线性代数实验一
数值线性代数_MathCAD实验

,其中 Lk
=
⎜ ⎜ ⎜ ⎜⎜⎝
%
1 −lk +1,k ... −ln,k
%
⎟
⎟ ⎟
,
li,k
=
ai,k akk
,
。
% 1 ⎟⎟⎠ i = k +1,k + 2,...,n
则
A
=
L1−1Βιβλιοθήκη "L−1 n−2
L−n1−1U
=
LU
求解 Ax = b 等价于求解
{ LUx = b ⇔
先解 Ly = b, 再解 Ux = y。
""矩阵的三角分解
定理 若 A∈ Rnn 的顺序主子阵 Ai ,i = 1, 2,..., n 均非奇异,则存在唯一单位下三角阵 L 和上三角阵U 使得 A = LU 。
注: li,k
=
ai,k akk
中分母 akk
称为主元。
用高斯变换计算 A 三角分解的代码如下:
Gauss2( A) :=
"没有优化的LU分解"
for j ∈ 1 .. n
U1, j ← A1, j ⊕ "先计算U的第一行"
for i∈ 2 .. n
Li , 1
←
Ai , 1 U1,1
⊕
"再计算L的第一列"
"下一行中i不能为n,否则j要出界"
"因此Unn要单独计算"
for i∈ 2 .. n − 1
for j ∈ i.. n
i−1
∑ Ui , j ← Ai , j −
n
+ 1, n
,由于U
是n
mathematica矩阵运算

二、实验目的
熟悉Mathematica软件中关于矩阵运算的各 种命令
三、常用命令
1. MatrixForm[A] 功能:把矩阵A屏幕输入.
2. Transpose[A] 功能:乘矩阵A的转置矩阵.
3. A+B 功能:求矩阵A与B的和运算.
4. A-B 功能:求矩阵A与B的减运算.
MatrixForm[A]
Out[1]:={{-2,5,-1,3},{1,-9,13,7},{3,-1,5,-5},{2,8,-7,-10}}
2 5 1 3
Out[2]//MatrixForm=
1
3
9 13 1 5
7
5
2
8
7
10
In[3]:=Det[A]
Out[3]:=312
2.In[4]:B=Transpose[A] MatrixForm[B]
四、例子
简单操作步骤
In[1]:=A={{3,1,1},{2,1,2},{1,2,3}} MatrixForm[A]
Out[1]:={{3,1,1},{2,1,2},{1,2,3}}
Out[2]//MatrixForm=
3 1 1
2
1
2
1 2 3
In[3]:=B={{1,1,-1},{2,-1,0},{1,0,1}} MatrixForm[B]
Out[4]:={{-2,1,3,2},{5,-9,-1,8},{-1,13,5,-7},{3,7,-5,-10}}
2 1 3 2
Out[5]//MatrixForm=
5
9 1
8
1 13 5 7
3
线性代数实验报告[1].doc
![线性代数实验报告[1].doc](https://img.taocdn.com/s3/m/072a3289b9d528ea81c7796a.png)
线性代数实验报告
专业班级姓名学号
实验日期年月日星期
成绩评定教师签名批改日期
题目1:交通流量问题:
下图给出某城市部分街道的交通流量(单位:辆/小时):
假设:(1)全部流入网络的流量等于全部流出网络的流量;
(2)全部流入一个节点的流量等于全部流出此节点的流量. 试建立数学模型,以确定该交通网络未知部分的具体流量.
(要求:1. 模型建立(即:列出线性方程组),2. 求解,3. 输出结果,4. 结果综述.)
