小学三年级奥数--22横式数字谜

合集下载

沪教版小学三年级数学上册奥数.计算综合.数字谜(A级)(含答案)

沪教版小学三年级数学上册奥数.计算综合.数字谜(A级)(含答案)
【关键词】2003年,第1届,希望杯,4年级,初赛,20题
【解析】赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857
【答案】
【例 10】在□内填入适当的数字,使下列除法竖式成立:
【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空
【解析】被除数与除数的和为 ,被除数比除数的21倍多3,所以除数为 。
【答案】
(1)12×23□=□32×21;(2)12×46□=□64×21;
(3)□8×891=198×8□;(4)24×2□1=1□2×42;
(5)□3×6528=8256×3□。
【考点】横式数字谜【难度】2星【题型】解答
【答案】
【例 2】将0~9这10个数码填入下列3个算式的□中,使得3个等式同时成立:
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
最值问题
(1)横式转化为竖式数字谜,乘法转化为除法;
(2)找突破口:末位和首位、进位和借位、个位数字、位数的差别等.
(3)采用特殊分析方法:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.
【答案】
【例 6】在□内填入适当的数字,使下列乘法竖式成立:
【考点】竖式数字谜【难度】2星【题型】解答
【解析】与7相乘末尾为7的只有4,17×4=68.与17相乘结果为三位数的一位数有6、7、8、9.经试验只有6符合题意。
【答案】
【巩固】在□内填入适当的数字,使下列乘法竖式成立:
【考点】竖式数字谜【难度】2星【题型】解答
【考点】与数论结合的数字谜之特殊数字【难度】2星【题型】填空

三年级奥数.计算综合.巧填算符与加减竖式谜

三年级奥数.计算综合.巧填算符与加减竖式谜

巧填算符与加减竖式谜考试要求1、掌握凑数法与逆推法并能灵活运用其解决数字谜问题;2、能运用奇偶性、加减进位退位等进行分析加减竖式谜。

知识框架一、基本概念数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指+、-、×、÷、()、[]、{}。

二、数字谜分类1、竖式谜2、横式谜3、填空谜4、幻方5、数阵三、解题技巧与方法竖式数字谜1、技巧(1)从首位或者末尾找突破口(突破口:指在做数字谜问题开始时的入口,一般在算式的首位或者末尾,可以确定其数字或者范围然后通过推理很快可以确定其值为后面的推理做好铺垫);(2)要根据算式性质逐步缩小范围,并进行适当的估算逐步排除不符合的数字;(3)题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;(4)注意结合进位及退位来考虑;(5)数字谜中的文字,字母或其它符号,只取0~9中的某个数字。

(6)数字谜解出之后,最好验算一遍.2、数字迷加减法(1)个位数字分析法;(2)加减法中的进位与退位;(3)乘除法中的进位与退位;(4)奇偶性分析法。

横式数字谜解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

四、奇数和偶数的简单性质1、整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.2、性质:(1)奇数≠偶数.(2)整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.(3)整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.(4)整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.重难点1、凑数法与逆推法的掌握与运用;2、奇偶性分析的灵活运用;3、加减进位与退位的灵活运用。

小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)

小学数学《数字谜》练习题(含答案)内容概述数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用。

数字谜一般分为横式数字谜和竖式数字谜。

横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等。

例题分析【例1】(☆☆)请在下列各式中分别插入一个数字,使之成为等式:⑴ 111111111111=⨯⨯⑵ 377377377773=⨯⨯分析:⑴ 1221111111=⨯⨯, 1001111111111⨯=⨯⨯=711111111911311⨯⨯=⨯,说明需要改动的数应在等式左边,所以应将等式左边的1改成91。

⑵ 37777131001377377377⨯⨯=⨯=,所以应将等式左边的3改成13。

【例2】(☆☆)在下面的四个□中填入同一个数,使得“迎”、“新”、“世”、“纪”四个字所代表的各数之和等于2000。

那么□中应填多少?□-1=迎,□+9=新,□×9=世,□÷9=纪分析:设“纪”所代表的数为x ,那么□=9x ,迎=9x -1,新=9x +9,世=9x ×9=81x ,根据题意有9x-1+9x+9+81x+x=2000,整理得1992100=x ,92.19=x ,那么□28.179992.19=⨯=。

