第四章平面图形及其位置关系

合集下载

第四章 平面图形及其位置关系辅导题

第四章 平面图形及其位置关系辅导题

第四章 平面图形及其位置关系辅导题典例精讲:例1:如图,∠AOB 是平角,∠AOC=80°,∠COE=50°,OD 平分∠AOC ; 1)求∠DOE 的度数;2)OE 是∠BOC 的平分线吗?为什么?例2:如图9-14,B 、C 两点把线段AD 分成2∶3∶4三部分,M 是AD 的中点,CD=8,求MC 的长. 随堂练习1、 下列说法正确的是( ) A. 一条直线就是一个平角 B. 射线比直线短C. 过三点可以作一条直线D. 两点间的线段的长度叫两点间的距离2、平面上有任意三点,经过其中两点画一条直线,可以画( )直线A 、1条B 、2条C 、3条D 、1条或者3条3、点C 在线段AB 上,不能判断点C 是线段AB 中点的式子是( )A 、AB=2ACB 、AC+BC=ABC 、BC=D 、AC=BC 4、按下列线段的长度,点A 、B 、C 一定在同一直线上的是( )AB MC D图9-14AB 21A 、AB=2cm ,BC=2cm ,AC=2cmB 、AB=1cm ,BC=1cm ,AC=2cmC 、AB=2cm ,BC=1cm ,AC=2cmD 、AB=3cm ,BC=1cm ,AC=1cm 5、8点30分时,时钟的时针与分针所夹的锐角是( )A. 60B. 55C. 75D. 706、 已知AB=6cm ,P 点是到A 、B 两点等距离的点,则PA 的长度为( )A. 3cmB. 4cmC. 5cmD. 不能确定7、平面内,有两个角∠AOB=50°,∠AOC=20°,OA 为两角的公共边,则∠BOC 为( ) A ) 30° B 70° C 30°或70° D 无法确定8、在一段火车路线上有四4个车站,在这段路线中往返行车,需要制几种不同的车票(每种车票都要印出上、下车站) ( )A .12种B .9种C .6种D .3种 9、下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是( )二、填空题1. 如图9-1,AB________AC+BC (填“<”、“>”或“=”),依据是____________.2、如图,∠AOC 与∠BOD 都是直角,如果∠AOB=144°,则∠DOC=3、如果线段AB=5cm ,BC=3cm ,A 、B 、C 三点在同一条直线上,那么A 、C 两点间的距离是__________cm.4、比较20°15′与20.15°的大小关系是5、图中共有________条线段,共有_______条射线,以点C 为端点的射线是____。

第四章平面图形及其位置关系测试题三

第四章平面图形及其位置关系测试题三

第四章 平面图形及其位置关系测试题三一、填空题:1. 我们平常看到沿平直公路架设的单根电缆,给我们以_______的感觉,吃饭用的筷子给我们以__________的形象,教师用的激光灯给我们以________的形象. 2. 如图9-1,AB ________AC+BC (填“<”、“>”或“=”),依据是____________. 3. 三条直线相交,有________个交点. 4. 图9-2中共有________个角.5. 对于同一平面内的直线a 、b 、c ,如果a ∥b ,c 与a 相交,那么c 与b 的位置关系是_____________.6. 7点整时,分针和时针之间的夹角度数是_________度.西东北西东南北1250°A BCDOA BAB图9-1 图9-2 图9-3 图9-4 7. 如图9-3,由点B 观察点A 的方向是____________________.8. 如果线段AB =5cm ,BC =3cm ,A 、B 、C 三点在同一条直线上,那么A 、C 两点间的距离是__________cm.9. 如图9-4,当图中∠1与∠2满足条件___________时,OA ⊥OB . 10. 如图9-5,利用表格画图.(1) 与AB 相互平行的线段CD ;(2) 与AB 互相垂直且垂足为B 的直线.二、选择题:11. 下列说法正确的是( )A. 一条直线就是一个平角B. 射线比直线短C. 过三点可以作一条直线D. 两点间的线段的长度叫两点间的距离 12. 过一条线段外一点画这条线段的垂线,垂足在( )A. 这条线段上B. 这条线段的端点上C. 这条线段的延长线上D. 以上都有可能13. 如图9-6,其中一定能相交的是( )A B C D图9-6abC EFO Ddc14. 如图9-7,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是( )A. 过两点只有一条直线B. 过有点只能作一条直线C. 经过一点只有一条直线垂直于已知直线D. 垂线段最短 15. 在同一平面内,直线a 、b 相交于点P ,a ⊥c ,则b 与c 的关系是( ) A. 平行 B. 相交 C. 重合 D. 平行或相交16. 已知AB =6cm ,P 点是到A 、B 两点等距离的点,则P A 的长度为( )A. 3cmB. 4cmC. 5cmD. 不能确定17. 已知OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( )A. 30°B. 150°C. 30°或150°D. 不同于以上答案 18. 比较20°15′与20.15°的大小,正确的是( )A. 20°15′>20.15°B. 20°15′=20.15°C. 20°15′<20.15°D. 不能确定19. 如图9-8,PO ⊥OR ,OQ ⊥RP ,能表示点到直线的距离的线段有( ) A. 二条 B. 三条C. 四条D. 五条20. 如图9-9,右边的四个图形中,不是用左边这幅七巧板拼成的是( )图9-7O 图9-8三、解答题:21. 如图9-10,一副三角尺的直角顶点重合,请指出图中相等的角.22. 在图9-11中,①延长线段BA 到D ,使AD =BC ,连结DC②在DC 上截取DE =AD ,连结AE③过点A 作AF ∥DC 交BC 于F23. 如图9-12,矩形的长为3cm ,宽为2cm ,用刻度尺作出每条边上的中点,并顺次连接它们,猜一猜能得到什么图形?24. 画图并回答如图9-13,请作出由A 地经过B 地去河边l 的最短路线.并回答 (1) 确定A 地到B 地路线的依据是什么?(2) 确定B 地到河边l 路线的依据是什么?AB C 图9-11 图9-12图9-10 A B CD E A B l图9-1325. 如图9-14,B 、C 两点把线段AD 分成2∶3∶4三部分,M 是AD 的中点,CD =8,求MC 的长.AB MC D图9-1426. 如图9-15,AB 、CD 相交于O ,且OD 平分∠AOF ,OE ⊥OD ,∠AOE =48°,求∠BOC 、∠EOF 的度数.27. 如图9-16,∠AOB 是直角.(1) 利用三角尺画出∠AOB 的平分线OC ;(2) 在OC 上任取一点P ,用三角尺作OA 、OB 的垂线,垂足分别为D 、E ; (3) 比较PD 、PE 的大小; (4) 在OC 上任取一点Q ,过点Q 作OA 、OB 的垂线,垂足分别为M 、N ; (5) 比较QM 、QN 的大小你会得到什么结论? 你的结论是:图9-16 A BA B C D E O图9-15 F平面图形及其位置关系测试题三参考答案1. 直线线段射线2. < 两点之间线段最短3. 1或34. 65. 相交6. 150°7. 南偏西50°(或西偏南40°)8. 2或89. ∠1+∠2=90°10. 略11. D 12. D 13. A 14. C 15. D 16. D 17. C 18. A 19. D 20. C21. ∠DCA=∠BCE,∠D=∠E22. 略23. 菱形24. ①两点之间线段最短②垂线段最短25. 126. 42°,132°27. 角平分线上的点到这个角的两边的距离相等28. 略。