题目2:求一个正交变换,将二次型:434241312
1242322211262421993x x x x x x x x x x x x x x f --++-+++=
化为标准型 ,判断此二次型的正定性。
线性代数实验课

线性代数实验课一、行列式与矩阵的运算1.实验目的①掌握行列式计算的Mathematica命令。
②掌握矩阵基本运算的Mathematica命令。
③掌握逆阵及矩阵的秩的求法。
2.内容与步骤(1)计算行列式的值在Mathematica中计算行列式的命令为Det[A].(求方阵A的行列式,即Det[A]=|A|)例1计算行列式-5解首先把矩阵用表的形式表示,即输入A={ {2,8,-5』},{1,9,0,・6},{0,・5,・1,2},{ 1,0,・7,6}};Det[A]Out[l>-108例2计算行列式b b2 b4d d: d A解求解命令为Det[{{1,1』』},{a,b,c,d},{a A2,b A2,c A2,d A2),(a A4,b A4,c A4,d A4})]Out[2]= a4b2c — a2b4c -------------- ac2d4 + bc2d4 (共有4! = 24 项)Factor[%]Out[3]—(—ci + b)(—ci + c、)(一b + c、)(—ci + d)(—b + d)(—c + d)(a + Z? + c + d)(2)矩阵的基本运算命令为A+BC*A Transpose[M] A.B MatrixForm[M] 矩阵A和B相加常数c和矩阵A相乘矩阵M的转置矩阵A和B相乘用标准形式表示矩阵11 1 ~ 123 例3已知A = 1 1 -1 ,B = -1 -24 ,求 3A8—2A 及 AB1 -1 1 0 5 1解输入A={{1,1,1},{1,1,・1},{1,.1,1}};B={{l,2,3},{.l,.2,4},{0,5,l}};3*A.B-2*AOut[ 1 ]={{-2,13,22}, {-2,-17,20},{4,29,・2}}M=Transpose[A]Out[2]={{l,l,l},{l,l,-l},{l,.l,l}}P=M.B0ut[3]={{0,5,8},{0,-5,6},{2,9,0}}MatrixForm[P]0 5 8Out[4]=0 -5 62 9 0⑶求逆阵命令为Inverse[A](求方阵A 的逆阵)"3 -2 0 心 0 2 2例4求万阵A = 1 -2 -3 *0 1 2解输入A= {{3,-2,0,-1},{ 0,2,2,!}, {1,-2,-3,2}, {0,1,2,1}};Det[A]Out[l]=lB=Inverse[A]Out ⑵={{1,1,-2,4},{0,1,0,-1},{.1,-13,6},{2,1,-6,-10}}MatrixForm[B]1 1 -2 -40 1 0 -1Out[3]=-1 -1 3 62 1 -6 10 -1,-2的逆阵。
线性代数实验报告汇总

数学实验报告题目第一次实验题目一、实验目的1MATLAB 的矩阵初等运算;.熟悉2 .掌握求矩阵的秩、逆、化最简阶梯形的命令;3MABLAB 求解线性方程组.会用二、问题求解和程序设计流程344?221????????MATLABA1 B、,已知命令窗口中建立.,在320B???50??3A????????112?153????矩阵并对其进行以下操作:(1) A 的行列式的值计算矩阵?)?Adet((2) 分别计算下列各式:、和、、、、B?A.T112??B?BA?2A ABABAA:解(1)编写程序如下:A=[4 -2 2;-3 0 5;1 5 3];B=[1 3 4;-2 0 -3;2 -1 1];a=det(A)运行结果:a =-158(2)编写程序如下:C=2*A-BD=A*BE=A.