示波器的测量

合集下载

示波器的测量方法

示波器的测量方法

示波器的测量方法
1.幅度和频率的测量方法(以测试示波器的校准信号为例)
(1)将示波器探头插入通道1插孔,并将探头上的衰减置于“1”档;
(2)将通道选择置于ch1,耦合方式置于dc档;
(3)将探头探针插入校准信号源小孔内,此时示波器屏幕出现光迹;
(4)调节垂直旋钮和水平旋钮,使屏幕显示的波形图稳定,并将垂直微调和水平微调置于校准位置;
(5)读出波形图在垂直方向所占格数,乘以垂直衰减旋钮的指示数值,得到校准信号的幅度;
(6)读出波形每个周期在水平方向所占格数,乘以水平扫描旋钮的指示数值,得到校准信号的周期(周期的倒数为频率);
(7)一般校准信号的频率为1khz,幅度为0.5v,用以校准示波器内部扫描振荡器频率,如果不正常,应调节示波器(内部)相应电位器,直至相符为止。

2.示波器应用举例(以测量788手机13mhz时钟脉冲为例)
手机中的13mhz时钟信号正常是开机的必要条件,因此维修时要经常测量有无13mhz时钟信号。

步骤如下:
(1)打开示波器,调节亮度和聚焦旋钮,使屏幕上显示一条亮度适中、聚焦良好的水平亮线;
(2)按上述方法校准好示波器,然后将耦合方式置于ac档;
(3)将示波器探头的接地夹夹在手机电路板的接地点,探针插到788手机cpu第脚;
(4)接通手机电源,按开机键,调节垂直扫描水和平扫描旋钮,观察屏幕
上是否出现稳定的波形,如果没有,一般说明没有13mhz信号。