北师版七年级数学上第四章 平面图形及其位置关系1-4练习

北师版七年级数学上第四章 平面图形及其位置关系1-4练习

1.线段、射线、直线习题精选一、选择题1.下列语句错误的是()A.画出3厘米长的直线B.点A在直线AB上C.两条直线相交,只有一个交点D.点A在直线l上和直线l经过点A意义一样2.经过三点中的任意两点能画直线()A.1条B.3条C.l条或3条D.无数条3.下列写法中,正确的是().A.直线ac,bd相交于点m B.直线AB,CD相交于点mC.直线ac,bd相交于点M D.直线AB,CD相交于点M4.如下图,下列四个语句中,叙述正确的是().A.点A在直线l上B.点B在直线l上C.点B在直线l内D.点D在直线l里5.平面内四点,任何三点都不在一条直线上,过每两点引一条直线共能引().A.3条B.4条C.5条D.6条6.下列说法错误的是().A.两条直线相交只一个交点B.无数条直线可经过同一点C.三条直线相交,有三个交点D.直线MN 和直线NM是同一条直线7.已知同一平面内的四点,过其中任意两点画直线,仅能画四条,则这四条的位置关系是().A.任意三点不在同一条直线上B.四点都不在同一直线上C.最多三点在一直线上D.三点在一直线上,第四点在直线外8.下图中表示正确的是().A.点a B.直线ab C.直线AB D.直线l9.下列语句中不正确的是()A.射线无法度量它的长度B.两条射线可能没有公共点C.直线没有端点D.线段AB可以向两方无限延伸10. 如图,下列两条线中能相交的是()11. 如图,共有线段()A.4条B.5条C.6条D.7条12. 如图中四个点,过这四个可画线段的条数为()A.4条B.5条C.6条D.7条13.下列说法正确的是().A.延长射线OA B.延长直线ABC.延长线段AB D.作直线AB=CD14. 下面的说法错误的是().A.直线AB与直线BA是同一条直线B.射BA与射线AB是同一条射线C.线段AB与线段BA表示同一条线段D.直线、射线、线段上都有无限多个点15. 三条直线两两相交的图形中,线段有()条.A.0 B.3 C.0或3 D.与交点个数相同二、填空题1.线段有_______个端点,直线_______端点;2.如图,直线a与b交于点_______,点A在直线_______上,又在直线_______外.图中共有_______条线段.3.木匠在木料上画线,先确定两个点的位置,就能把线画得很准,这是因为_______.4.课桌的棱长可以看做是一条_______两个车站之间的路程可以看做是一条_______。

北师大版数学七年级上册第四章平面图形 复习

北师大版数学七年级上册第四章平面图形 复习

则AC的长是( C )
A.2
B.8 C.2或8
D.15
.. . A C1 B
. C
m
数学思想:分类讨论
A.
(2)垂线段的性质
.
B
l
直线外一点与直线上各点连接的所有线段中,
垂线段最短. 简称:垂线段最短
七巧板的构成:
图案设计
1.把一根木条钉牢在墙壁上需要 2 个钉子,
根据是 两点确定一条直线
.
2.如图,军舰从港口沿OB方
向航行,它的方向是( D )
A.东偏南30°
B.南偏东60°
C.南偏西30°
西
1.七巧板游戏 2.图案设计
一.直线、射线、线段的联系以及它们的区别
名称 端点 可向几方 个数 延伸
线 段
2
不可 延伸

线1
1
长度是 否
可测量
可以
不行
图形
l
A
B
OM
符号 表示
线段AB 线段l 射线OM
直 线

2
不行
l
A
B
直线AB 直线l
1.如图,下列说法正确的有( C )
① 直线AB与直线BA是同一条直线; ② 射线AB与射线BA是同一条射线; ③ 线段AB与线段BA是同一条线段; ④ 图中有两条射线.
4.角的比较 1周角=2平角=4直角
5.角平分线的定义
从一个角的顶点引出的一条射线,把这个角 分成两个相等的角,这条射线叫做这个角的平分线.
推理格式:
B
AC 平分BAD
BAC = CAD
C
BAC = 1 BAD ,CAD = 1 BAD

贵州省贵阳市花溪二中七年级数学上册《第四章 平面图形及其位置关系(13)》教案 北师大版

贵州省贵阳市花溪二中七年级数学上册《第四章 平面图形及其位置关系(13)》教案 北师大版

教学目标:⒈在现实情境中理解线段、射线、直线等简单图形,感受图形世界的丰富多彩;⒉会说出线段、射线、直线的特征;⒊会用字母表示线段、射线、直线;⒋通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验.教学重点:通过操作活动,感受图形世界的丰富多彩,积累操作活动经验.教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题.教学过程:一、引入:一段棉线可近似地看作线段师生画出线段演示投影片1:①将线段向一个方向无限延长,就形成了______学生画射线②将线段向两个方向无限延长就形成了_______学生画直线二、小组讨论:①生活中,有哪些物体可以近似地看作线段、射线、直线?②线段、射线、直线,有哪些不同之处,有哪些相同之处?问题1:图中有几条线段?哪几条?“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

点的记法:用一个大写英文字母线段的记法:①用两个端点的字母来表示②用一个小写英文字母表示自己想办法表示射线,让学生充分讨论,并比较如何表示合理射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面。

直线的记法:①用直线上两个点来表示②用一个小写字母来表示如右图:我们可以说,点A、B在直线l上,点C不在直线l上或点C在外,也可以说成:直线l经过点A、点B,直线l经过点A、点B,直线l不经过点C三、随堂练习:⑴读下列语句,并按照下列语句画的图形①直线EF经过点C②点A在直线l外③过点O的直线a不经过点P⑵按图填空④点A、B、C__________(填“在”或“不在”)同一条直线上⑤点_______在直线a上,点____在直线b外,直线_____都经过点C。