【例3】(☆☆)如图,横、竖各12个方格,每个方格都有一个数,已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。

图中已填入3,5,8和x 四个数,那么x 代表的数是 。

分析:竖列上任意三个相邻数之和为21,就是竖列上任意三个相邻数都是由三 个同样的数组成(只不过顺序不同),这样我们可把“3”向下每隔两格地“移动”,由此得出中间的一格应填21-3-8=10。

三年级奥数计算综合数字谜C级学生版

三年级奥数计算综合数字谜C级学生版

数字谜知识框架一、基本概念数字谜定义:一般是指那些含有未知数字或未知运算符的算式.填算符:指在一些数之间的适当地方填上适当的运算符(包括括),从而使这些数和运算符构成的算式成为一个等式。

算符:指 +、-、×、÷、()、[]、{}。

二、数字谜分类1、竖式谜2、横式谜3、填空谜4、幻方5、数阵三、解题技巧与方法竖式数字谜1、技巧(1)从首位或者末尾找突破口(突破口:指在做数字谜问题开始时的入口,一般在算式的首位或者末尾,可以确定其数字或者范围然后通过推理很快可以确定其值为后面的推理做好铺垫);(2)要根据算式性质逐步缩小范围,并进行适当的估算逐步排除不符合的数字;(3)题目中涉及多个字母或汉字时,要注意用不同符表示不同数字这一条件来排除若干可能性;(4)注意结合进位及退位来考虑;(5)数字谜中的文字,字母或其它符,只取中的某个数字。

90~(6)数字谜解出之后,最好验算一遍.2、数字迷加减法(1)个位数字分析法;(2)加减法中的进位与退位;(3)乘除法中的进位与退位;奇偶性分析法。

)4(.横式数字谜解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

最值问题(1)横式转化为竖式数字谜,乘法转化为除法;(2)找突破口:末位和首位、进位和借位、个位数字、位数的差别等.(3)采用特殊分析方法:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.(4)除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.(5)数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

三年级奥数基础教程-横式数字谜_小学

三年级奥数基础教程-横式数字谜_小学

三年级奥数基础教程-横式数字谜_小学在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题确实是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

依照“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

明显个位数相减时必须借位,因此,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的明白得,依旧培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,第一要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

由它们推演还能够得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。

例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1 下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。

解:(1)由加法运算规则知,□=13-6-5=2;(2)由减法运算规则知,○=28-(15+7)=6;(3)由乘法运算规则知,△=54÷3=18;(4)由除法运算规则知,☆=87×3=261;(5)由除法运算规则知,*=56÷7=8。

三年级奥数_第11讲横式数字谜

三年级奥数_第11讲横式数字谜

名师堂学校讲义第^一讲年级:三姓名____________ 0横式数字谜一、教学目标:1、弄清横式数字谜式题的特点和常用的解答方法。

2、能熟练地运用四则运算中各部份之间的关系。

3、能灵活快速的解答这类式题。

二、重点:理解和掌握用四则运算中各部份关系解答这类题三、关键:解横式数字谜,首先要熟知下面的运算规则:(1) 一个加数+另一个加数二和;⑵被减数-减数二差;(3)被乘数x乘数二积;⑷被除数十除数二商。

四、典型例题:.【例1】在下图中分别填入1―― 9,使两条直线上五个数的和相等,和是多少呢?等。

3,把6、8 10、12、14、16、18七个数填在下图的O中,使每排三个数及外圆上三个数的和都是32。

例题25个数的和都等于1,将数字1―― 6填入下图中的小圆圈内,使每个大圆上4个数的和都是15。

20。

1,在下图中填入2―― 10,使横行、竖行中的五个数的和相同。

和是多少呢?2,把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条直线上三个数的和相2,把5、6、7、8、9、10这六个数填入下图三角形三条边的O内,使得每条边上的三个数的和是21。

