上启下的作用 .先从
解一般的三角形或梯形的问题,寻找转化为直角三角形的方法,然后, 到下一节课的应用,使学生 不会有知识过度跳跃的感觉. 教学重点及难点 教学重点:学会把一般三角形转化为直角三角形解决. 教学难点:如何转化为 直角三角形的辅助线的做法. 教学过程设计
25.3解直角三角形

=cos50° AB 2000 AC= cos 50 cos 50
AB AC
≈3111(米).
9
2014-7-14
例3一个钢球沿坡角31 ° 的斜坡向上滚动了5米,此时钢球距地面的 高度是(单位:米)( B ) 5cos31 ° B. 5sin31 ° C. 5tan31 ° D. 5cot31 °
25.3解直角三角形
2014-7-14
1
复习
直角∠C所对的边AB称为斜边,用c表示,另
两条直角边分别为∠A的对边与邻边,用a、 b表示 , ∠B的对边与邻边,用b 、 a表示 锐角三角函数
A的对边 sinA= 斜边
A的邻边 cosA= 斜边
B c a
A的对边 tanA= A的邻边
2014-7-14
2014-7-14 16
仰角-俯角
在进行测量时,
从下向上看,视线与水平线的
视线 仰角 俯角 视线
夹角叫做仰角; 铅 从上往下看,视线与水平线的 直 线 夹角叫做俯角.
2014-7-14
17
方位角
北 30° 东 A
西
O
45°
B
南
2014-7-14
18
课堂练习
1如图,为了测得电视塔的高度AB,在D处用高
1.2米的测角仪CD,测得电视塔的顶端A的仰角为 42°,再向电视塔方向前进120米,又测得电视塔 的顶端A的仰角为 61°,求这个电视塔的高度 AB.(精确到1米)
2014-7-14
(第 14 题)
19
2014-7-14
20
A
30°
60°
2014-7-14
九年级25单元⑤解直角三角形(二)

D
B
C
思路分析:
思路:构造直角三角形; 分析::延长AD 交BC 的延长线于点E ,过D 作
DF ⊥BC 垂足为F. A
D
B
C FE
小结:
1.在今天的探究学习中,我们尝试解决 了一类与三角形有关的实际问题,至此,谈 谈你的感受.
2.概括一下解答此类题目的思路及一般 方法.
A'
B'
C'
B
14
38 C
1.5
概括:
过去我们在解答与三角形有关的问题时, 往往通过两个三角形的关系,利用相似来解答;
有了锐角三角函数关系后,我们可以在一 个三角形中进行解答,因此,解答此类题目的 方法更多了,也简便了.
练习巩固:
如图,某学习小组为了测量马路对面的高楼AB 的 高度,在高楼底部B 的正对面点C 处,测得仰角∠ACB =30°.
⑴若BC 的长是60米,求高楼AB 的高; ⑵若BC 的长度无法度量,
如何测量高楼AB 的高度,ABD 90,
由锐角三角函数,得cot BD .即BD AB cot .
AB
在△ACB中,ABC 90,
由锐角三角函数,得cot CB .即CB AB cot .
九年级数学《华师大版》
§25.3 解直角三角形(二)
忆旧引新:
1.请你说说锐角三角函数概念. 2.特殊角的三角函数值. 3.直角三角形的边角关系. 4.与三角形有关的题目的解题思路.
概念解释:
视线 仰角 俯角
视线
水平线
巩固探究:
若有测角
A
仪器,可以采
用这种方法:
A'
测量后,
B' C' 按比例画图,
市北资优九年级分册 第25章 25.4 解直角三角形的应用+滕小红

25.4 解直角三角形的应用解直角三角形在实际生活中有着广泛的应用.在解决问题时,既要了解相关的名词,更根据实际情况灵活运用相关知识.1.仰角、俯角与方位角如图25.4.1在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.【例1】如图25.4.2,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m ,请问:这栋高楼有多高?(结果精确到0.1m)【解】由题意得α=30°,β=30°,AD =120m ,AD ⊥BC . ∵tan α=BD AD ,tan β=CDAD, ∴BD =AD ·tan α=120×tan30°=(m), CD =AD ·tan β=120×tan60°=.∴BC =BD +CD=+277.1(m).即这栋楼高约为277.1m .【例2】如图25.4.3,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80海里的A 处,他沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处,请问:此时,海轮所在的B 处距离灯塔P 有多远?(精确到0.01海里,cos25°≈0.91,sin34°≈0.559)图25.4.2视线视线仰角 俯角图25.4.1铅垂线【解】过点P 作PC ⊥AB 于点C ,由题意得∠APC =90°-65°=25°,∠BPC =90°-34°=56°,AP =80海里.在Rt △APC 中,∵cos ∠APC =PCPA, ∴PC =P A ·cos25°=80×cos25°≈80×0.91≈72.80(海里). ∵sin B =PCPB, ∴PB =sin PC B =72.80sin34 ≈72.800.559≈130.23(海里). 即海轮所在的B 处距离灯塔P 有130.23海里.