示波器测量原理

示波器测量原理

示波器测量原理示波器测量原理示波器是一种重要的电子测量仪器,用于观察电信号的波形和测量电信号的各种参数。

在电子工程领域中,示波器广泛应用于电路设计、信号分析和故障排除等方面。

本文将针对示波器的测量原理,从浅入深进行解释。

什么是示波器示波器是一种用来观察电气信号的波形和测量各种信号参数的电子仪器。

它能够将输入信号转换成可视化的波形,并提供实时的测量结果。

示波器的工作原理示波器的工作原理可以分为以下几个步骤:1.信号输入:示波器通过信号输入接口接收待测信号。

通常,示波器提供多个输入通道,以便同时观察多个信号。

2.信号放大:示波器使用放大电路将输入信号放大到适当的幅度范围。

放大后的信号将被送往水平和垂直系统进一步处理。

3.水平系统:水平系统控制示波器的水平扫描速率。

它通过控制水平放大系数和扫描速率来调整波形在水平方向上的位置和宽度。

4.垂直系统:垂直系统控制示波器的垂直放大倍数。

它将放大后的信号按照设定的放大倍数显示在示波器屏幕上。

5.示波器屏幕:示波器屏幕上显示信号的波形图像。

波形图像的横轴表示时间,纵轴表示幅度。

6.触发系统:触发系统用于控制示波器何时开始采集和显示信号。

触发系统可以根据设定的触发条件,例如信号的上升沿或下降沿,来确定信号的起始位置。

示波器的测量方法示波器可以通过以下几种方式进行信号的测量:1.测量波形幅度:示波器可以通过垂直系统的放大倍数,测量信号在垂直方向上的幅度。

常用的测量参数包括峰峰值、均方根值等。

2.测量周期和频率:示波器可以通过水平系统的扫描速率,测量信号的周期和频率。

通过测量多个周期的时间间隔,可以计算出信号的频率。

3.测量占空比:示波器可以通过触发系统和水平系统,测量信号的占空比。

占空比表示信号处于高电平状态的时间与整个周期时间之比。

4.测量相位差:示波器可以通过触发系统和水平系统,测量不同信号之间的相位差。

相位差表示两个信号波形之间的时间差。

5.测量信号的噪声和杂散:示波器可以通过观察信号的波形,分析信号中的噪声和杂散成分。

示波器的自动测量功能及设置

示波器的自动测量功能及设置

示波器的自动测量功能及设置示波器是电子工程师日常工作中使用频率较高的一种仪器。

除了基本的波形显示功能外,示波器还具备许多实用的自动测量功能,能够方便、快捷地获取信号的各种参数信息。

本文将介绍示波器的常见自动测量功能及设置方法,并对其应用场景进行分析。

1. 峰-峰值测量峰-峰值是指信号波形中正半周最大值与负半周最小值之间的差值。

示波器能够自动测量出信号的峰-峰值,并将结果显示出来。

在示波器上进行峰-峰值测量的方法为:打开示波器,将测量控制模式调整到"Vpp"或"Pk-Pk",示波器即可自动计算出峰-峰值。

通过峰-峰值的测量,可以了解到信号的极值情况,进而进行后续的电路分析与设计。

2. 平均值测量平均值测量是指对信号的多个采样值进行求平均得到的结果。

示波器可以自动进行平均值的测量并将结果显示出来。

在示波器上进行平均值测量的方法为:打开示波器,将测量控制模式调整到"Avg",示波器会自动对信号进行采样并计算平均值。

平均值测量对于信号的稳定性和周期性分析非常有帮助。

3. 频率测量频率是指信号波形的周期性重复次数,可以表示为每秒钟的周期个数。

示波器能够自动测量出信号的频率,并将结果显示出来。

在示波器上进行频率测量的方法为:打开示波器,将测量控制模式调整到"Freq",示波器会自动对信号进行周期性分析并计算频率值。

频率测量对于信号的周期性分析、信号源的稳定性评估非常重要。

4. 占空比测量占空比是指周期性信号中高电平时间占整个周期时间的比例。

示波器可以自动测量出信号的占空比,并将结果显示出来。

在示波器上进行占空比测量的方法为:打开示波器,将测量控制模式调整到"Duty",示波器会自动对信号进行占空比分析并计算占空比值。

占空比测量对于脉冲信号的分析、开关电源控制等方面具有重要意义。

5. 上升时间和下降时间测量上升时间和下降时间是指信号波形从低电平到高电平和从高电平到低电平的时间间隔。

示波器的基本测量方法

示波器的基本测量方法

示波器的基本测量方法
示波器是一种重要的电子测试设备,广泛应用于电子电路的设计、调试和维护中,可
以用来测量和观测电信号的各种参数,如幅值、频率、相位、周期、脉冲宽度等。

下面将
介绍示波器的基本测量方法。

1. 测量信号的幅值:
在使用示波器测量信号的幅值时,需要先选择合适的电压量程,一般选择电压量程的
上限大于被测信号的幅值。

同时,还要选择合适的触发模式,确保示波器能够稳定地显示
被测信号。

在测量信号的频率时,可以利用示波器的“触发源”功能,设置一个合适的触发电平,并选择“触发模式”为“自动”或“单次”,然后调节横向扫描速度,使示波器能够捕捉
到至少一个完整的周期。