1 / 3例题3在图中填入2―― 9,使每边3个数的和等于15。

练习三1,把1――8填入下图中,使每边3个数的和等于13。

3,把1―― 10这十个数填入下图中,使每个正方形顶点圆圈内四个数之和都相等,而且最大。

这个和是多少?例题4把1――8填入下图O内,使每边上三个数的和最大。

求最大的和是多少?3,把1――8这八个数,分别填入下图的各个□内,使得每一横行、每一竖行的三个数的和是13。

2,将1点的数字为1。

9这九个数填入下图中,使三角形每条边上四个数的和等于19,且有一个顶2 / 33 / 3习四把3―― 10填入下图O 中,使每边上三个数的和最大,求最大的和是多少?在图中各圆的空余部分分别填上1、 习五2、4、6,使每个圆中4个数的和是15。

把1――8填入下图O 中,使每边上三个数的和最小。

小学数学奥数基础教程(三年级)目录

小学数学奥数基础教程(三年级)目录

小学数学奥数基础教程(三年级)目录(含答案).word文档下载地址文档贡献者:与你的缘..第1讲加减法的巧算练习1.第2讲横式数字谜(一)练习2.第3讲竖式数字谜(一)练习3.第4讲竖式数字谜(二)练习4.第5讲找规律(一)练习5.第6讲找规律(二)练习6.第7讲加减法应用题练习7.第8讲乘除法应用题练习8.第9讲平均数练习9.第10讲植树问题练习10.第11讲巧数图形练习11.第12讲巧求周长练习12.第13讲火柴棍游戏(一)练习13.第14讲火柴棍游戏(二)练习14.第15讲趣题巧解练习15.第16讲数阵图(一)练习16.第17讲数阵图(二)练习17.第18讲能被2,5整除的数的特征练习18.第19讲能被3整除的数的特征练习19.第20讲乘、除法的运算律和性质练习20.第21讲乘法中的巧算练习21.第22讲横式数字谜(二)练习22.第23讲竖式数字谜(三)练习23.第24讲和倍应用题练习24.第25讲差倍应用题练习25.第26讲和差应用题练习26.第27讲巧用矩形面积公式练习27.第28讲一笔画(一)练习28.第29讲一笔画(二)练习29.第30讲包含与排除练习30。

三年级奥数.计算综合.数字谜讲解学习

三年级奥数.计算综合.数字谜讲解学习

三年级奥数.计算综合.数字谜第二讲乘除法数字谜一、基本概念数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指 +、-、×、÷、()、[]、{}。

二、数字谜分类1、竖式谜2、横式谜3、填空谜4、幻方5、数阵三、解题技巧与方法竖式数字谜1、技巧(1)从首位或者末尾找突破口(突破口:指在做数字谜问题开始时的入口,一般在算式的首位或者末尾,可以确定其数字或者范围然后通过推理很快可以确定其值为后面的推理做好铺垫);(2)要根据算式性质逐步缩小范围,并进行适当的估算逐步排除不符合的数字;(3)题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;(4)注意结合进位及退位来考虑;(5)数字谜中的文字,字母或其它符号,只取0~9中的某个数字。

(6)数字谜解出之后,最好验算一遍.2、数字迷加减法(1)个位数字分析法;(2)加减法中的进位与退位;(3)乘除法中的进位与退位;(4)奇偶性分析法。

横式数字谜解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

最值问题(1)横式转化为竖式数字谜,乘法转化为除法;(2)找突破口:末位和首位、进位和借位、个位数字、位数的差别等.(3) 采用特殊分析方法:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.(4) 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.(5) 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学三年级奥数22横式数字谜
本教程共30讲
第22讲横式数字谜(二)
第2讲我们初步介绍了简单的横式填数问题。

这一讲再继续介绍一些此类问题。

例1在下列各式的□里填上合适的数字:
(1)237÷□□=□;
(2)368÷□□=□□;
(3)14×□□=3□8。

解:(1)将除法变为乘法,可以转化为“在
237=□□×□
中填入合适的数字”的问题。

因为 237=237×1=79×3,所以只有一种填法:
(2)问题可以转化为“在368=□□×□□中填入合适的数字”的问题。

因为
368=368×1=184×2=92×4
=46×8=23×16,
其中只有368=23×16是两个两位数之积。

因而有如下两种填法:
(3)由被乘数的个位数是4,积的个位数是8知,乘数的个位数只可能为2或7,再由被乘数的十位数是1,积的百位数是3知,乘数的十位数不能填大于3的数字。