介绍:直线a、b相交于点A⑵请过一点A画一条直线,可以画几条?过两点A、B呢?学生通过画图,得出结论:过一点可以画无数条直线。

经过两点有且只有一条直线。

⑶如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?为什么?(学生通过操作,回答)⑷你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?四、小结:①学生回忆今天这节课学过的内容②线段构成的美丽的图案,展示小制作五、作业:①阅读“读一读” P121②习题4课后反思:§4.2比较线段的长短教学目标:1.会从“数”和“形”的两个方面来比较线段的大小,能说出线段比较大小的结果;知道线段的和与差的意义。

平面图形及其位置关系

平面图形及其位置关系

平面图形及其位置关系
1、直线:
将线段向两个方向无限延伸就形成了直线,它有零个端点。


2、射线:
将线段向一个方向无限延伸就形成了射线,它有一个端点。

3、过两点有且只有一条直线。

4、两点之间所有连线中,线段最短;两点之间线段的长度,叫做这两点之间的
距离。


5、角的定义
静态定义:角是具有两条就有公共端点的射线组成,两条射线的公共端点是这个角的顶点
动态定义:角也可以看成是由一条射线绕着它的端点旋转而成的。

6、角平分线的定义:
从角的一个顶点引出一条射线,把这个角平分成两个相等的角,这条射线叫做这个角的平分线。

7、两个角的两条边互相平行时,这两个角和为180度或相等。

8、平行:
定义:同一平面内,不相交的两条线叫做平行。

画法:一、靠二、移三、画
性质:经过直线外一点,有且只有一条直线与这条直线平行
如果两条直线都与第三条直线平行,那么这两条直线互相平行
9、垂直:
定义:两条直线相交成直角,这两条直线互相垂直
垂足:互相垂直的两条直线的交点
性质:平面内过一点有且只有一条直线与已知直线垂直
垂线段最短。

10、直线,线段,射线:。

第四章 平面图形及其位置关系单元复习

平面图形及其位置关系知识总结1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线. 直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点. 利用线段的中点定义,可以得到下面的结论: (1)因为AM =BM =12AB ,所以M 是线段AB 的中点.(2)因为M 是线段AB 的中点,所以AM =BM =12AB 或AB =2AM =2BM .3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角. 4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.平行线在同一个平面内,不相交的两条直线叫做平行线.平行的关系是相互的,如果AB ∥CD ,则CD ∥AB ,其中符号“∥”读作“平行”. 6.两条直线垂直当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,其交点叫做垂足,•如直线AB •与直线CD 垂直,记作AB ⊥CD .7.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.8.点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.1.直线的性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”.2.线段的性质:两点之间的所有连线中,线段最短.3.与平行线有关的一些性质(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.4.垂线性质(1)经过一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.平面图形及其位置关系经典例题1.考查学生发现问题、解决问题的能力.【例1】(2003年黑龙江)从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有()A.4种B.6种C.10种D.12种【例2】(无锡)L1与L2是同一平面内的两条相交直线,它们有1个交点,•如果在这个平面内,再画第三条直线L3,那么这3条直线最多可有_______个交点;•如果在这个平面内再画第4条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想在同一平面内,6条直线最多可有_______个交点,n(n为大于1的整数)条直线最多可有_______个交点(用含n的代数式表示).2.线段长度的计算,线段的中点【例3】某大公司员工分别住在A,B,C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()3.角的度量与换算【例4】(山西)时钟在3点半时,它的时针和分针所成的锐角是()A.70°B.75°C.85°D.90°4.七巧板问题在中考中主要考查图形的拼摆.【例5】(2002年济南)如图1,用一块边长为22的正方形ABCD厚纸板,•按照下面做法,做了一套七巧板:作对角线AC,分别取AB、BC中点E、F,连结EF;作DG⊥EF 于G,•交AC于H;过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K;将正方形ABCE沿画出的线剪开.现用它拼出一座桥(如图2),这座桥的阴影部分的面积是().(图1)(图2)A.8 B.6 C.4 D.5平面图形及其位置关系解题方法与技巧方法1:见比设元【例1】如图所示,B、C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=9,求线段MC的长.【分析】题中给出了线段的长度比,那么设每一分为K是常见的解法.【解】∵AB:BC:CD=2:4:3∴设AB=2K BC=4K CD=3K∴AD=3K+2K+4K=9K∵CD=9∴3K=9 ∴K=3∴AB=6 BC=12 AD=27∵M为AD中点,∴MD=12AD=12×27=13.5∴MC=MD-CD=13.5-9=4.5【规律总结】不论是有关线段还是有关角的问题,只要有比值,就设未知数.方法2:利用线段的和差判断三点共线【例2】判断以下三点A、B、C是否共线.(1)有三点A、B、C,且AB=10cm,AC=2cm,CB=8cm;(2)AB=10cm,AC=3cm,CB=9cm.【解】(1)∵AB=10cm,AC=2cm,CB=8cm,∴AB=AC+CB∴A、C、B三点在同一条直线上(2)∵AB=10cm,AC=3cm,CB=9cm,∴AB≠AC+CB∴A、C、B三点不共线方法3:寻找规律(一)数直线条数:过任三点不在同一直线上的n点一共可画(1)2n n-条直线.(二)数n个人两两握手能握(1)2n n-次.(三)数线段条数:线段上有n个点(包括线段两个端点)时,共有(1)2n n-条线段.(四)数角的个数:以0为端点引n条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n-.(五)数交点个数:n条直线最多有(1)2n n-个交点.(六)数对顶角对数:n条直线两两相交有n(n-1)对对顶角.(七)数直线分平面的份数:平面内n条直线最多将平面分成1+(1)2n n-个部分.【例3】同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条B.4条C.6条D.1条或4条或6条【例4】一张饼上切七刀,最多可得到几块饼.【分析】从原始状态开始,当切1刀时,一张饼被分成两部分;当切2刀时,一张饼最多可被分成四部分;当切了3刀时,一张饼被最多分成七部分;……若用n•表示切的刀数,饼被最多分成S部分.则:n=1时S=2;n=2时S=4;n=3时,S=7;n=4时,S=11.【解】设一张饼被切n刀,最多分成S部分,如图2-6可知:n=1时S=1+1n=2时S=1+1+2n=3时S=1+1+2+3n=4时S=1+1+2+3+4……则S=1+1+2+3+4+…+n=1+(1)2n n-∴当n=7时,S=1+782⨯=29答:当上张饼上切7切时,最多可得到29块饼.【规律总结】许多规律性问题应回到原始状态,按照从特殊到一般的方法寻找规律,再按照从一般到特殊的方法应用规律解决问题.方法4:钟表问题【例5】钟表现在是1点15分,分针再转多少度,时针与分针首次重合.【分析】分针1分钟走(36060)°=6°,时针1分钟走(3060)°=0.5°(分针1小时走一圈,即60分钟走360°,时针1小时走一格,即60分钟走30°).因此,分针速度是时针速度的12倍,故设分针走12x°,时针走x°时时针与分针首次重合,因为从1点整到1点15°,•分针走一圈的14,此时时针走一格的14,因此1点15分时时针与分针夹角(1+34)×30°=52.5°.•列方程可求解.【解】设时针走x°时,时针与分针首次重合.依题意,得:12x-x=360-(74×30)解得:x=61522,∴12x=369011=335511答:分针再转335511度,时针与分针首次重合.方法5:最优策略问题直线上有两点(如图)A1和A2,要在直线上找一点P,使A1、A2到P的距离之和最小,则P点可放在A1、A2之间任意位置(包括A1和A2).此时P A1+P A2=A1A2.直线上有三点A1、A2、A3(如图).要找到一点P,使P A1+P A2+P A3的和最小.不妨设P在A1、A2之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A2、A3之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A1上,则P A1+P A2+P A3=A1A3+A1A2;若P在A2上,则P A1+P A2+P A3=A1A3.若P在A3上,则P A1+P A2+P A3=A1A3+A2+A3结论:当P选在A2点时P A2+P A2+P A3的和最小,其最小值为A1A3.不难发现,当直线上有四个点时,如图所示.P点选在A2A3上(包括端点).•可使P 到A1、A2、A3、A4的距离之和最小.其最小值为A1A4+A2A3.当直线上有五个点时,如图所示P点选在A3上,可使P到A1、A2、A3、A4、A5的距离之和最小,其最小值为A1A5+A2A4.【规律总结】当直线上有偶数个点时,P应选在最中间两点之间(可与这两点重合);当直线上有奇数个点时,P点与最中间的点重合,可使P到各点距离之和最小.。

