统计学时间数列
统计学基础(第七章时间数列分析)

教学重点与难点:
※ 重点:时间数列平均发展水平指标的计算方法 ,
时间数列各类速度指标的计算与运用, 难点:根据不同类型的时间数列选择正确的公 式计算平均发展水平
第七章
时间数列分析
§7.1 时间数列分析概述
§7.2 时间数列的水平指标
§7.3
时间数列的速度指标
§7.1 时间数列分析概述 一、时间数列的概念和作用
12.6 10000 c 6300 元 人 四月份: 1 2000 2000 2 14.6 10000 c 6952 4元 人 . 五月份: 2 2000 2200 2 16.3 10000 c 7409 1元 人 . 六月份: 3 2200 2200 2
首末 折半法
例7.4,某企业2006年一季度各月的职工人数如下:
3月初 3月底 220 260
200 240 220 1月平均: a1 2 240 220 2月平均: a2 230 2
3月平均:
220 260 a3 240 2
一季度月平均:
220 230 240 a 230(人) 3
我国1996-2006年国内生产总值等时间序列
年 份 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
时间数列作用
见教材
二、时间数列的种类
时间数列
绝对数数列
相对数数列
平均数数列
时期数列
时点数列
1、绝对数时间数列(总量指标时间数列) 反映社会经济现象在各期达到的绝对水平及其变化 发展的状况。
12521 1255 2 1260 3 1 2 3
7542 1257人 6
统计学基础-时间数列分析

的平均数。又叫序时平均数或动态平均数。
总量指标时间数列序时平均数的计算 • 计算 相对指标时间数列序时平均数计算
平均指标时间数列序时平均数计算
二、时间数列的水平分析指标
• (二)平均发展水平 • 1.总量指标时间数列序时平均数的计算 • (1)由时期数列计算序时平均数
• 基期 • 不同 • 分类
逐期增长量:是本期水平比上一期水平增长的绝对数量。
累计增长量:是本期水平比某一固定时期水平增长的绝对 数量,说明某一段时期内总的增长量。
二、时间数列的水平分析指标
• (三)增长量 • 年距增长量=报告期水平-上年同期发展水平
各期逐期增长量之和等于相应时期的累计增长量 • 关系
• 影响现象变动的因素: • 1.长期趋势:现象在相当长的时期内持续发展变化的趋势,它
是由各个时期普遍、持续、决定性的基本因素所左右,是各期 发展水平沿着一个方向上升或者下降的趋势变动。 • 2.季节变动:现象因受自然条件和社会因素的影响,在一年或 更短的时间内所产生的具有周期性、规律性的重复变动。
四、时间数列的变动趋势分析
(一)时间数列变动趋势分析的意义
社会经济现象的发展变化,是许多因素共同作用的结果。这
些因素起推动和制约作用,彼此之间的关系也错综复杂。为了分
析时间数列的发展变化规律,必须把影响时间数列的各种因素分
开,找出它们的变动规律。 长期趋势
基本因素 季节变动
分类
循环变动
偶然因素:不规则变动
• (一)发展速度和增长速度 • 2.增长速度
概念:表明现象增长程度的相对指标,说明报告期水平比基 期水平增加的程度。
统计学课件 第四章 时间数列

c a b
故对相对数或平均数时间数列计算平均发展水平,只需要对 其的分子、分母分别计算平均发展水平后再相除即可。即:
c a 分子代表分子数列的平均发展水平,分母代表分母数列的平均发展水平 b
(1)分子分母都是时期数列
某企业产值情况
时间
1月
2月
3月
产值计划完成程度(%) 105 100 109.1
计划产值(万)
某市财政收入情况
月份
1
2
3
4
5
6
财政收入 1(a0) 1.1(a1) 1.05(a2) 1.2(a3) 1.22(a4) 1.3(a5) (亿)
逐期增长量 ----
0.1
-0.05
0.15
0.02
0.08
(亿)
累计增长量 -----
0.1
0.05
0.2
0.22
0.3
(亿)
平均增长量=【0.1+(-0.05)+0.15+0.02+0.08】÷5 =0.3÷5=0.06(亿)
100 110 110
实际产值(万)
105 110 120
求该企业第一季度产值平均计划完成程度?