此时,测量得到的横向时间就是信号的周期,频率可以通过反向
计算得到。

示波器可以通过在波形上设置两个垂直参考线,来测量信号的相位差。

首先,在波形
上选择一个参考点,然后设置一个垂直的参考线与该参考点相交,并记录下该参考线的位置。

接着,将示波器的触发模式设置为“一次”,并将触发点移动到另一个波形的相同参
考点处,并再次设置一个垂直参考线。

此时,两个参考线的相对位置就代表了两个波形的
相位差。

示波器可以直接显示信号的周期,只需要在测量信号频率的基础上,将测量得到的横
向时间乘以相应的系数即可。

5. 测量脉冲宽度:
总之,使用示波器进行测量时,需要根据被测信号的性质和要求,选择合适的参数和
功能,确保测量结果的准确性和可靠性。

因此,对示波器的操作和调试,对电子电路的设计、调试和维护都非常重要。

示波器基本测量实验报告

示波器基本测量实验报告

示波器基本测量实验报告实验目的1. 了解示波器的基本原理和使用方法;2. 学习使用示波器进行信号测量和观测。

实验仪器- 示波器- 信号发生器- 电阻- 电容- 电感- 探头实验原理示波器是一种用来测量电压随时间变化的仪器,通常用于观测和分析电路中的信号。

示波器的主要原理是通过垂直和水平两个系统来显示和测量电压和时间。

垂直系统根据输入信号的大小将其转换为屏幕上的垂直位置,并根据设置的垂直灵敏度和偏移来进行放大和调整。

水平系统则控制屏幕上信号的横向位置和时间比例。

示波器一般通过垂直和水平系统的方波来生成图像。

垂直系统接收到输入信号后,经过放大、增益控制和直流偏置等处理后,将信号转换为水平方向的位置。

水平系统则根据垂直系统的输入调整水平位置和时间比例,最终在示波器屏幕上显示出一幅波形图。

实验步骤1. 将示波器和信号发生器正确连接,并接好地线;2. 打开示波器,并调整垂直和水平系统的参数,确保波形居中且完整显示;3. 将信号发生器输出的正弦波接入示波器的垂直输入通道;4. 调整信号发生器的频率和幅度,观察示波器屏幕上的波形;5. 将信号发生器输出的方波接入示波器的垂直输入通道;6. 调整信号发生器的频率和幅度,观察示波器屏幕上的波形;7. 尝试使用示波器进行其他信号的测量,如矩形波、三角波等。

