简单枚举答案
形式逻辑学 第四版(华东师大版)课后习题参考答案

练习答案第一章形式逻辑的对象和意义(P13-14)一、1、逻辑学;客观规律。
2、思维规律。
3、客观规律。
4、某种理论、观点、看法。
二、1、(b)。
2、(b)第二章概念(P43-49)二.(1)单独、集合;(2)普遍、非集合;(3)普遍、集合;(4)普遍、非集合;(5)普遍、非集合;(6)普遍、集合。
三.字母ABCD分别表示先后出现的概念(见下页)六.全部错误。
理由:1、使用了否定;2、循环定义;3、定义过窄;4、循环定义;5、隐喻;6、定义过宽;7、定义过窄;8、定义过宽。
1、2、3、4、5、6、7、8、orA BBDDCABCDAABCCABBCDACBAB CAA BC七、全部错误。
理由:1、是分解;2、混淆根据、子项相容;3、不是划分;4、子项相容、划分不全、混淆根据;5、混淆根据、子项相容;6、是分解;7、多出子项;8、划分不全。
九、1、内涵、外延。
2、交叉、反对。
3、不相容(全异)、同一。
4、(略)。
5、定义过窄。
6、真包含(同一)、不相容(全异)。
7、限制、概括。
8、多出子项、划分不全。
十、a c d d(c) c d a c第三章简单命题及其推理(上)(P77-81)一、(3)、(5)直接表达判断。
二、A A A E O I A(a) E三、1、不能,能。
2、能,能。
3、(略)六、(3)正确。
七、1、SOP。
2、真包含于。
3、全同、真包含于。
4、真假不定。
5、特称、肯定。
6、SI P 真。
八、c d d d c d九、de de bc bc十、SIP、SOP取值为真,SIP可换位:SIP PIS。
十一、推导一:ABC三句话分别是性质命题SAP、SaP、SEP,a与E是反对关系,必有一假,所以根据题意SAP必真,所有学生懂计算机,班长必然懂计算机。
推导二:A句与C句是反对关系,不可同真,必有一假,所以B句真,B句真则C句假,所以A句亦真,所有学生懂计算机,班长必然懂计算机。
十二、推导:SIP与SOP是下反对关系,不能同假,必有一真,所以POS必假,P真包含于S或与S全同,即S真包含P或与P全同,而前者使AB两句话均真,不合题意,所以S 与P全同。
小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举
专题简析:一是分类要全,不能造成遗漏;二是枚举要清,必须有次序、有规律地进行枚举。
例题1:从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。
从小华家到文峰公园,有几种不同的走法?
思路:为了帮助理解题意,可以画出示意图。
根据图中可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。
试一试1:明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。
最多可搭配成多少种不同的装束?例题2:用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路:组成的信号有:红绿黄、红黄绿;绿红黄、绿黄红;黄红绿、黄绿红等6种。
可以把组成的信号看成是三个位置:第1个位置有3种选择,第2个位置有2种选择,第3个位置就只有1中选择。
所以排列方法一共有:3×2×1=6(种)
试一试2:用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?
例题3:有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
思路1:每个小朋友都节打电话3次。
但两人之间只需打1次电话,互打就重复了。
因此一共打3×4÷2=6(次)
思路2:第1个小朋友打了3个电话,第2个小朋友打了2个电话,第3个小朋友打了1个电话,第4个小朋友不需要打电话。
因此一共打3+2+1=6(次)
试一试3:
(1)6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
(2)暑假里,三位小朋友互发一封问候邮件,他们一共发了多少封邮件?。
python枚举算法例子简单

python枚举算法例子简单枚举算法是一种基本的搜索算法,它通过尝试所有可能的情况来找到问题的解。
在Python中,我们可以使用枚举算法来解决一些简单的问题。
下面我们来看一个简单的Python枚举算法的例子。
假设我们有一个包含一些整数的列表,我们想找到这些整数中的最大值。
我们可以使用枚举算法来遍历所有的整数,然后找到最大的那个。
下面是一个示例代码:```pythondef find_max(nums):max_num = float('-inf') # 初始设为负无穷for num in nums:if num > max_num:max_num = numreturn max_numnums = [1, 5, 3, 9, 2, 7]max_num = find_max(nums)print("The maximum number is:", max_num)```在这个例子中,我们定义了一个名为`find_max`的函数,它接受一个整数列表作为参数。
我们首先将`max_num`初始化为负无穷,然后遍历整数列表,如果当前整数大于`max_num`,我们就更新`max_num`的值为当前整数。
最后,函数返回找到的最大值。
我们定义了一个整数列表`nums`,然后调用`find_max`函数并将`nums`作为参数传递进去,最后打印出找到的最大值。
这是一个简单的枚举算法的例子,它展示了如何使用枚举算法来解决一个简单的问题。
当然,枚举算法并不总是最高效的解决方案,但对于一些小规模的问题,它是一个简单而直接的方法。
希望这个例子能帮助你更好地理解Python中的枚举算法的工作原理。
如果你对枚举算法有更深入的了解,可以尝试解决更复杂的问题,提高自己的算法水平。
祝你编程愉快!。
第一讲_简单枚举(三年级奥数第一册)

2、两个连续单数的平均数是100,这两个单 数各是多少?