105110 120
c
3 100 110 110
104.69%
3
第二节 时间数列的水平指标
(2)分子分母都是时点数列
某企业员工情况
时间 1月初 2月初 3月初 4月初
男性比重 52
(%)
50.98 49.09 49.07
Ⅰ、资料逐日登记排列形成,用简单算术平均法。即:例:a a
某车间某月1到15日在册人数资料
n
日 期
统计学5章ppt课件

2024/9/28
2
统计学
二、时间数列旳种类
(一)绝对数时间数列
➢ 绝对数时间数列又称总量指标时间数列。它 是把一系列总量指标,按时间先后顺序排列 形成旳时间数列。
➢ 绝对数时间数列按反应社会经济现象时间状 态旳不同,又可分为时期指标时间数列和时 点指标时间数列,简称时期数列和时点数列。
2024/9/28
时点数列有连续时点数列和间断时点数列 两种。
(1)连续时点数列(已知每天数据)
统计学中旳时点指旳是某一天,假如已知每天旳数据, 则构成了连续时点数列,可直接采用算术平均法计算。
a a
n
或
a
af f
示例
式中:a 代表各期旳发展水平;n 代表时期项数;权数 f 表达变量不 发生变动旳天数。
2024/9/28
2024/9/28
7
统计学
(三)平均数时间数列
将一系列平均数,按时间先后顺序排列而形成旳 时间数列叫做平均数时间数列。
它反应社会经济现象总体各单位某一标志值一般 水平旳发展变动趋势。
相对数和平均数时间数列具有某些共同旳性质:
➢ 各指标值在时间上都没有相加性; ➢ 不存在时期数列和时点数列之分; ➢ 都能够经过两个时期数对比、两个时点数对比、或
2024/9/28
16
统计学
(4)年距(同比)增长水平
在实际统计分析中,为了消除季节变 动旳影响,经常需要计算年距(同比) 增长水平。
年距增长量 = 本期发展水平 — 去 年同期发展水平
2024/9/28
17
统计学
2.平均增长水平
平均增长水平也称平均增长量,用以表白社
会经济现象在一定时期内平均每期旳n 增长水
统计学时间数列分析指标

43
▪ 按照几何平均法所确定的平均发展速度,所推算最末一年的发展水平,与实际资料 最末一年的发展水平相同。
▪ 按方程按照方程式法所确定的平均发展速度,所推算全期各年发展水平的总和与全 期各年的实际发展水平的总和相同。
44
三、计算和运用速度指标注意的问题
个发展水平。
▪ 最初水平,最末水平,中间各项水平(中间水平)。
5
(二)平均发展水平
▪
平均发展水平是时间数列中各不同时期发展水平计算的平均数,又称序时平
均数或时间平均数。
1、绝对数时间数列的序时平均数
2、相对数时间数列&平均数时间的序时平均数
6
1、绝对数时间数列的序时平均数
(1)由时期数列计算序时平均数
▪ 用符号表示为:
a1 , a2 , a3 ,, an
a0 a0 a0
a0
26
2.环比发展速度
环比发展速度
报告期水平 前一期水平
▪ 用符号表示为:
a1 , a2 , a3 ,, an
a0 a1 a2
an1
27
3. 定基发展速度与环比发展速度的关系。
a1 a2 a3 an an
a0 a1 a2
增长速度 平均增长速度
动 态 平 均 指 标
46
某企业产值与月初职工人数资料
a.产值(万元) b.月初职工人数(人)
7月 750 870
8月 830 910
9月 800 900
10月 … 920
18
▪ 二、增长量与平均增长量
(一)增长量 ▪ 也称增减量,其计算公式为:
▪ 增长量=报告期水平–基期水平
《统计学原理与应用》课件第08章 时间数列分析

时间
1月底
3月底
8月底
12月底
固定资产原值(万元) 230
238
229
240
Fundamentals of Statistics
统计学基础
第八章 时间数列 (二)相对指标时间数列 (三)平均指标时间数列
相对指标和平均指标时间数列的形成—都需要分子和分母
时期数列 时期数列
时点数列 时点数列
例如
月份
生产工人劳动生产率
一、发 展 水 平 二、平均发展水平 三、增长量 四、平均增长量
Fundamentals of Statistics
统计学基础
第八章 时间数列
一、发 展 水 平
发展水平就是动态数列中的每一项具体指标数值。 其数值可以表现为绝对数、相对数或平均数。 用符号表示为:
a0,a1,a2,a3,a4,…an-1,an
Fundamentals of Statistics
统计学基础
第八章 时间数列
第一节 时间数列的意义和种类
一、时间数列的意义 二、时间数列的种类 三、编制时间数列的原则
Fundamentals of Statistics
统计学基础
第八章 时间数列