【例3】如图25.4.4,甲、乙两只捕捞船同时从A 港出海捕鱼,甲船以每小时60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B 处相遇. ⑴甲船从C 处追赶上乙船用了多少时间?⑵求甲船加快速度后,追赶乙船时的速度.(结果保留根号)【解】⑴过点A 作AD ⊥BC 于点D ,由题意得∠B =30°,∠BAC =105°,∠BCA =45°,AC =千米) .在Rt △ADC 中,CD =AD =AC ·cos45°=30(千米) . 在Rt △ABD 中,AB =2AD =60(千米),t =6015-2=2(时) . 即甲船从C 处追赶上乙船用了2小时.北图25.4.4图25.4.3⑵由⑴知BD =AB ·cos30°=(千米) .∴BC =30+(千米),从而v =15+(千米/时) . 即甲船加快速度后,追赶乙船时的速度为(15+)(千米/时) .练习25.4(1)1.如图,一架飞机在高度为5千米的点A 时,测得前方山顶D 的俯角为30°,水平向前飞行2千米到达点B 时,又测得山顶D 的俯角为45°.求这座山的高度DN .(结果可保留根号)2.某高层建筑物图中AB 所示.小明家住在建筑物附近的“祥和”大厦(图中CD 所示),小明想利用所学的有关知识测量出高层建筑物AB 的高度.他先在自己家的阳台(图中的点Q 处)测得AB 的顶端(点A )的仰角为37°,然后来到楼下,由于附近建筑物影响测量,小明向AB 方向走了84米,来到另一座高楼的底端(图中的点P 处),测得点A 的仰角为45 °.又点C 、P 、B 在一条直线上,小明家的阳台距地面60米,请你画出示意图,并根据上述信息求出AB 的高度.(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75)CADCA B NM北3.小岛B 正好在深水港口A 的东南方向,一艘集装箱货船从港口A 出发,沿正东方向以每小时30千米的速度行驶,40分钟后在C 处测得小岛B 在它的南偏东15°方向,求小岛B 离港口A 的距离.(精确到0.1千米)(1.41≈2.45,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)答案练习25.4(1)1.根据题意,得∠ACD =90°,∠CAD =30°,∠CBD =45°,AB =2. 设CD =x ,在Rt △BCD 中,∵∠CBD =45°,∴BC =CD =x . 在Rt △ACD 中,∵∠CAD =45°,∴AC.∴=x +2.解得x1.所以,这座山的高度DN =5-1)=(4千米)2.过点Q 作QE ⊥AB ,交AB 于点E .根据题意,得:∠AQE =37°,∠APB =45°,CQ =60(米),CP =84(米). 设AB =x (米),则AE =x -60,QE =CB =x +84. 在Rt △APB 中,PB =AB =x ,在Rt △AQE 中,AE =QE ·tan37°,即x -60=34(x +84), 解得x =492.即楼AB 的高度为492米.3.由题意,得AC =30×23=20(千米) . 过点C 作CD ⊥AB ,垂足为D .在Rt △ADC 中,∠ADC =90°,∠CAD =45°,∴AD =AC ·cos45°=千米) .CD =AC ·sin45°=千米) .37°APCQ EB45°北 B在Rt △BDC 中,∠BDC =90°,∠B =90°―45°―15°=30°, ∴BD =CD ·cos30°=千米) .AB =AD +BD =)≈10(1.41+2.45)=38.6(千米) .即小岛B 离深水港口A 的距离是38.6千米.2.坡度在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.如图25.4.5,坡面的铅直高度(h )和水平长度(l )的比叫做坡面的坡度(或坡比),记作i ,即i =h l. 坡度通常写成1:m 的形式,如i =1:6. 坡面与水平面的夹角叫做坡角,记作α,有i =hl=tan α.α就越大,坡面就越陡.【例4】如图25.4.6,水坝的横截面是梯形ABCD ,上底AD =4米,坝高AM =DN =3米,斜坡AB 的坡比i 1=1CD 的坡比i 2=1:1.⑴求坝底BC 的长;(结果保留根号)⑵为了增强水坝的防洪能力,在原来的水坝上增加高度,使得水坝的上底EF =2米,求水坝增加的的高度.(精确到0.1 1.73)【解】⑴由题意得四边形AMND 是矩形,∴MN =AD =4(米).∵i 1=AM BM ,i 2=DN CN =1,∴BM =米),CN =DN =3(米). ∴BC =BM +MN +CN =4+3=7+米).AB CDM N 图1图2AB CDM N FE图25.4.6图25.4.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25章解直角三角形
§25.3 解直角三角形
【学习目标】
1.了解解直角三角形的概念.
2.掌握解直角三角形的方法.
【课前导习】
1.在△ABC中,若∠C=90° ,则∠A+∠B=______
2.若∠C=90°,∠A,∠B,∠C的对边分别是a,b ,c ,则a,b,c的等量关系是________________
3.如图, ∠C=90°,AC=6,
则sinA= , cosA= ,
tanA= cotA=
sinB= , cosB= ,
tanB= cotB=
4.什么叫解直角三角形?