大于100的单数是101 小于100的单数是99 (99+101)÷2=100,而且这两 个数字还是连续单数 答:这两个连续单数是99和101
3×2=6(种) 答:从甲地到丙地有6种不同的走法。
2、新华书店有3种不同的英语书,4种不同的 数学读物销售,小泽想买一种英语书和一 种数学读物,共有多少种不同的买法?
3×4=12(种) 答:共有12种不同的买法。
【的C2盘】子把里4个,同允样许的有苹的果盘放子在空两着个不同放样, 问共有多少种不同的分法?
【他B3们】一有共4位打小了朋多友少,次寒电假话中?互相通一次电话,
每个小朋友都要通3次电话 一共是3×4=12(次) 相互重复一次,应该是12÷2=6(次) 列示:4×(4-1)÷2=6(次) 答:他们一共打了6次电话。
【试一试】 1、6个小队进行排球比赛,每两队比赛一场,
共要进行多少次比赛?
【B2】有一架天平和1克、2克、5克的砝码 各一个,用这3个砝码在天平上能称几种不 同重量的物体?
一次拿一种砝码,有3种 一次拿两种砝码,有3种 一次拿三种砝码,有1种 共有7种 答:能称出7种不同重量的物体。
【试一试】 1、现有1元、2元、5元、10元的人民币各一
张,这些人民币可以组成多少不同的价钱?
答:共有3种不同的分法。
【试一试】
1、把5个同样的苹果放在两个同样的盘子里,允许 有的盘子空着不放,问共有多少种不同的分法?
盘子 盘子2
01
奥数-08枚举法+答案

枚举法我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果,但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。
但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。
所谓枚举法(或称穷举法),就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而找到解决问题的方法。
当可能的结果较少时,可以直接枚举,即将所有结果一一列举出来;当可能的结果较多时,就需要分类枚举。
分类一定要包括所有可能的结果,这样才能不遗漏,并且类与类之间不重叠,这样才能做到不重复。
枚举法的分类:简单枚举法——将各种可能的情况或对象一一列举出来。
字典枚举法——对象已经确定,把对象按顺序进行不同的排列组合。
图形计数枚举法——先按不同的类型进行分类,再进行统计。
数字拆分枚举法——先将对象拆分成若干份,再进行排列组合。
画枚举树枚举法——将各种可能的情况画成树状图形,再进行统计。
【例 1】有一天,丽丽去天天家,而从丽丽家到天天家不能直接到达,必须要经过公园或丁丁家(如右图),找一找,从丽丽家到天天家共有几条路可以走?(简单枚举法)解析:为了便于统计,我们先给每一条线路编号。
采用简单枚举方法——将各种可能的线路一一列举出来,再进行计数。
1+8 2+8 3+5 3+63+7 4+5 4+6 4+7从丽丽家到天天家共有8条路可走。
练习一1、某人要去日本旅游,从家到上海去可以选择的交通工具有地铁、公交和自驾,从上海到日本既可以乘游轮也可以坐飞机,那么他到日本去有几种方案可以选择?2、用0、2、3、4、7、8组成不同的两个三位数,每个数字只能用一次,使它们的和最小。
【例 2】用分别写着7、8、9、0的卡片各一张,可以组成多少个不同的四位数?(字典枚举法)解析:对象已经确定是数字7、8、0、9,然后按顺序进行不同的排列组合,先确定千位上的数字,再确定百位上的数字,以此类推。
python枚举算法例子简单

python枚举算法例子简单枚举算法(英文名:Brute Force)是一种基本的算法思想,在解决问题时通过穷举所有可能的解进行求解。
它的基本原理是:列举出问题的所有可能解,通过遍历每一个可能解,并验证其是否符合问题的约束条件,最终得到问题的解。
虽然枚举算法简单、直观,但由于其穷举的特点,效率比较低,适用于解决规模较小的问题。
下面以几个简单的例子来说明枚举算法的应用:1.求解两数之和问题题目:给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。