第四章基本平面图形4.角的比较

第四章基本平面图形4.角的比较浑南区东湖中学樊华教学分析【教材分析】本节课是第四章《平面图形及其位置关系》的第四节,学生对点、线、角这些基本的几何元素已具有一定的认知水平,经历了比较线段和角的表示等数学活动后,学生可以通过类别的方法,进一步认识角的特性,即通过“叠合法”、“度量法”对角的大小进行的比较,认识角平分线,用数形结合思想加深对角的认识,也是进一步学习平面几何知识的基础,本节课在教材中处于非常重要的位置,不仅在知识上具有承上启下的作用,也为今后学生认识空间与图形提供了方法和依据.【课标要求】理解角的概念,能比较角的大小,认识度、分、秒,会对度分秒进行简单的换算,并会计算角的和、差。

【教学目标】知识技能:能比较角的大小,能估计一个角大小,在操作活动中认识角的平分线,能画出一个角的平分线。

数学思考:通过类比线段长短的比较方法,合作交流、动手操作等数学探究过程,了解角的大小比较的方法策略.问题解决:学习开始使用几何工具操作方法,发展几何图形意识和探究意识.情感态度:在解决问题的过程中体验动手操作、合作交流、探究解决的学习过程,激发学生解决问题的积极性和主动性,培养学生应用数学的意识.【教学重难点】重点:探求角的大小比较的方法,角平分线的概念。

难点:利用数形结合思想,动态思想解决数学问题。

【教学准备】几何画板,PPt,实物图片【我的思考】鉴于教材特点及初一学生的认知水平,我选用引导发现法和直观演示法,引导发现法属于启发式教学,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,调动学生动手、动脑,并经历个体思考、小组合作、全班交流的合作化学习过程,培养学生的想象能力和直觉思维能力.使学生充分经历知识的形成过程和应用过程。

在此过程中要充分体现学生的主体地位,通过师生互动、生生互动,使学生的自主性与合作性得到较好的发展,教学目标得到很好的落实.本课又是继线段长短的比较,角之后的内容,是进一步认识角,并认识两角之间大小关系,并为寻找角之间的其他数量关系打下基础.同时也为以后的学习做好铺垫.从知识的准备上,学生已认识了角,有了这个基础,对于本课认识做好了铺垫;从难度上,难度不大,学生也能学会;从知识呈现体系,也是很恰当地;从应用上,学生以后经常找角的数量关系,应用价值很大.教学设计【教学过程】一、创设情境,引入新课教师活动:向同学们展示足球射门动画,让学生观察哪一个位置更容易射门。