实验结果与分析在实验过程中,我们通过调整信号发生器的频率和幅度,可以观察到不同形状和频率的信号波形在示波器屏幕上的显示效果。

实验结果表明,示波器可以准确地显示输入信号的波形,能够帮助我们直观地观察和分析电路中的信号特征。

通过调整垂直和水平系统的参数,我们可以对信号进行放大、调整和测量。

在测量过程中,示波器的垂直灵敏度参数对于波形的放大和显示起着关键作用。

通过合适的灵敏度设置,我们可以确保所测量的波形没有失真,并且能够完整地显示在屏幕上。

另外,示波器的触发功能可以帮助我们稳定地观察信号的特定部分,提供更准确的测量结果。

示波器的测量方法

示波器的测量方法

示波器的测量方法
示波器测量方法如下:
1. 连接电路:将被测信号的输出端与示波器的输入端相连。

确保连接的稳定性和正确性。

如果需要对直流电路进行测量,应注意正确选择示波器的耦合方式。

2. 调整示波器控制按钮:示波器的控制按钮通常包括触发控制按钮、时间/水平控制按钮和垂直/幅值控制按钮等。

根据需要,逐一调整这些按钮,以便获得所需的波形图。

3. 触发信号:为了获得更清晰、稳定的波形图,可以使用触发技术来控制示波器。

设置触发的方式和水平位置,以使示波器触发在所需的时间点上。

触发信号可以是所测信号本身,也可以是和所测信号相应的外部信号。

4. 调整时间/水平:通过调整示波器的时间/水平控制按钮,设置示波器屏幕上时间的刻度。

根据所测信号的频率,适当调整时间/水平设置,以便将整个信号周期显示在屏幕上。

5. 调整垂直/幅值:通过调整示波器的垂直/幅值控制按钮,设置示波器屏幕上垂直的刻度。

根据所测信号的幅值范围,适当调整垂直/幅值设置,以便将信号完整地显示在屏幕上,并注意避免信号超出示波器的测量范围。

6. 观察和记录波形:通过示波器屏幕上的波形显示,观察被测信号的波形图形和特征。

可以使用示波器的光标测量功能,如测量峰值、频率、占空比等,对波形进行定量的测量和分析。

示波器测量波形的方法

示波器测量波形的方法

示波器测量波形的方法
示波器测量波形的方法有以下几种:
1. 直接测量:将被测信号通过探头连接到示波器的输入端口,示波器会将信号显示在屏幕上。

通过观察屏幕上的波形形状、幅度等参数来测量信号特征。

2. 垂直测量:示波器可以直接测量信号的峰值、峰峰值、平均值等参数。

可以通过调整示波器的垂直缩放和偏移来获得所需的测量结果。

3. 水平测量:示波器可以测量信号的时间间隔、频率、周期等参数。

可以通过调整示波器的水平缩放和偏移来获得所需的测量结果。

4. 利用光标:示波器可以使用光标功能对波形进行精确测量。

可以使用峰值光标、时间光标等对波形的一些特性进行测量。

5. 自动测量功能:示波器通常还有一些内置的自动测量功能,可以自动测量信号的各种参数,如峰值、频率、占空比等。

这种方法可以快速获取信号的基本特性。

值得注意的是,示波器的精度和测量方法与示波器的型号、规格以及信号的性质等因素有关,使用示波器时需要根据具体情况选择合适的测量方法。

示波器的测量精度和准确性分析

示波器的测量精度和准确性分析

示波器的测量精度和准确性分析示波器是一种广泛应用于电子测量和实验的仪器。

在电路设计和故障排除中,精确的测量结果对于确保电路性能和可靠性至关重要。

因此,了解示波器的测量精度和准确性是十分重要的。

一、测量精度示波器的测量精度指示波器测量结果与被测波形真实值之间的差异程度。

测量精度受到示波器本身技术特性和测量环境等因素的影响。

1. 垂直测量精度垂直测量精度是指示波器对输入信号幅值的测量精度。

它受到示波器的增益线性度、输入缓冲放大器的噪声以及示波器的垂直分辨率等因素的影响。

增益线性度指的是示波器在不同设置下的放大倍数是否准确。

如果示波器的线性度不高,测量结果将存在明显的偏差。

2. 水平测量精度水平测量精度是指示波器对时间和频率的测量精度。

它受到示波器时间基准的稳定性、水平缩放的准确性以及示波器的时间分辨率等因素的影响。

时间基准的稳定性是指示波器的时间刻度是否准确及其长期稳定性。

若时间基准不可靠,测量结果将受到很大影响。

二、准确性准确性是指示波器测量结果与被测信号真实值之间的接近程度。

示波器的准确性主要与校准有关,校准是确保示波器测量结果准确的重要手段。

1. 定期校准定期校准是示波器维持准确度的重要方法。

示波器制造商通常建议用户在使用一段时间后进行定期校准。

通过校准,可以检查和调整示波器各个测量通道的增益、偏移、时间基准以及补偿等参数,确保测量结果准确。

2. 外部标准使用外部标准是进行示波器校准的一种常见方法。

外部标准可以是已知准确度的信号源或者其他经过校准的设备,通过与示波器进行比较,确定示波器的测量偏差,并进行修正,从而提高示波器的准确性。

三、提高测量精度和准确性的方法1. 注意测量环境示波器的测量精度和准确性受到测量环境的影响。

应尽量避免电磁干扰和温度变化等因素对示波器的影响,确保测量结果的可靠性。

2. 合理选择示波器根据具体需求,在选择示波器时考虑其技术指标和功能。

对于要求较高的应用场景,需要选择具有高精度和准确性的示波器,以确保测量结果的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

示波器的测量
1.1 示波器的应用
1.实训目的
1﹚掌握示波器、交流毫伏表、音频信号发生器的基本应用。

2﹚掌握示波器观察信号波形和测量直流电压幅度、周期的方法。

2.实训内容
﹙1﹚示波器的校准
﹙2﹚利用示波器1khz,0.5Vp-p的方波校准信号作为示波器的输入信号,调出图1-1所示正常波形。

﹙3﹚将扫描基线移动的格数、垂直偏转因数和稳定电压原指示电压值填入表1-1中。

图1-1
表1-1直流电压测量
﹙4﹚正弦波电压幅度、周期的测量
1﹚用信号发生器产生下表中的输入信号,用示波器测量信号的周期和电压,将测量数据填入表1-2
表1-2 正弦波电压幅度、周期的测量
1.2 示波器的特殊应用
1.用示波器测量脉冲信号的上升时间和下降时间。