例如,给定数组[2, 7, 11, 15]和目标值9,因为2 + 7 = 9,所以返回[2, 7]。
解题思路:对于每一对可能的数,依次相加判断是否等于目标值。
利用两层循环的枚举算法,穷举所有可能的解。
2.求解最大子数组和问题题目:给定一个整数数组,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
例如,给定数组[-2,1,-3,4,-1,2,1,-5,4],最大和的连续子数组为[4,-1,2,1],最大和为6。
解题思路:使用枚举算法穷举所有的子数组,并计算每个子数组的和。
最后返回最大和。
3.求解最长有效括号问题题目:给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度。
例如,给定字符串"(()",最长有效括号子串为"()",长度为2;给定字符串")()())",最长有效括号子串为"()()",长度为4。
解题思路:利用枚举算法,穷举所有可能的子串,判断每个子串是否是有效的括号组合,记录最长有效括号的长度。
枚举算法在解决一些问题时可以提供直观的思路,但在实际应用中其效率较低,因为它需要穷举所有的可能解。
对于规模较大的问题,通常需要进一步优化算法。
常见的优化方法包括使用剪枝策略、使用动态规划等。
简单的枚举法例题及解法
简单的枚举法例题及解法在我们的学习旅程中,枚举法就像一位默默无闻的英雄,常常被忽视,但它的威力可不容小觑。
想象一下,你在一场盛大的聚会上,满屋子都是美味的食物。
哎呀,这个、那个、还有那个,究竟该选哪个?这时候,枚举法就像是一个老朋友,告诉你一个个地试试,直到找到你心仪的那一款。
简单、直接,就是这么有意思。
今天咱们就来聊聊这个枚举法,它的运用和解法,就像一场轻松的游戏,让我们一起来“寻宝”吧!先说说什么是枚举法吧。
就是把所有可能的情况都列出来,然后一个一个地分析。
就像你在逛街,看到好多漂亮的衣服,你得试试才能知道哪件最适合你。
想象一下,假设你要参加一个舞会,衣服、鞋子、配饰全得搭配好。
你可以先列出所有的选择,慢慢试,最后找到最合适的那套。
听起来是不是很简单?是啊,关键在于你得耐心点儿,把每一个选择都好好“捋一捋”。
这招儿在数学题里也一样管用。
比如说,有一堆数字,你得找出和为某个特定数值的组合。
哎,别着急,咱们可以逐个枚举这些组合,看看哪几个数字凑在一起就能成就那个“梦想中的数”。
就像搭积木一样,慢慢来,不着急,最后总会拼出一个满意的形状来。
朋友们,这可是一种锻炼思维的好方法哦,既能训练逻辑,又能提升耐心,真是一举两得呢。
再举个例子,想象一下,咱们要去旅游,目标是找到一个最划算的行程。
你可能会想,“那得列出所有的景点、交通、食宿,细细比较。
”这就是枚举法的典型应用了。
慢慢比对价格,看看哪个套餐最合算。
也许你会发现,某个看似平常的选择,实际上能给你带来意想不到的惊喜。
就像生活,有时候不经意间的小决定,能给你带来大大的不同。
枚举法也有点缺点,特别是在选择多的时候,容易让人感到头晕眼花。
不过,没关系,记得放松心情。
就像吃自助餐,有时候光看菜单就觉得眼花缭乱,但只要你慢慢走过去,试一试,发现美味总是会来的。
找到合适的方法去整理这些选择,比如分类、分组,慢慢来,总会理出个头绪。
大家也许会问,枚举法能解决所有问题吗?当然不是,生活中的很多问题都是复杂多变的。
三年级简单枚举法解题
三年级简单枚举法解题一、简单枚举法题目及解析。
1. 题目:小明有3件不同的上衣,2条不同的裤子,他有多少种不同的穿法?- 解析:- 我们可以用枚举法来解决。
当选择第一件上衣时,可以搭配2条不同的裤子,这样就有2种穿法;当选择第二件上衣时,同样可以搭配2条不同的裤子,又有2种穿法;当选择第三件上衣时,还是可以搭配2条不同的裤子,再有2种穿法。
- 所以总的穿法有2 + 2+2=3×2 = 6种。
2. 题目:用1、2、3这三个数字能组成多少个不同的三位数?- 解析:- 百位上是1时,组成的数有123、132;百位上是2时,组成的数有213、231;百位上是3时,组成的数有312、321。
- 一共可以组成2 + 2+2 = 6个不同的三位数。