第四章《平面图形及其位置关系》复习总结

第四章《平⾯图形及其位置关系》复习总结第四章《平⾯图形及其位置关系》复习⼀、线段、射线、直线意义:性质:两点之间,线段最短表⽰:线段AB (或BA ),线段b线段⽐较⼤⼩:度量法,叠合法两点间的距离重要概念线段的中点意义:射线表⽰:射线OA意义:直线表⽰:直线AB (或BA ),直线m性质:两点确定⼀条直线注意:1.表⽰线段,射线,直线时,在字母前要注明“线段”“射线”或“直线”;2.线段,射线都可看作直线的⼀部分;3.射线,直线没有长度,线段有长度;4.⽤两个⼤写字母表⽰线段或直线时,两个字母没有顺序性,但表⽰射线的两个⼤写字母必须把端点字母放在前⾯;5.线段可向两⽅延长:延长线段AB (反向延长线段BA ),延长线段BA (反向延长线段AB );6.射线只能反向延长;7.端点相同,延伸⽅向相同的射线是同⼀条射线;8.AM=MB 并不能说明点M 是线段AB 的中点,需添上条件“M 在线段AB 上”;9.“距离”与“线段”、“路程”不同.结论:平⾯内n 条直线,最多..可有()21-n n 个交点;过平⾯上n 个点中的两个点,最多..可画()21-n n 条直线;n 个班进⾏单循环⽐赛,共⽐赛()21-n n 场; n 个⼈相互握⼿的总次数为()21-n n 次;D CB A O B A 直线上有n 个点,则⼀共有()21-n n 条线段;有公共端点的n 条射线共可组成()21-n n 个⾓;平⾯内n 条直线最多..可将平⾯分成222++n n 个部分. 练习:1.分别画出下列图形:⑴直线l 经过点C ,D ;⑵点P 在直线m 上,但在直线n 外;⑶取不在同⼀直线上的三点A ,B ,C ,画直线AB ,线段BC ,射线CA ;⑷取不在同⼀直线上的三点P ,Q ,R ,①连接PQ ,并延长⾄E ,②连接RQ 并反向延长⾄F ,③过点R 画射线PR.2.判断题⑴直线l 上有两个端点;⑵经过A ,B 两点的线段只有⼀条;⑶延长线段AB 到C ,使AC=BC ;⑷反向延长线段BC ⾄A ,使AB=BC ;⑸过两点有且只有⼀条直线;⑹直线上的任意两点都可以表⽰这条直线;⑺两条直线相交,只有⼀个交点;⑻三条直线两两相交,共有三个交点;⑼射线AC 在直线AB 上;⑽直线AB 与直线BA 是指同⼀条直线.3.根据下图,下列说法正确的有⑴点B 在线段AC 上;⑵直线AB 经过点C ;⑶点D 不在直线AC 上;⑷点A 在线段BC 的延长线上.4.观察下图,并判断对错⑴线段OA 与线段AO 是同⼀条线段;⑵线段OA 与线段OB 是同⼀条线段;⑶直线OA 与线段BO 是同⼀条直线;⑷射线OA 与射线AO 是同⼀条射线;DC B A m C B A ⑸射线OA 与射线OB 是同⼀条射线;⑹射线OB 与射线AB 是同⼀条射线.5.点与直线的位置关系有种,分别是和 .6.如图,直线上有四点,则图中有条直线,条射线,条线段.7.如果线段AB=5cm ,BC=3cm ,那么A ,C 两点的距离是()A.8cmB.2cmC.4cmD.⽆法确定8.两根⽊条,⼀根长60cm ,⼀根长100cm ,将它们的⼀端重合,顺次放在同⼀条直线上,此时两根⽊条的中点间的距离是cm.9.已知线段m ,⽤圆规和直尺作⼀条线段 AB ,使AB=2m.思考题如图所⽰,某单位有三个住宅区A ,B ,C (在⼀条直线上)分别住有职⼯30⼈,25⼈,10⼈,已知AB=100m,BC=200m. 该单位为⽅便职⼯上下班,单位的接送车打算在AC 之间只设⼀个停靠点P ,为使所有的⼈步⾏到停靠点的路程之和最短,那么停靠点P 的位置应设在() A. A 点 B. B 点C. AB 之间D. BC 之间⼆、⾓静态定义动态相关概念:直⾓,平⾓,周⾓,锐⾓,钝⾓⾓⾓的平分线表⽰法:∠A ,∠AOB ,∠1,∠α度量与计算:1°=60′=3600″,1′=60″⼤⼩⽐较:度量法,叠合法注意:1.构成⾓的两个要素是顶点、两边,两边都是射线,⾓的⼤⼩与两边的长短⽆关,只与两边张开的程度有关;2.在初中阶段,如⽆特别说明,所涉及的⾓均指⼩于平⾓的⾓.C D B AE DC B AO 3.不管⽤哪种⽅法表⽰⾓,⾸先要写上符号“∠”,注意区分“∠”与“<”;4.⽤⼀个⼤写字母表⽰⾓,只适⽤于顶点处只有⼀个⾓的情形5.⾓的平分线是射线,不是直线、线段6.⽤⼀付三⾓板可以画出15°的整数倍的⾓7.如果⼀个⾓的两边分别平⾏于另⼀个⾓的两边,那么这两个⾓相等或互补.练习;1.