第一节 时间数列的意义和种类
一、时间数列的意义
2.分子和分母都为时点数列时,(有16个公式) 常用的有:
c
a
a1 2
a2
a3
an1
an 2
b
b1 2
b2
b3
bn1
bn 2
Fundamentals of Statistics
统计学基础
(二第八)章由时相间数对列指标或平均指标动态数列计算序时 平均数
统计学基础第五章时间数列

statistics
统计学——第五章时间数列
解:根据上面计算资料再计算第三季度的月平均库存额为:
an-1 an a1 a2 a2 a3 … 2 2 a 2 n 1 an a1 a2 an-1 2 2 n 1
700 900 900 1000 2 2 4 1
均衡的期末登记排列。通常将前者称为间隔相等的间断 时点数列,后者称为间断不等的间断时点数列。
statistics
统计学——第五章时间数列
间隔相等的间断时点数列的平均发展水平的计算公式:
an1 an a1 a2 a2 a3 2 2 a 2 n 1 an a1 a2 an-1 2 2 n 1
statistics
统计学——第五章时间数列
(3)分子、分母由一个时期数列和一个时点数列对比组成 相对数时间数列。
a a 1 a 2 a n 1 a n c b0 bn b1 b n 1 b 2 2
(分子为时期数列,分母为时点数列) a0 an a 1 a 2 a n 1 a 2 或 2 c b1 b n 1 b n
可见,该商场2006年的第三、第四季度的月平均销售 额大于第一、第三季度的月平均销售额。 statistics
统计学——第五章时间数列
2.依据时点数列计算序时平均数
连续时点数列 时点数列 间断时点数列 间隔不等的间断时点数列 间隔相等的间断时点数列
statistics
统计学——第五章时间数列
(1)连续时点数列的序时平均数。
5-4所示,试求第一季度的平均完成率。 表5-4 某厂某年第一季度各月商品销售额 计划完成情况统计表 目 1月 200 210 105 2月 240 260 105 3月 250 280 112 statistics
统计学第八章时间数列

2020/1/19
增长速度growth rate 表明现象的增长程度
某现 基象 期报 水 告 平 报期 告 基的 期 期 基 增 水 水 期 长 平 平 发 水 量 展 平 1速
环比增长速度=环比发展速度-1 定基增长速度=定基发展速度-1
2020/1/19
增 1长 的 % 绝 环 对 逐 比 期 增 1 值 增 0 长 0上 长 1速 0 期 量 0度 水平
n 1
n 1
(5)间隔不相等不连续时点的时点数列
2020/1/19
aa1 2a2t1a2 2a3t2an12 antn1 t1t2tn1
增长量和平均增长量 •增长量growth amount
总量指标报告期水平与基期水平之差,表明 该指标在一定时期内增加或减少的绝对数量。
社会经济现象以若干年为周期的 涨落起伏相同或基本相同的一种 波浪式的变动
随机变动(I)
客观社会经济现象由于天灾、人 祸、战乱等突发事件或偶然因素 引起是无周期性波动
2020/1/19
一般模型 加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
分解方法
加法模型 T=Y-(S+C+I)
乘法模型
2020/1/19
✓水平法(几何平均法)
n
X
n
Xi
i1
n
an a0
适用:水平指标的平均发展速度计算
2020/1/19
✓方程法(累计法)
a 0 x a 0 x 2 a 0 x 3 a 0 x n a i
xx2x3xnai a0
适用:侧重于考察中长期间的累计总量
平均增长速度 = 平均发展速度-100% 表明现象在一个较长时期中逐期平均增长变化的程度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学时间数列内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)第五章时间数列(一)填空题1、增长量可分为逐期增长量、累积增长量。
两者的关系是累积增长量是相应的逐期增长量之和。
2、时间数列按其排列的指标不同可分为总量指标时间数列(绝对数时序)、相对指标时间数列(相对数时序)、平均指标时间数列(平均数时序)三种,其中总量指标时间数列是基本数列。
3、根据时间数列中不同时间的发展水平所求的平均数叫平均发展水平,又称序时平均数。
4、计算平均发展速度的方法有水平法和累计法。
且两种方法计算的结果一般是不相同的。
必须按照动态数列的性质和研究目的来决定采用哪种方法。