3. 题目:从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,从甲地到丙地有多少种不同的走法?- 解析:- 从甲地到乙地的第一条路,到乙地后再去丙地有3种走法;从甲地到乙地的第二条路,到乙地后再去丙地又有3种走法。
- 所以从甲地到丙地不同的走法有3+3 = 2×3=6种。
4. 题目:有红、黄、蓝三种颜色的小旗各一面,从中选用1面或2面升上旗杆,分别用来表示一种信号。
一共可以表示多少种不同的信号?- 选1面小旗时,有红、黄、蓝3种信号;选2面小旗时,有红黄、红蓝、黄蓝3种信号。
- 总共可以表示3 + 3=6种不同的信号。
5. 题目:有3个小朋友,每两个人握一次手,一共握几次手?- 解析:- 设三个小朋友为A、B、C。
A和B握一次手,A和C握一次手,B和C握一次手。
- 一共握1+1 + 1=3次手。
6. 题目:用0、1、2这三个数字能组成多少个不同的两位数(数字不能重复)?- 解析:- 十位上是1时,组成的两位数有10、12;十位上是2时,组成的两位数有20、21。
- 一共能组成2+2 = 4个不同的两位数。
7. 题目:从1 - 9这9个数字中,每次取2个数字,这两个数字的和大于10,有多少种取法?- 解析:- 两个数为9和2、9和3、9和4、9和5、9和6、9和7、9和8;8和3、8和4、8和5、8和6、8和7;7和4、7和5、7和6;6和5。
枚举题目
【试题】5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?【分析】:大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。
而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。
为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。
那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。
接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。
所以花费的总时间为:2+1+10+2+2=17分钟。
解:2+1+10+2+2=17分钟【试题】6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
【分析】:要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。
解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。
总共用时(2+1)+(6+2)+2=13分钟。
有若干支笔,分配给甲乙丙三人,最初甲得的最多,乙得的较少,丙得的最少,因此从新分配。
第一次分配,甲分给乙丙,分别给乙丙各所有支数多4支。
第二次分配,乙分给甲丙,分别给甲丙各所有支数多4支。
第三次分配,丙分给甲乙,分别给甲乙各所有支数多4支。
经三次分配,甲乙丙三人各得铅笔44支。
最初甲得几支?满意答案好评率:100%设甲乙丙原有笔 x y z 支,第一次分配甲乙丙有笔 x-y-z-8 2y+4 2z+4 支第二次分配甲乙丙有笔 2x-2y-2z-12 3y-x-z 4z+12 支第三次分配甲乙丙有笔 4x-4y-4z-20 6y-2x-2z+4 7z-y-x+16 支得方程组 4x-4y-4z-20=446y-2x-2z+4=447z-y-x+16=44x=74 y=38 z=20最初甲得74支1.一个长方形的周长是22米,如果它的长和宽都是整米数,问:①这个长方形的面积有多少可能值?②面积最大的长方形的长和宽是多少?2.有四种不同面值的硬币各一枚,它们的形状也不相同,用它们共能组成多少种不同钱数?3.三个自然数的乘积是24,问由这样的三个数所组成的数组有多少个?如(1,2,12)就是其中的一个,而且要注意数组中数字相同但顺序不同的算作同一数组,如(1,2,12)和(2,12,1)是同一数组.4.小虎给3个小朋友写信,由于粗心,把信装入信封时都给装错了,结果3个小朋友收到的都不是给自己的信,请问小虎错装的情况共有多少种可能?5.