判断⑴平⾓是⼀条直线;⑵⼀条射线是⼀个周⾓;⑶两条射线组成的图形叫做⾓;⑷两边成⼀直线的⾓是平⾓;⑸有公共端点的两条线段组成的图形叫做⾓;⑹⼀条射线旋转得到⾓;⑺⼀个钝⾓与⼀个锐⾓的差⼀定是锐⾓;⑻两个锐⾓的和⼀定⼤于90°;⑼若∠AOC=∠BOC ,则OC 是∠AOB 的平分线;⑽若∠AOC=21∠AOB ,则OC 是∠AOB 的平分线. 2.如图所⽰,图中⼩于平⾓的⾓有个.3.灯塔A 在灯塔B 的南偏东70°,A 、B 相距4海⾥,轮船C 在灯塔B 的正东,在灯塔A 的北偏东40°,试画图确定轮船C 的位置.4.如图,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE=20°,∠AOD=40°,求∠DOE 的度数.5.48.26°= ° ′″ 56°25′12″= °6.⼀条船沿北偏东60°的⽅向航⾏⾄某地,然后依原航线返回,船返回时正确的⽅向是 .7.已知∠1,∠2都是钝⾓,甲,⼄,丙,丁四⼈计算()2161∠+∠的结果依次是28°,48°,88°,60°,其中只有⼀个结果正确,那么正确的结果是()A.甲B.⼄C.丙D.丁三、位置定义:同⼀平⾯内,不相交的两条直线叫做平⾏线表⽰:AB∥CD,m∥n平⾏画法:三⾓板,量⾓器,直尺圆规,⽅格纸等经过直线外⼀点,有且只有⼀条直线平⾏于已知直线性质:位置平⾏与同⼀直线的两直线互相平⾏定义:相关概念:点到直线的距离垂直表⽰:AB⊥CD,m⊥n画法:三⾓板,量⾓器,直尺圆规,⽅格纸等性质:同⼀平⾯内,过⼀点有且只有⼀条直线垂直于已知直线注意:1.平⾏线是相互的,AB∥CD,也可记作CD∥AB;2.⼀条直线有⽆数条直线与其平⾏,但过直线外⼀点却只有⼀条;3.点到直线的距离是⼀个数量,不是指图形(垂线段),⽽是指垂线段的长度练习:1.判断对错⑴不相交的两条直线是平⾏线;⑵同⼀平⾯内,不相交的两条射线叫做平⾏线;⑶同⼀平⾯内,两条直线不相交就重合;⑷同⼀平⾯内,没有公共点的两条直线是平⾏线;⑸过平⾯内⼀点有且只有⼀条直线与已知直线平⾏;⑹两条线段AB,CD没有交点,那么直线AB与直线CD平⾏;⑺平⾏于同⼀直线的两条直线互相平⾏;⑻同⼀平⾯内,不相交的两条射线互相平⾏;⑼同⼀平⾯内,不重合的两条直线的位置关系只有相交、平⾏两种;⑽同⼀平⾯内,经过⼀个已知点能画⼀条直线和已知直线垂直;⑾⼀条直线的垂线可以有⽆数条;⑿过射线的端点与射线垂直的直线只有⼀条;⒀过直线外⼀点和直线上⼀点这两个已知点,可以画已知直线的垂线.2.对直线a,b,c ,若a∥b,a与c相交,那么b与c是什么位置关系?说明理由. 3.在同⼀平⾯内有三条直线,如果要使其中有且只有两条直线平⾏,那么它们()A.没有交点 B.只有⼀个交点 C.有两个交点 D.有三个交点D C B A D C B A OP N M B A N M O C B A 4.同⼀平⾯内的四条直线⽆论其位置关系如何,它们的交点个数不可能有()A.2个B.3个C.4个D.5个5.⼀个三棱柱中有多少对平⾏线?6.在平⾯上有三条直线a ,b ,c ,它们之间有哪⼏种可能的位置关系?请画图说明.7.已知平⾏四边形ABCD 如图,过A 点分别作出BC ,DC 边上的⾼AE ,AF.8.如图所⽰,下⾯结论中正确的有个⑴线段AC 与线段BC 互相垂直;⑵线段CD 与线段BC 互相垂直;⑶点C 到AB 的距离是线段CD ;⑷线段AC 是A 到BC 的距离;⑸线段AC 的长度是点A 到BC 的距离.9.点P 为直线l 外⼀点,点A 、B 、C 为直线l 上三点:PA=4,PB=5,PC=2,则点P 到直线l 的距离为()A .4B .2C .⼩于2D .不⼤于210.如图,已知点O 在直线AB 上,OP ⊥MN 于点P ,那么()A .线段OP 的长度叫做点O 到直线MN 的距离;B .线段OP 的长度叫做点P 到直线AB 的距离;C .线段OP 叫做直线AB 到直线MN 的距离;D .直线OP 的长度叫做点O 与P 两点间的距离. 11.画⼀条线段的垂线,垂⾜在()A .线段上B .线段的端点C .线段的延长线上D .以上都可能12.七巧板通常是由个直⾓三⾓形,个正⽅形和个平⾏四边形组成.13.⽤⼀副七巧板分别拼出⑴⼀个等腰梯形;⑵长⽅形;⑶平⾏四边形,并在图中找出⼀个锐⾓、⼀个直⾓、⼀个钝⾓、⼀对平⾏线段、⼀对互相垂直的线段.14.点M 为线段AB 的三等分点,且AM=6,求AB 的长.15.如图,点O 是直线AB 上⼀点,过O 画射线OC ,OM ,ON ,且OM 平分∠AOC ,ON 平分∠BOC ,那么射线OM ,ON 之间有什么位置关系?说明你的理由.。