如果动态分析中侧重于考察最末一年达到的水平,采用水平法为好;如果动态分析中侧重于考察各年发展水平的总和,宜采用累计法。
5、进行长期性趋势测定的方法有时距扩大法、移动平均法、趋势线配合法、曲线趋势的测定与分析等。
(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、某企业2000年利润为2000万元,2003年利润增加到2480万元,则2480万元是( A )A. 发展水平B. 逐期增长量C. 累积增长量D. 平均增长量2、对时间数列进行动态分析的基础是(A)A 、发展水平B 、发展速度C 、平均发展水平D 、增长速度3、已知某企业连续三年的环比增长速度分别为6%,7%,8%,则该企业这三年的平均增长速度为 ( D ) A. B.4、序时平均数又称作( B )A 、平均发展速度B 、平均发展水平C 、平均增长速度D 、静态平均数5、假定某产品产量2002年比1998年增加50%,那么1998-2002年的平均发展速度为( D )6、现有5年各个季度的资料,用四项移动平均对其进行修匀,则修匀后的时间数列项数为( B )A 、12项B 、16项C 、17项D 、18项7、累积增长量与其相应的各个逐期增长量的关系是( A )A. 累积增长量等于其相应的各个逐期增长量之和B. 累积增长量等于其相应的各个逐期增长量之积C. 累积增长率与其相应增长量之差D. 两者不存在任何关系8、最基本的时间数列是( A )A 、绝对数时间数列B 、相对数时间数列%8%7%6⨯⨯%8%7%6++C、平均数时间数列D、时点数列9、由时期数列计算平均数应是( A )A. 简单算术平均数B. 加权算术平均数C. 几何平均数D. 序时平均数10、历年的物资库存额时间数列是( B )A、时期数列B、时点数列C、动态数列D、相对数动态数列11、由时间间隔相等的连续时点数列计算序时平均数应按( A )A. 简单算术平均数B. 加权算术平均数C. 几何平均数D. 序时平均数12、由间隔不等的时点数列计算平均发展水平,以(C)为权数A、时期长度B、时点长度C、间隔长度D、指标值项数13、计算动态分析指标的基础指标是(D)A、总量指标B、相对指标C、平均指标D、发展水平14、用移动平均法修匀时间数列时,在确定平均的项数时(A)A、必须考虑现象有无周期性变动B、不必须考虑现象有无周期性变动C、可以考虑也可以不考虑周期性变动D、平均的项数必须是奇数15、时间数列中,每个指标值可以相加的是( B )A、相对数时间数列B、时期数列C、平均数时间数列D、时点数列16、一般平均数与序时平均数的共同点是(A)A、两者都是反映现象的一般水平B、都可消除现象在时间上波动的影响C、都是反映同一总体的一般水平D、共同反映同质总体在不同时间上的一般水平17、已知各期环比增长速度为7.1%、3.4%、3.6%、5.3%,则定基增长速度是( D)A、7.1%*3.4%*3.6%*5.3%B、(7.1%*3.4%*3.6%*5.3%)-1C、107.1%*103.4%*103.6%*105.3%D、(107.1%*103.4%*103.6%*105.3%)-118、平均增长速度是( D )A、环比增长速度的算术平均数B、总增长速度的算术平均数C、环比发展速度的算术平均数D、平均发展速度减100%19、时间数列中的平均发展速度是( D)A、各时期环比发展速度的调和平均数B、各时期环比发展速度的算术平均数C、各时期定基发展速度的调和平均数D、各时期环比发展速度的几何平均数20、已知各时期环比发展速度和时期数,便能计算出( A)A、平均发展速度B、平均发展水平C、各期定基发展速度D、各期逐期增长量21、半数平均法适用于( A)A、呈直线趋势的现象B、呈二次曲线趋势的现象C、呈指数曲线趋势的现象D、三次曲线趋势的现象22、用最小平方法配合直线趋势,如果y=a+bx中b为正值,则这条直线呈( B)A、下降趋势B、上升趋势C、不升不降D、无法确定23、用最小平方法配合直线趋势,如果y=a+bx中b为负值,则这条直线呈( A )A、下降趋势B、上升趋势C、不升不降D、无法确定24、如果时间数列的逐期增长量大致相等,则适宜配合( A )A、直线模型B、抛物线模型C、曲线模型D、指数曲线模型25、累计增长量等于(C)A、报告期水平与基期水平之差B、报告期水平与前一期水平之差C、报告期水平与某一固定基期水平之差D、逐期增长量之差26、增长1%的绝对值是( D)A、增长量与增长速度之比B、逐期增长量与定基增长速度之比C、增长量与发展速度之比D、前期水平除以100(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、历年的环比发展速度的连乘积等于其最后一年的( ACD )A. 