一个学生假期往A、B、C三个城市游览.他今天在这个城市,明天就到另一个城市.假如他第一天在A市,第五天又回到A市.问他的游览路线共有几种不同的方案?6.下图中有6个点,9条线段,一只甲虫从A点出发,要沿着某几条线段爬到F点.行进中甲虫只能向右、向下或向右下方运动.问这只甲虫有多少种不同的走法?7.小明有一套黄色数字卡片、、,有一套蓝色数字卡片、、.一天他偶然用卡片做了下面的游戏:把不同色的卡片交叉配对,一次配成3对,然后把每对卡片上的黄蓝数字相乘之后再相加求和,你知道他共找到了多少种配对相乘求和的方式吗?比如说下面是其中一种:黄蓝黄蓝黄蓝8.五个学生友1,友2,友3,友4,友5一同去游玩,他们将各自的书包放在了一处.分手时友1带头开了个玩笑,他把友2小朋友的书包拿走了,后来其他的小朋友也都拿了别人的书包.试问在这次玩笑中故意错拿书包的情形有多少种不同方式?习题解答1.解:这个长方形的长和宽之和是22÷2=11(米),由长方形的面积=长×宽,可知:由上表可见面积最大的长方形的长是6米、宽是5米,面积是30平方米.猜想:由本讲的例1和习题1这两题来看,周长一定的所有长方形中,长和宽相等或相近那个长方形面积最大.这是有名的“等周问题”的特例.2.解:把各种不同的组合及其对应的钱数列表枚举如下:数一数可知,能组成15种不同的钱数.注意它们是从1到15的15个自然数:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15.3.解:不计数组中数的顺序,所有乘积为24的三个数所组成的数组共有6组,枚举如下:(1,1,24),(1,2,12),(1,3,8),(1,4,6),(2,2,6),(2,3,4).4.解:把三封信编号为1号、2号、3号;把三个小朋友编号为友1、友2、友3;1号、2号、3号信应该分别发给友1、友2、友3。
简单枚举归纳推理例子
简单枚举归纳推理例子什么是简单枚举归纳推理简单枚举归纳推理是一种通过列举具体例子来进行归纳和推理的方法。
它通过观察一系列已知的事实,寻找它们之间的共同点和规律,然后基于这些规律进行推理和预测。
简单枚举归纳推理在日常生活中广泛应用,例如解决问题、做决策和学习知识等。
简单枚举归纳推理的基本过程如下: 1. 找到一系列具体的例子。
2. 观察这些例子之间的共同点和规律。
3. 根据这些共同点和规律进行推理和预测。
简单枚举归纳推理的例子例子1:水的沸点问题:水的沸点是多少?通过简单的枚举归纳推理,我们可以找到水的沸点是100摄氏度。
列举以下几个具体的例子:1.海平面上的水在常温下沸腾时的温度接近100摄氏度。
2.水的沸点在不同海拔高度下略有变化,但大致仍接近100摄氏度。
3.在他们的科学实验中,学生通过加热水可以观察到水从液态转变为水蒸气的过程,这个转变点约为100摄氏度。
4.沸水壶中的水加热到一定温度后,开始冒出蒸汽,这一温度通常是100摄氏度。
通过上述例子的观察,我们可以得出结论:水的沸点是100摄氏度。
例子2:动物的呼吸方式问题:动物的呼吸方式有哪些?通过简单的枚举归纳推理,我们可以找到动物的呼吸方式包括下面几种:1.哺乳动物:哺乳动物通过肺部进行氧气的吸入和二氧化碳的排出。
2.鸟类:鸟类具有空气囊和肺,同时可以通过空气囊来实现气体流动。
3.鱼类:鱼类通过鳃进行气体交换,从水中吸入氧气并排出二氧化碳。
4.爬行动物:爬行动物的呼吸方式因种类而异,有的通过肺呼吸,有的通过皮肤呼吸。
通过上述例子的观察,我们可以得出结论:动物的呼吸方式包括哺乳动物的肺呼吸、鸟类的气囊呼吸、鱼类的鳃呼吸和爬行动物的多种呼吸方式。
例子3:数字序列问题:下一个数字是多少?通过简单的枚举归纳推理,我们可以找到数字序列的规律和下一个数字:1.2, 4, 6, 8, …通过观察,我们可以发现上述数字序列是递增的,且每个数字都比前一个数字大2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一
1、【题目】从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。
从甲地到丙地有多少种不同走法?