*BF=A/BG=A\BH=A*AK=A'运行结果:C =7 -7 0-4 0 13线性代数实验报告0 11 5D =12 10 247 -14 -7-3 0 -8E =4 -6 86 0 -152 -5 3F =0 0 2.0000-2.7143 -8.0000 -8.14292.42863.0000 2.2857G =0.4873 0.4114 1.00000.3671 -0.4304 0-0.1076 0.2468 0H =24 2 4-7 31 9-8 13 36K =4 -3 1-2 0 52 5 32 MATLABrankinv 求下列矩阵的秩:中分别利用矩阵的初等变换及函数.在、函数线性代数实验报告3501??2631?????0012????(1) Rank(A)=? 2求) 求(054A?3??B1??B?????0201??4??1112????2102??解:1 编写程如下:()format rat A=[1 -6 3 2;3 -5 4 0;-1 -11 2 4];rref(A)运行结果:ans =1 0 0 -8/50 1 0 00 0 1 6/5AA3 。
线性代数Matlab数学实验

0.1042 -0.1436 -0.0663 0.0878 0.0337 0.0411
1.1095 1.3541 3.1761 5.3951 8.3265 1.3564
4.3899 15.0714 19.5899 28.3698 37.2783 1.8128
2.1612 9.5847 11.9050 16.2275 20.7091 0.6693
b = ( 1 3 5 7 9 11) 。
1.输入矩阵 A,B,b. 2.作X12=A/ , X22=A+B , X23=A-B , X24=AB. 3.求|A|,|B|。 4.求 R(A),R(B)。 5.求X5=A-1 . 6.求矩阵方程 XA=C 的解 X6,其中 C 为 A 的第 i 行乘以列标 i 所得到的矩阵。 7.求解方程组 AX=b 的解向量 X7. 8.求 X6 的特征向量 X8,X6 的特征向量组 X 及对角阵 D。 9.求 B2(A-1)2. 10.存储工作空间变量 A,B:save’ds1.m’,A,B 三、思考与练习 1.对本实验中得到的C矩阵求CT, |C|, C-1, C的特征值及对应的特征向量。 2.创建从 2 开始,公差为 4 的等差数列的前 15 项构成的行向量。 3.将本实验中矩阵 A 与 B 的对应元素相乘、对应元素相处并观察分母为零时的结果。 4.求 b 的每个元素自身次幂所的行向量。 5.列出本实验中所有变量。 四、操作提示 1.计算过程 A=[3 4 -1 1 -9 10;6 5 0 7 4 -16;1 -4 7 -1 6 -8;2 -4 5 -6 12 -8;-3 6 -7 8 -1 1;8 -4 9 1 3 0] B=[1 2 4 6 -3 2;7 9 16 -5 8 -7;8 11 20 1 5 5;10 15 28 13 -1 9;12 19 36 25 -7 23;2 4 6 -3 0 5] b=1:2:11 X21=A' X22=A+B X23=A-B X24=A*B X31=det(A) X32=det(B) X41=rank(A) X42=rank(B) X5=inv(A) for i=1:6 C(:,i)=i*A(:,i); end C X6=C/A X7=A\b' X8=eig(X6) [X,D]=eig(X6) X9=B^2*(A^(-1))^2 存储实验1工作空间变量AB到文件ds1.mat中:save ds1 A B 2.计算结果:
线性代数数学实验(计)

解: 矩阵A 矩阵A的增广矩阵 >> clear >> B=[1 –1 2 1 0 0;0 1 –1 0 1 0;2 1 0 0 0 1]; >> format rat 以有理格式输出 给出矩阵B 给出矩阵B的行最简形 >> C=rref (B) C= 1 0 0 1 0 0
0 0 1
-1 -2 1 2 4 -1 2 3 -1
2、数与矩阵相乘
数与矩阵相乘,是数与矩阵中的每个元素相乘. 数与矩阵相乘,是数与矩阵中的每个元素相乘.