1)用函数信号发生器产生频率为20KHz的矩形波脉冲信号。

2)按图1-2连接电阻和电容,组成一个低通网络。

图1-2 低通滤波电路
3)因为函数信号发生器输出的脉冲信号上升时间较小,不易测量,所以把脉冲信号通过低通网络后送到示波器测量,以加大脉冲信号的上升时间,便以测量。

4)调节示波器X轴的偏转因素选择开关,尽量使屏幕上突出显示脉冲的上升沿部分或下降沿部分。

并配合使用X轴位移旋钮,使对应上升沿10%(或下降沿90%)高度处的测量点对齐X轴的某个刻度线,然后读出对应上升沿90%(或下降沿10%)高度处另一测量点到上一测量点的相对时间值。

该相对时间值便是所测脉冲的上升时间(或下降时间)。

读数等于刻度个数乘上X轴偏转因数。

5)注意以上操作只有在X轴细调(V ariable)旋钮顺时针旋到底后读数才是正确的。

2.用双踪法测量两个信号的相位差
1)先用信号发生器产生一个频率为20KHz的幅度为1V的正弦信号。

2)再按图1-3连接电阻和电容,组成一个阻容延迟网络。

信号发生器输出信号一路直接作为信号1送入示波器CH1通道,另一路通过阻容延迟网络后作为信号2 送入示波器CH2通道。

由于信号2 通过延迟网络,所以信号2比信号1在时间上要延迟,两个信号之间存在着相位差。

图1-3阻容延迟网络
3)用示波器测量频率相同的两个信号之间的相位差
示波器置交替工作状态,调节X轴偏转因数选择开关(也称X轴扫描速度选择开关),对20KHz的信号频率,可置于10µS/Div档,调节触发电平(Trigger)旋钮,使显示的两个波形稳定。

分别调节CH1和CH2两个Y轴位移旋钮,使两个波形的扫描时基线重合,在屏幕上可看到一前一后两个正弦波。

测量信号周期T,并测量两个信号之间的时间延迟量ΔT。

按下式计算两个信号的相位差φ。

φ = 360∘×ΔT/T
4)把屏幕显示的波形和测量结果画成图。

思考一下:在上述测量过程中,X轴细调(Variable)旋钮是否一定要按测量要求顺时针旋到底?如放在任意位置,对测量结果是否有影响?为什么?
3.示波器的X—Y应用和椭圆法测量相位差
1)示波器的X—Y应用,是指两个信号分别从X通道和Y通道送入示波器,示波器内部X振荡器不用,靠外接被测量信号之一来驱动电子束作水平方向的扫描。

所以此时光迹在水平方向的扫描反映了接在X通道的被测量信号的规律。

而屏幕上显示的光迹图形和两个被测信号的参数都有关。

示波器的X—Y法可用来测量未知信号的频率,其测量依据是李沙育图形(Lissajous Patterns)。

示波器的X—Y法也可应用于相位差的测量,这就是椭圆法测量相位差。

2)先把辉度旋钮调小,使得刚能看到光迹,然后把X偏转因数选择开关(X扫速开关)置于X-Y档。

此时屏幕上只有一个亮点。

注意此时不能把辉度开大,以免能量集中灼伤荧光屏。

调节Y轴位移和X轴位移旋钮,使光点在屏幕中央刻度线原点。

3)按照上述步骤2产生同频率的两个信号,分别送到X输入插口和Y输入插口(选CH1或CH2都可)。

示波器Y轴工作模式开关从交替工作模式改为相应的CH1或CH2。

4)分别调节Y轴增益旋钮(Variable)和X轴细调旋钮(Variable),使两个信号的幅度相同,此时屏幕上将显示一个斜椭圆。

5)测量椭圆交Y轴的交点高度h1和椭圆最高点的高度h2。

两个信号的相位差φ按照下式计算:
φ = sin- 1 h1/h2
6)把屏幕显示的图形和测量结果画成图。

比较一下两种方法的测量结果是否相同?如有误差,则分析误差原因,你认为哪种测量方法准度(Accuracy)较高?哪种方法精度(Prisition) 较高?
4 实训报告要求
整理好测量数据,填好表1-1、1-2。

相关文档
最新文档