【解析】
3×2 = 6(种)
2、【题目】新华书店有3种不同的英语书,4种不同的数学读物销售。
小明想买一种英语书和一种数学读物,共有多少种不同买法?
【解析】
英1——数1,英1——数2,英1——数3,英1——数4;
英2——数1,英2——数2,英2——数3,英2——数4;
英3——数1,英3——数2,英3——数3,英3——数4。
3×4 = 12(种)
练习二
1、【题目】用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?
【解析】
红黄蓝、红蓝黄、黄蓝红、黄红蓝、蓝红黄、蓝黄红。
一共6种不同的涂法。
2、【题目】用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?
【解析】
6个。
分别是:123、132、213、231、312、321。
3、【题目】用2、3、5、7四个数字,可以组成多少个不同的四位数?
【解析】
分别是:2357、2375、2537、2573、2735、2753;
3257、1275、3527、3572、3725、3752;
5237、5273、5327、5372、5723、5732;
7235、7253、7325、7352、7523、7532。
练习三
1、【题目】一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?
【解析】
30÷2 = 15(厘米)...........长+宽
15 = 1+14 = 2+13 = 3+12 = 4+11 = 5+10 = 6+9 = 7+8
组成的面积分别是:14、26、36、44、50、54、56,共7种。
2、【题目】把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?
【解析】
15 = 1+2+3+9 = 1+2+4+8 = 1+2+5+7 = 1+3+4+7 =1+3+5+6
共有5种不同的分法。
3、【题目】3个自然数的乘积是18,问由这样的3个数所组成的数组有多少个?如(1,2,9)就是其中的一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。
【解析】
18 = 1×2×3×3
1、2、3、3这四个数可以组成的数有:1、2、3、6、9、18.。
按要求可以组成的数组有:
(1,1,18)、(1,2,9)、(1,3,6)、(2,3,3)
练习四
1、【题目】6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
【解析】
将6个小队分别编号为:①、②、③、④、⑤、⑥。
可以比赛的场次:
①②、①③、①④、①⑤、①⑥ ,有5场;
②③、②④、②⑤、②⑥,有4场;
③④、③⑤、③⑥;有3场;
④⑤、④⑥,有2场;
⑤⑥,有1场;
共计有:5+4+3+2+1 = 15(场)。
2、【题目】有8位小朋友,要互通一次电话,他们一共打了多少次电话?
【解析】
7+6+5+4+3+2+1 = 28(次)
3、【题目】小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?
【解析】
18+17+16+……+3+2+1 = (18+1)×18÷2 171(次)
练习五
1、【题目】上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?
【解析】
机票种类:上海——北京、上海——天津、北京——天津、天津——上海、天津——北京、北京——上海,共6种。
2、【题目】一条公路上,共有8个站点。
如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?
【解析】
如图,按要求可以有票的种类是:
①⑤、①⑥、①⑦、①⑧、②⑥、②⑦、②⑧、③⑦、③⑧、④⑧;
⑧④、⑧③、⑧②、⑧①、⑦③、⑦②、⑦①、⑥②、⑥①、⑤①。
(4+3+2+1)×2 = 20(种)
3、【题目】在长江的某一航线上共有6个码头,如果每个起点终点只许用一种船票(中间至少要相隔2个码头),那么这样的船票共有多少种?
【解析】
如图,按照要求可以有:
①④、①⑤、①⑥、②⑤、②⑥、③⑥;
⑥③、⑥②、⑥①、⑤②、⑤①、④①。
(3+2+1)×2 = 12(种)。