【主动探究】
例1.在△ABC中,∠C=90°,a=3b ,c=2,其中a ,b,c分别是∠A,∠B,∠C的对边,解此直角三角形.
例2.`在△ABC中,∠ACB=90°,斜边上的中线CD=6, ∠A=30°,解此直角三角形.
`
【当堂训练】
1. 在△ABC 中,∠C=90°, ∠B=30°,求∠A=?
2. 在△ABC 中,∠C=90°, a, b, c 分别是∠A,∠B, ∠C 的对边,若a=6,c=10,求b=?
3. 在△ABC 中,∠C=90°,AB=15,SinA=3
1,求BC 的值. 4. 在△ABC 中,∠C=90°,a=b , c=2,其中a , b , c 分别是∠A,∠B, ∠C 的对边,解此直角三角形.
5. 在△ABC 中,∠ACB=90°,斜边上的中线CD=5, ∠A=60°,解此直角三角形.
【回学反馈】
1. 在△ABC 中,∠ACB=90°,a ,b ,c 分别是∠A,∠B,∠C 的对边,则下列各式中正确的是( )
A. b=atanB
B. a=bcotA
C. c=B b sin
D. c=B
a cos 2. 在△ABC 中,∠ACB=90°,BC=8, ∠B=60°,解此直角三角形.
3. 在△ABC 中,∠ C=90°,AC=2, AB=2,解此直角三角.
4. 如图,某船沿正北方向航行,在点A 处测得灯塔C 在北偏西30°方向上,当船以20海里/小时的速度航
行2小时,到达C 的正东方向点D,此时船距灯塔C 有多远?
张顺生
A
第25章解直角三角形
§25.4 仰角与俯角
【学习目标】
3.了解仰角与俯角的概念.
4.掌握仰角与俯角的应用.
【课前导习】
1.什么是仰角?
2.什么是俯角?
3.地面上的人看空中的飞机,视线与水平线的夹角是仰角还是俯角?
4.空中飞机上的飞行员看地面目标,视线与水平线的夹角是仰角还是俯角?
5.楼上的人与楼下地面上的人互看,什么时候是仰角,什么时候是俯角?
6.仰角,俯角与方位角,坡角有共同之处吗?请看下图,
∠A是什么角呢?
【主动探究】
例1. 小王在教学楼底的水平操场上的C点用测角仪测得教学楼顶A点的仰角为30°,然后向教学楼前进40米到达E处,又测得A点的仰角为60°,已知测角仪的高度为1米,求教学楼AB的高度(结果保留根号).
` `
B
1
A
C
【当堂训练】
1.甲同学在5楼阳台看楼底操场上的乙同学,俯角是68°,那么此时乙同学看甲同学的仰角是多少?
2.飞机在空中A处测得地面目标B,俯角是β,此时飞机的高度AC=a,则BC的距离是多少?
3.如图,水平地面直立的旗杆AB,在水平地面C处测得旗杆顶部A点的仰角为30°,向旗杆前进10米到达D 点,在D处测得A的仰角为45°.求旗杆AB的高度.
【回学反馈】
1. 甲,乙两人分别站在上下两条平行天桥a与b上,他们试图测出两条平行天桥间的距离,如图,甲从天桥的B点看天桥上的A点,仰角是60°,乙不动,甲前进200米到C点,此时,乙从天桥上的A点看天桥上的C点,俯角是45°,请问,你能根据这些已知数据,求出两条平行天桥之间的距离吗?,如果能,请求出结果,如果不能,请说明理由。
张顺生
第25章解直角三角形
§25.5 坡度与坡角
【学习目标】
5.了解坡度与坡角的概念.
6.掌握坡度与坡角的应用.
【课前导习】
7.什么是坡角?
8.什么是坡度?
9.坡度与坡角的正切有什么关系?
10.如果山坡的坡角为60°,那么这个山坡的坡度是多少?
11.如果山坡的坡度i=1:1 ,那么这个山坡的坡角是多少?
【主动探究】
例1.若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高了多少? 例2.设计建造一条道路,路基的横断面为梯形ABCD,路基高为h,两侧坡角为α和β,已知
α=45°,tanβ=
2
1
,CD=10米.
(1). 求路基底部AB的宽.
(2).修筑这样的路基1000米,需要土石多少方? `
`
【当堂训练】
3. 在坡角为30°,高为2米的楼梯表面铺地毯,地毯的长度是多少?
4. 斜坡的坡度是1:3,则坡角的度数是多少?
5. 一段山坡每前进80米就升高40米,求路面的坡度与坡角
6. 坡角与坡度的区别是什么?
【回学反馈】
1. 如图,长为30米的防洪坝,坝面宽3米,迎水坡的坡度为1:3,背水坡的坡度为1:2, 完成水坝用去土方2325
米3,求水坝的高.
2. 某人从A 开始沿坡度为4:3的斜坡前进10米到达处, 看到B 点俯角为30°, 已知A ,D ,B 在同一水
平直线上,求斜坡的长度。
张顺生 B A
E F
A D B
C。