第四章《平面图形及其位置关系》测试题(北师大版)


( ) 手验 证一 下你 的结 论. 果验 证 的结果 与观 察的结 果不 同 , 有何 感想 ? 2动 如 你







图 8

图9
图 1 O
1 . 图 9, 段 A日=1 c , 6如 线 2 m O是 A日上 的 任 一 点 , C是 O 的 中 点 , D是 OB的 中 点 , C 点 A 点 则 D等
于 ( )
A.c 6 m
B 8 m .c
C.0 m 1c
维普资讯
中 学 课 程 辅
第四 章《 面 图形 平
其健置关系》 试题 ,
( 师 大版 ) 北

4 4' -- "
◎福 建
周 奕 生


填 空题 ( 题3 , 3分 ) 每 分 共 0
— —
1要 在 墙 壁 上 固 定 一 根 横 木 条 , 少 需 要 . 至
度 ;81 一 2 .5 度
— —



秒.
— — .
9 如 图 5, A 上 OB, . O OC上EF, AOE= 0 , U_BO 4 。贝 / C=
1. 图6 的小 天 鹅 ( 图② ) 由七 巧板 ( 图①) 成 的 , 果 七巧 板 的面积 为 1 , 小天 0如 中 即 是 即 拼 如 6则


1 . 跳 远 比 赛 时 。 新 从 点 A起 跳 。 在 点 日处 ( 图 7) 如 果 A日等 于 2 , 小 新 这 次 跳 远 的 2在 小 落 如 , 米 则
维普资讯
学 课 程 辅 导
( A. 米 2 B. 于 2米 大 C. 于 2米 小 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1情景再现:1.田径运动中百米比赛的跑道是线段,起点与终点是它的两个端点.线段有两个端点.2.太阳的光线近似看成从一点出发的无数条射线.射线有一个端点.3.我们在晴朗的夜空中,有时能发现流星,它的运行轨迹可以近似看成直线.直线没有端点.做一做1.下图中哪个是线段,哪个是射线,哪个是直线?2.你还能发现可近似看作射线、线段、直线的实例吗? 一.填空题桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据什么道理 .3.如图,点A 在直线m 上,也可以说直线m 经过点 A.点B 、C 在直线外,也可以说____________.二.选择题4.下列各直线的表示法中,正确的是( ) A 直线A B.直线AB C 直线ab D.直线Ab5.下列说法不正确的是( ) .A.直线AB 与直线BA 是同一条直线B.射线AB 与射线BA 是同一条射线C.线段AB 与线段BA 是同一条线段D.线段有两个端点,射线有一个端点,直线没有端点6.下列说法正确的是( )A . 射线比直线短 B. 两点确定一条直线 C .经过三点只能作一条直线 D. 两条射线的长度的和等于直线的长度7.如图所示,A 、B 、C 、D 四个图形中各有一条射线和一条线段,它们能相交的是( )三.解答题8.(1) 如图,用绿色笔画出直线AB, 再用棕色笔画出线段BA, 最后用红笔画出线段AB 想一想:线段BA 与线段AB 是同一条线段吗?(2)如图,点A 、B 、C 、D 在一条直线上.用绿色笔画出射线AB, 再用棕色笔画出射线BA,最后分别用蓝笔和红笔画出射线BC 和射线DC. 理解射线AB 与射线BA 为什么不是同一射线,而射线BA 与射线BC 却是同一条射线.想一想:射线BC 与射线DC 是同一条射线吗?9. 读句画图:如图所示,已知平面上四个点 (1)画直线AB ; (2)画线段AC ;(3)画射线AD、DC、CB ; (4)如图,指出图中有_____条线段,有___ 条射线并写出其中能用图中字母表示的线段和射线 .10、请你做裁判:过三点中的两点作直线,小明说有一条,小林说有三条,小红说不是一条就是三条,你认为他们三人谁的说法正确?为什么?§4.1平面图形及其位置ABCm ·· ·AB · ·A B C D · · ··一、情景再现:1.连结_______的_______叫作两点间的距离.2.点B把线段AC分成两条相等的线段,点B 就叫做线段AC的_______,这时,有AB=_______,AC=_______BC,AB=BC=_______AC.点B和点C把线段AD分成三条相等的线段,则点B和点C就叫做AD 的_______.思考:若MA=MB,则M是线段AB的中点.()(填“√”“×”)3.比较右图中二人的身高,我们有_______种方法.一种为直接用卷尺量出,另一种可以让两人站在一块平地上,再量出差.这两种方法都是把身高看成一条_______.方法(1)是直接量出线段的_______,再作比较.方法(2)是把两条线段的一端_______,再观察另一个_______.二、填空题1.如图,点C分AB为2∶3,点D分AB为1∶4,若AB为 5 cm,则AC=_______cm,BD=_______cm,CD=_______cm.2.下面线段中,_______最长,_______最短.按从长到短的顺序用“>”号排列如下:3.若线段AB=a,C是线段AB上任一点,MN分别是AC、BC的中点,则MN=_____+_____=_____AC+_____BC=_____. 4.如图所示,小明到小颖家有三条路,小明想尽快到小颖家请你帮他选条线路. 三、比较下列各组线段的长短(1)线段OA与OB. (2)线段AB与AD.(3)线段AB、BC与AC.四、解答题1.已知两条线段的差是10 cm,这两条线段的比是2∶3,求这两条线段的长.2.在直线AB上,有AB=5 cm,BC=3 cm,求AC的长.解:(1)当C在线段AB上时,AC=_______.(2)当C在线段AB的延长线上时,AC=_______.3、如图:这是A、B两地之间的公路,在公路工程改造计划时,为使A、B两地行程最短,应如何设计线路?在图中画出.并说明你的理由.4.两根木条,一根长80cm, 一根长130cm,将它们的一端重合,顺次放在同一条直线上,此时两根木条的中点间的距离是多少?§4.2平面图形及其位置23[例选](1)57.32°=___度_____分____秒.(2)27°14′24″=__度.分析:从大的单位化为小的单位用乘法,像(1)题,反之用除法,如(2).57.32°=57°+0.32°=57°+60′×0.32 =57°+19.2′=57°+19′+0.2′ =57°+19′+60″×0.2 =57°19′12″27°14′24″=27°14′+24″÷60° =27°14′+0.4′=27°+14.4′ =27°+14.4÷60=27°+0.24°=27.24° 一、填空题1.45°=_____直角=______平角=_____周角.2.∠α+∠β=90°,且∠α=2∠β,则∠α=___________,∠β=_________.3.0.5°=_______′=_______″; 1800″=_______°=_______′.4.(601)°=_______′=_______″,32.81°=_______°_______′_______″. 5.时钟的时针三小时旋转的角度是_______,分针三分钟旋转的 角度是_______. 6.如图,锐角的个 数共有_______个. 二、判断题1.∠1是钝角,则21∠1一定是锐角. ( )2.图中∠CAB 也可表 示成∠A .( )3.两条射线组成的图形叫做角. ( )4.两条直线相交形成的图形叫做角. ( )5.射线绕它上面一点旋转形成的图形叫做( ) 三、∠AOB 的度数与时钟4:00整时时针与分针所成的角度相同,那么∠AOB =___°,21∠AOB =_ °,90°-31∠AOB =90°-__°=_ _°.四、解答题1.两角差是36°,且它们的度数比是3∶2,则这两角的和是多少?解法一:设这两角度数分别为(3x )°和(2x )°,则根据题意列方程为:解方程:__________________________, x =____________,∴3x +2x =______________.解法二:设这两个角的度数和为x °,则这两个角分别为_______和_______,根据题意列方程为:_______________________________解方程_____________________________ ∴这两角的和是____________°.2.请将图中的角用不同方法表示出来,并填写下表:3.小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,问小亮出发时 和到家时时针和分针的夹角各为多少度.4.如图,用字母A 、B 、C 表示∠α、∠β.5.三角板如下图所示放置,在图上加弧线的角为多少度?6. 请估计下面角的大小,然后再用量角器测量.§4.3平面图形及其位置4一、填空题1.由_______的_______射线组成的图形叫做角.2.一条以一个角的_______为_______的射线把这个角分成_______的角,这条射线叫做这个角的_______.3.一副三角板的六个角各是_______、_______、_______、_______、_______、_______.4.一个周角是一个平角的_________倍,一个平角是一个直角的_________倍.5.根据右图,比较∠AOC 、∠BOD 、∠BOC 、∠COD 、∠AOD 的大小,它们从小到大排列为___________. 二、判断题1.一条线就是一个平角.( )2.从一个角的顶点出发,把它分成两个角的直线叫做这个角的平分线.( )3.一个角的两边越长,这个角就越大.( ) 三、读图填空1.如下左图,∠BDC =_______+_______,∠CDA =_______-_______.2.如上右图,OC ⊥AB ,OE 为∠COB 的平分线,∠AOE 的度数为_______.3.如下左图,BD 与CE 分别是∠ABC 和∠ACB 的平分线,如果∠DBC =∠ECB ,那么∠ABC =∠ACB 吗?_______.4.如上右图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,若∠AOC =70°,∠COE =40°,那么∠BOD =_______°. 四、解答题: 1、做一做:观察一下这副三角板每一个角的度数分别是多少度?下面是用三角板拼成的一些角,请你判断一下图中所示的角的度数,将它们的度数分别填在图下的括号中.你还能拼出其他度数的角吗?试一试.2、 如图,OA 是表示北偏东30°方向的一条射线,仿照这条射线画出表示下列方向的射线:(1) 南偏东25°; (2) 北偏西60°3.给你一张长方形纸片,不准使用其它工具,你能折出22.5°的角吗?亲手做一做,再和你的同学比一比.4.如图,点O 在直线AC 上,画出∠COB 的平分线OD 。