1 0 1 A = 2 1 1 与5的乘积 Example4 求矩阵 的乘积 1 2 1
解:
>> clear >> A=[1 0 1;2 1 1;1 2 1]; >> B=5*A >> C=A*5
运行结果: 运行结果: B= 5 10 0 5 5 5 5 C= 5 10 0 5 5 5 5
5 10
5 10
程序说明: 的值相同. 程序说明:5*A与A*5的值相同. 与 的值相同
3、矩阵与矩阵相乘
两矩阵相乘时,第一个矩阵(左矩阵) 两矩阵相乘时,第一个矩阵(左矩阵)的列数 必须等于第二个矩阵(右矩阵)的行数. 必须等于第二个矩阵(右矩阵)的行数. Example5 解: >> clear >> A=[1 2 3;2 1 2;3 3 1]; >> B=[3 2 4;2 5 3;2 3 1]; >> C=A*B , D=B*A
Example12 求解方程组 解
x1 − x2 + x3 − x4 = 1 −x1 + x2 + x3 − x4 = 1 2x − 2x − x + x = −1 2 3 4 1
线性代数试验

解:(A-2E)B=A 程序: A=[3 0 1;1 1 0;0 1 4]; B=inv(A-2*eye(3))*A, % B=(A-2*eye(3))\A, 运行结果: B =
i(或j)虚数单位 1
inf 正无穷大量;
NaN 不定值inf/inf或0/0
2.算术运算符 + 加,- 减,* 乘, / 如:3+5;2*7; 3.关系运算符 < 小于, >大于,= 等于, < = 小于等于, > = 大于等于, ~= 不等于 右除, \ 左除, ^ 幂 2^3 3/4 ;4\3;
例 B=[-1.3,sqrt(3);(1+2)*4/5,sin(5);exp(2),6] 运行结果: B = -1.3000 2.4000 7.3891 1.7321 -0.9589 6.0000
(2)利用控制语句生成矩阵 例2 生成Hilbert矩阵 for i=1:4 for j=1:4 a(i,j)=1/(i+j-1); end end a
3)多重选择
例1 计算分段函数
分析:
0 x 0 y x 0 x 1 1 x 1
用下列条件语句描述
x <= 0 由x的范围得到y的值 y = 0; elseif x <= 1 建立M文件(详见Matlab与数学试验) y = x; else 命令文件的一般形式: y = 1; <M文件名>.m end
第二章
方阵的行列式
行列式的计算与矩阵的操作
行列式: 转置 秩 逆 特征值 范数 正交化 特征多项式 阶梯形 矩阵的型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学实验(线性代数)题目一. 用MATLAB 计算行列式 1.求矩阵1021122323310121A ⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦的行列式的值.2。
计算行列式100110011001a b c d---二.用MATLAB 计算矩阵1.求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=133212321A 与矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=132352423B 的和与差及53A B -. 2.求矩阵123212331A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与324253231B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的乘积.3.求矩阵112011210A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的逆矩阵. 4.求矩阵123421213A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦和212121321B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相除。
三.用MATLAB 解线性方程组 1. 求解方程组123123123240200x x x x x x x x x --+=⎧⎪++=⎨⎪+-=⎩。
2。
解方程组AX b =,其中A =212214321⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,b =317⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.。