总发展速度B. 总增长速度C. 定基发展速度D. 发展总速度2、各项指标值不能直接相加的时间数列有(BCD )A、时期数列B、时点数列C、相对数时间数列D、平均数时间数列E、变量数列3、时期数列的特点有( ABDE )A. 数列中各个指标数值之间具有可比性B. 数列中各个指标数值之间具有可加性C. 数列中各个指标数值的大小与包括的时期长短无关D. 数列中各个指标数值的大小与包括的时期长短有关E. 数列中各个指标数值具有连续统计的特点4、时期数列的特点是(ACE )A、指标数值具有可加性B、指标数值不能直接相加C、指标数值通过连续登记加总取得D、指标数值只能间断计量E、指标数值的大小与时间长短有直接关系5、下列数列中属于时点数列的有(ACE )A、历年银行年末储蓄存款余额B、历年产值C、各月末职工人数D、各月商品销量E、历年粮食库存量6、下面等式中,正确的有( ABC )A. 增长速度=发展速度-1B. 定基发展速度=定基增长速度+1C. 环比发展速度=环比增长速度+1D. 平均发展速度=平均增长速度-17、历年国民生产总值数列是(AD)A、绝对数时间数列B、相对数时间数列C、平均数时间数列D、时期数列E、时点数列8、某企业2000年总产值为50万元,2003年为100万元,则2003年的总产值比2000年(ABD)A、增长了50万元B、增长了100%C、增长了50%D、翻了一番E、翻了两番9、已知各时期环比发展速度和时期数,便能计算出(AC)A、平均发展速度B、平均发展水平C、各期定基发展速度D、各期逐期增长量E、累计增长量10、平均发展速度是(ACDE )A、环比发展速度的动态平均数B、环比发展速度的算术平均数C、环比发展速度的几何平均数D、各个环比发展速度的代表值E、最末水平与最初水平之比的N次方根11、编制时间数列应遵循的原则有(ABCD)A、时间长短应该一致B、总体范围应该一致C、指标的经济内容应该一致D、指标的计算方法、计算价格、计量单位应该一致E、指标数值的变化幅度应该一致12、时间数列按统计指标的表现形式不同可分为(CDE )A、时期数列B、时点数列C、绝对数时间数列D、相对数时间数列E、平均数时间数列13、定基发展速度与环比发展速度的数量关系是( AB)A、定基发展速度等于相应的环比发展速度的连乘积B、两个相邻的定基发展速度之比等于相应的环比发展速度C、定基发展速度与环比发展速度的基期一致D、定基发展速度等于相应的环比发展速度之和E、定基发展速度等于相应的环比发展速度之差14、下列社会经济现象属于时期数列的有(BE)A、某商店各月商品库存额B、某商店各月商品销售额C、某企业历年内部职工调动工种人次数D、某供销社某年各月末人数E、某企业历年产品产量15、时间数列的水平指标具体包括( ABD)A、发展水平B、平均发展水平C、发展速度D、增长量E、增长速度16、时间数列的速度指标具体包括( ABCE)A、发展速度B、平均发展速度C、增长速度D、增长量E、平均增长速度17、影响时间数列变化的因素有( ABDE )A、基本因素B、偶然因素C、主观因素D、循环变动因素E、季节因素18、测定长期趋势的方法有(ABCD)A、时距扩大法B、移动平均法C、分段平均法D、最小平方法E、趋势剔除法19、在直线趋势方程y=a+bt中的参数b表示(CD)A、趋势值B、趋势线的截距C、趋势线的斜率D、当t变动一个单位时y平均增减的数值E、当t=0时,y的数值(四)是非题1、将总体系列不同的综合指标排列起来就构成时间数列。
(×)2、用几何法计算的平均发展速度的大小,与中间各期水平的大小无关。
(√)3、编制时点数列,各项指标的间隔长短必须保持一致。
(×)4、对于同一资料,按水平法和方程法计算的平均发展速度是相等的。
(×)5、用方程法计算的平均发展速度的大小取决于各期发展水平总和的大小。
(×)6、半数平均法的数学依据是变量的实际值与理论值的离差平方和为最小。
(×)7、通过时间数列前后各时间上指标值的对比,可以反映现象的发展变化过程及其规律。
(√)8、时期数列中每个指标值的大小和它所对应时期的长短有直接关系。
(√)9、时点数列中各个时点的指标值可以相加。
(×)10、定基发展速度等于相应时期内各个环比发展速度的连乘积。
(√)11、间隔相等的间断时点数列序时平均数的计算采用“首尾折半简单算术平均法” 。
(√)12、事物的发展变化是多种因素共同作用的结果,其中长期趋势是根本的因素,反映现象的变动趋势。
(√)13、采用偶数项移动平均时必须进行两次移动平均。
(√)14、用半数平均法修匀时间数列时,如果所给时间数列为奇数项,则可把时间数列的第一项删去。
(×)。