若∠AOB =55°,求∠AOD 的度数。

§4.4.1平面图形及其位置5一、填空题 1.如图1所示,能用一个字母表示的角有_____个,以A 为顶点的角有_____个,图中所有的角有_____个.2.如图2,∠AOC =∠COD =∠BOD ,则OD 平分____,OC平分___,32∠AOB =______=______.3.如图3、把一根小棒OC 一端钉在点O ,旋转小木棒,使它落在不同的位置上形成不同的角,其中∠AOC 为____,∠AOD 为____,∠AOE 为____,木棒转到OB 时形成的角为____.(回答钝角、锐角、直角、平角)4.时间为三点半时,钟表时针和分针所成的角为______,由2点到7点半,时针转过的角度为______.5.如图4,∠1=∠2,则∠1+∠3=______.6.已知五角星的五个顶点在同一圆上,且均分布,五角星的中心是这个圆的圆心,则圆心与两个相邻顶点的连线,构成的角度为______.7.如图5,AOB 为一直线,OC 、OD 、OE 是射线,则图中大于0°小于180°的角有__________个.8.如果一个角的度数为n ,则它的补角为______,余角为______.9.∠α的补角为125°,∠β的余角为37°,则α、β的大小关系为α__________β. 二、选择题10.一个角等于它的补角的5倍,那么这个角的补角的余角是( )A.30°B.60°C.45°D.150° 11.两个锐角的和( ) A.一定是锐角 B.一定是钝角 C.一定是直角 D.以上三种情况都有可能 12.互为补角的两个角度比是3∶2,这两个角是( )A.108°,72°B.95°,85°C.108°,80°D.110°,70° 13.下列各角中是钝角的为( ) A.41周角B.65平角C.32直角 D.31直角14.如果角α和角β互为余角,角α与角γ互为补角,角β和角γ的和等于周角的31,那么此三个角分别为( )A.75°,15°,105°B.60°,30°, 120°C.50°, 30°,130°D.70°, 20°, 110° 15.如图6,图形表示的是( ) A.直线 B.射线C.平角 D.周角16.船的航向从正北按顺时针方向转到东南方向,它转了( )A.135°B.225°C.180°D.90° 17.有两个角,它们的比为7∶3,它们的差为72°,则这两个角的关系是( )A.互为余角B.互为补角C.相等D.以上答案都不对 三、解答题18.四个角的和是180°,其中有三个角相等,且都是第四个角的32,求这四个角.19.如下左图,已知∠AOC =∠BOD =75°,∠BOC =30°,求∠AOD.20.如上右图,已知O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,求∠DOE 的度数.§4.4.2平面图形及其位置6一、选择题1.下列说法中正确的是( )A.如果同一平面内的两条线段不相交,那么这两条线所在直线互相平行B.不相交的两条直线一定是平行线C.同一平面内两条射线不相交,则这两条射线互相平行D.同一平面内有两条直线不相交,这两条直线一定是平行线2.同一平面内有三条直线,如果只有两条平行,那么它们交点的个数为( )A.0B.1C.2D.3 3.下列说法错误的是( )A.直线a ∥b ,若c 与a 相交,则b 与c 也相交B.直线a 与b 相交,c 与a 相交,则b ∥cC.直线a ∥b ,b ∥c ,则a ∥cD.直线AB 与CD 平行,则AB 上所有点都在CD 同侧4.如右图,过C 点作线段AB 的平行线,说法正确的是( )A.不能作B.只能作一条C.能作两条D.能作无数条5.如果直线a ∥b ,b ∥c ,那么a ∥c ,这个推理的根据是( )A.等量代换B.平行线定义C.经过直线外一点,有且只有一条直线与这条直线平行D.平行于同一直线的两直线平行 二、判断题1.一条直线有无数条平行线.( )2.过直线外一点可以作无数条直线与已知直线平行.( )3.两条直线不相交,就平行.( ) 三、观察图形,填空 右图长方体中,与棱AB 平行的棱有__________.与棱AA ′平行的棱有___________. 四、读下列语句作图 (1)任意作一个∠AOB . (2)在角内部取一点P .(3)过P 分别作PQ ∥OA ,PM ∥OB . (4)若∠AOB =30°,猜想∠MPQ 是多少度?五、解答题:1.按如图所示的方法将圆柱切开,所得的截面中有没有互相平行的线段?2.用三角尺和直尺画平行线.(1)过点A 画MN ∥BC (如图(1))(2)过点P 画PE ∥OA ,交OB 于点E ;画PH ∥OB ,交OA 于点H (图(2))(3)过点C 画CE ∥DA ,与AB 交于点E ;过点C 画CF ∥DB ,与AB 的延长线交于点F (图(3)).§4.5平面图形及其位置7一、填空题1.两直线l 1与l 2平行可表示为__________.2.过一点作已知直线的垂线,能作且只能作__________条,过__________作已知直线的平行线,能作且只能作一条.3.平行于同一直线的两条直线__________,垂直于同一直线的两条直线__________.4.如图1所示的长方体中,平行于AB 的棱有__________条,垂直于AB 的棱有______条. 图15.如下图,a 代表水面,b 代表三名选手从十米跳台入水示意图,比赛结果,图(1)水花最小,得分最高,由此我们可得出结论,当入水轨迹与水面__________时,无水花溅起得分最高.6.运动会上,甲乙两名同学测得小明的跳远成绩分别为PA =5.52米,PB =5.13米,则小明的真实成绩为__________米.7.垂线与垂线段的区别是垂线段具有______. 8.如图4,CD ⊥OB 于D ,EF ⊥OA 于F ,则C 到OB 的距离是______,E 到OA 的距离是______,O 到CD 的距离是______,O到EF 的距离是______.9.一条直线与两条平行直线中的一条相交,那么与另一条必__________. 10.如图5,直角梯形ABCD 中,相互平行的直线有__________对,相互垂直的直线有______对.11.垂直于一条线段并且平分这条线段的直线叫这条线段的中垂线,一条线段的垂线有__________条,中垂线有__________条.二、选择题12.给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是( )A.能B.不能C.有的能有的不能D.无法确定13.如图6,过点P 作直线l 的垂线和斜线,叙述正确的是( ) A.都能作且只能作一条B.垂线能作且只能作一条,斜线可作无数条C.垂线能作两条,斜线可作无数条D.均可作无数条14.如图7,OC ⊥AB ,∠COD =45°,则图中互为补角的角共有( )A.1对B.2对C.3对D.4对 15.以下结论正确的是( ) A.不相交的两条线段叫平行线段B.过一点有且只有一条直线与已知直线平行C.若a ⊥c ,b ⊥c ,则a ⊥bD.同一平面内,如果两条线段不相交,那它们也不一定平行 16.运动场上,跳高横杆与地面的关系属于( ) A.直线与直线平行 B.直线与直线垂直 C.直线与平面平行 D.直线与平面垂直 17.在同一平面内的三条直线,如果要使其中的两条且只有两条平行,那么它们只能( )A.有一个交点B.有两个交点C.有三个交点D.没有交点18.如果l 1∥l 2,l 2∥l 3,l 3∥l 4,那么l 1与l 4的关系是( )A.平行B.相交C.重合D.不能确定 三、解答题19.一测量员从点A 出发,行走100米到点B ,然后向左转90°,再走100米到C 点,再左转90°,行走100米到D 点,那么AB 与CD 平行吗?请画出示意图.20.河边有一村庄(近似看作点A ),如果在河岸上建一码头(近似看作点B ),使村庄的人到码头最近,应如何作?§4.6平面图形及其位置8一、填空题1、如下图,是七巧板拼成的狐狸图案,仔细观察后填空:⑴∠FCD=______,∠CAB=______,∠GFC=_____ ⑵线段BD 与线段CE 的位置关系是______,线段AC 与线段CE 的位置关系是______ 2、在七巧板制作过程中可知,每一块板的锐角都是____度3、正方形、长方形、等腰直角三角形、平行四边形,这四种图形中,七巧板的七板中,没有的图形是__________4、如图4,是利用七巧板拼成的图案,其中二组互相平行的线段的线段是____________5、如图5,是利用七巧板拼成的山峰图案,在 这个图案中,找出两组互相垂直的线段:___________二、选择题 6、七巧板由( )制作的A 、平行四边形B 、梯形C 、正方形D 、三角形7、 在一副七巧板中有( )种不同形状的图形A 、1B 、2C 、3D 、48、 在一副七巧板中有( )对全等的三角形A 、1B 、2C 、3D 、4 三、探索题9、你能用七巧板拼成数字2和0吗?10、显然,用七巧板的7块板能组成一个正方形,那么能否用2块组成一个正方形?用3块呢?11.下图是利用“七巧板”的7个部件,拼出的图案.请你拼摆出自己想象的图案来。

相关文档
最新文档