所以乘数只可能是12,17,22,27,32或37。

经试算,符合题意的填法有两种:
例2在下列各式的□里填上合适的数:
(1)□÷32=7……29;
(2)480÷156=□……12;
(3)5367÷□=83……55。

分析:根据有余数的除法(简称带余除法)知:
被除数=不完全商×除数+余数,
被除数-余数=不完全商×除数。

上式说明,(被除数-余数)是不完全商或除数的倍数,并且有
(被除数-余数)÷除数=不完全商,
(被除数-余数)÷不完全商=除数。

由此分析,可以得到如下解法。

解:(1)由7×32+29=253,得到如下填法:
(2)由(480-12)÷156=3,得到如下填法:
(3)由(5367-55)÷83=64,得到如下填法:
例3在下列各式的□里填入合适的数字,使等式成立:
(1)□5□×23=5□□2;
(2)9□□4÷48=□0□。

分析与解:(1)首先,从个位数分析,可知被乘数的个位数只能为4。

其次,从首位数分析知,被乘数□5□的首位数只能为2。

因为,被乘数的首位取1时,×23的积的首位小于5,而取大于2的数时,积的首位数大于5。

由254×23=5842知,填法如下:
(2)将问题转换成“在 9□□4=□0□×48中填数”的问题。

类似(1)的分析,被乘数□0□的首位只能填2,个位数只能填3或8。


203×48=9744和208×48=9984
知,有如下两种填法:
例4在下列各题中,每一题的四个□中都填同一个数字,使式子成立:
(1)□+□>□×□;
(2)□+□=□×□;
(3)□+□<□×□。

解:解这类题全靠对数的深刻认识和对四则运算的熟练掌握。

(2)只能填2或0:
(3)除0,1,2三数字外,其他数字3,4,…,9都可填。

例5在下式的□中填入合适的数字,并要求等式中没有重复的数字:
756=□×□□□。

分析与解:将乘法式子改写成除法式子:
756÷□=□□□。

因为被除数与商都是三位数,所以除数不能大于被除数的百位数7。

又因为题目要求没有重复数字,所以除数只可能是2,3,4。

逐一试除,得到
756÷2=378,
756÷3=252,
756÷4=189。

只有756÷4=189没有重复数字,所以只有一种填法:
例6将0,1,2,3,4,5,6七个数字分别填入下式的七个□里,使算式成立:
□□÷□=□×□=□□。

分析与解:为了方便,我们将原式分成两个等式,并在□里填上字母,以示区别:
其中字母A,B,C,D,E,F,G分别代表0~6这七个数字。

由①式看出,E不能是0,否则B也是0,不合题意。

再由②式看出,F,G既不能是0,也不能是1。

F,G只能是 2,3,4,5或6,考虑到E≠0,再除去有重复数字的情形,满足②式的数字填法只有3×4=12。

此时,还剩
下0,5,6三个数字未填。

因为在①式中A,C都不能是0,所以B是0,由60÷5=12,得到符合题意的唯一填法:
练习22
1.在下列各式的□中分别填入相同的两位数:
(1)5×□=2□;
(2)6×□=3□。

2.将3~9中的数填入下列各式,使算式成立,要求各式中无重复的数字:
(1)□÷□=□÷□;
(2)□÷□>□÷□。

3.在下列各式的□中填入合适的数字:
(1)448÷□□=□;
(2)2822÷□□=□□;
(3)13×□□= 4□6。

4.在下列各式的□中填入合适的数:
(1)□÷32=8……31;
(2)573÷32=□……29;
(3)4837÷□=74……27。

5.在下列各式的□中填入合适的数字,要求各等式中无重复的数字:
(1)342÷□□=□;
(2)□×□□□=567。

6.将1~9这九个数字分别填入下式中的九个□里,使连等式成立:
□÷□=□÷□=□□□÷□□。

答案与提示练习22
4.(1)287;(2)17;()65。

提示:从前面两个商入手分析。

在要求不重复的条件下,只能有如下三类情形:
商等于2,此时有2÷1与6÷3,4÷2与6÷3,2÷1与8÷4,8÷4与6÷3四种情形;
商等于3,此时有6÷2与9÷3,3÷1与6÷2两种情形;
商等于4,此时只有4÷1与8÷2一种情形。

分这七种情形讨论,可得上述两种填法。

相关文档
最新文档