3.Matlab 实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?课外阅读:用矩阵编制Hill密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 保密通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.【模型假设】(1) 假定每个字母都对应一个非负整数, 空格和26个英文字母依次对应整数0~26(见下表).(2) 假设将单词中从左到右, 每3个字母分为一组, 并将对应的3个整数排成3维的行向量, 加密后仍为3维的行向量, 其分量仍为整数.【模型建立】设3维向量x为明文, 要选一个矩阵A使密文y= xA, 还要确保接收方能由y准确地解出x. 因此A必须是一个3阶可逆矩阵. 这样就可以由y = xA 得x = yA-1. 为了避免小数引起误差, 并且确保y也是整数向量, A和A-1的元素应该都是整数. 注意到, 当整数矩阵A的行列式= ±1时, A-1也是整数矩阵. 因此原问题转化为(1) 把action翻译成两个行向量: x1, x2.(2) 构造一个行列式= ±1的整数矩阵A(当然不能取A = E).(3) 计算x1A和x2A.(4) 计算A-1.【模型求解】(1) 由上述假设可见x1 = (1, 3, 20), x2 = (9, 15, 14).(2) 对3阶单位矩阵E =100010001⎛⎫⎪⎪⎝⎭进行几次适当的初等变换(比如把某一行的整数被加到另一行, 或交换某两行), 根据行列式的性质可知, 这样得到的矩阵A的行列式为1或-1. 例如A =110211322⎛⎫⎪⎪⎝⎭, |A| = -1.(3) y1 = x1A = (1, 3, 20)110211322⎛⎫⎪⎪⎝⎭= (67, 44, 43),y2 = Ax2 = (9, 15, 14)110211322⎛⎫⎪⎪⎝⎭= (81, 52, 43).(4) 由(A, E) =110100211010322001⎛⎫⎪⎪⎝⎭−−−−→初等行变换100021010121001111-⎛⎫⎪-⎪--⎝⎭可得A-1 =021121111-⎛⎫⎪-⎪--⎝⎭.这就是说, 接收方收到的密文是67, 44, 43, 81, 52, 43. 要还原成明文, 只要计算(67, 44, 43)A-1和(81, 52, 43)A-1, 再对照表9“翻译”成单词即可.【模型分析】如果要发送一个英文句子, 在不记标点符号的情况下, 我们仍然可以把句子(含空格)从左到右每3个字符分为一组(最后不足3个字母时用空格补上).【模型检验】(67, 44, 43) A-1 = (1, 3, 20), (81, 52, 43)A-1 = (9, 15, 14).参考文献杨威, 高淑萍, 线性代数机算与应用指导, 西安: 西安电子科技大学出版社, 2009. 页码: 98-102.Matlab实验题按照上面的加密方法, 设密文为: 112, 76, 57, 51, 38, 18, 84, 49, 49, 68, 41, 32, 83, 55, 37, 70, 45, 25, 问恢复为原来的信息是什么?数学实验(线性代数)班级公管4班学号1106080097 姓名朱燕萍一.1.>> A=[1 0 2 1;-1 2 2 3;2 3 3 1;0 1 2 1];>> det(A)ans =142.>> syms a b c d>> A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d];>> det(A)ans =a*b*c*d+a*b+a*d+c*d+1二.1.>> A=[1 2 3;2 1 2;3 3 1];>> B=[3 2 4;2 5 3;2 3 1];>> C=A+BC =4 4 74 6 55 6 2>> D=5*A-3*BD =-4 4 34 -10 19 6 22.>> A=[1 2 3;2 1 2;3 3 1];>> B=[3 2 4;2 5 3;2 3 1];>> C=A*BC =13 21 1312 15 1317 24 223.>> A=[1 -1 2;0 1 -1;2 1 0];>> B=inv(A)B =-1.0000 -2.0000 1.00002.0000 4.0000 -1.00002.00003.0000 -1.00004.>> A=[1 2 3;4 2 1;2 1 3];>> B=[2 1 2;1 2 1;3 2 1];>> C=A/BC =1.3333 1.3333 -1.00000 -0.5000 1.50001.6667 0.1667 -0.5000 >> D=A\BD =0.3333 0.6000 -0.2000-0.6667 -0.4000 0.80001.0000 0.4000 0.2000 三.1.>> A=[-1 -2 4 0;2 1 1 0;1 1 -1 0]; >> A=rref(A)A =1 02 00 1 -3 00 0 0 0 2.>> A=[2 1 2;2 1 4;3 2 1];>> B=[3;1;7];>> X=inv(A)*BX =2.00001.0000-1.00003.(2).>> A=[1 -0.25 -0.25;-0.65 0.95 -0.05;-0.5 -0.1 1]; >> B=[500000;600000;400000];>> X=A\BX =1.0e+006 *1.15011.47761.1228甲生产1150100元的产品乙生产1477600元的产品丙生产1122800元的产品恰好满足需求解密>> A=[0 2 -1;1 -2 1;-1 -1 1];>> B=[112 76 57];>> X1=B*AX1 =19 15 21>> C=[51 38 18];>> X2=C*AX2 =20 8 5>> D=[84 49 49];>> X3=D*AX3 =0 21 14>> E=[68 41 32];>> X4=E*AX4 =9 22 5>> F=[83 55 37];>> X5=F*AX5 =18 19 9>> G=[70 45 25];>> X6=G*AX6 =20 25 0翻译成的数字为19 15 21 20 8 5 0 21 14 9 22 5 18 19 9 20 25 0 对照表翻译过来后为southe university。