三角形中位线定理的几种证明方法及教学中需要说明的地方
三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明以下容作者为:第四中学瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则,有ADFC ,所以FC BD ,则四边形BCFD 是平行四边形,DFBC 。
因为,所以DEBC 21.法2:如图所示,过C 作 交DE 的延长线于F ,则,有FCAD ,那么FC BD ,则四边形BCFD 为平行四边形,DFBC 。
因为,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平行四边形,DFBC 。
因为,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的在联系,从而作如下探索引导。
⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。
三角形中位线的说课稿

《三角形中位线》说课稿大家好,今天我说课的内容是《三角形中位线》,本节课内容选自人教版初中几何第二册第4章第11节,下面我从教材分析、学生学法指导、教学方法和多媒体的选择、教学过程的设计、板书设计、教学反思六个环节进行阐述:【教材分析】1.说教材所处的地位:本节教材是在学生学完了三角形,平行四边形内容之后作为三角形和四边形知识的应用和深化。
三角形中位线定理的推证是以平行四边形的有关定理为依据的,是平行四边形知识的综合应用。
本节内容不是本章的重点和难点,但,是三角形的一个重要性质定理,在证明两直线平行和论证线段倍分关系时常常要用到,也为下一节梯形中位线定理的证明作好充分理论上的准备。
因此,本节课内容对知识起到了承前启后的作用。
2.说教学目标:教学目标包括知识目标、能力目标和情感、态度价值观目标。
作为三角形,四边形知识内容的综合应用和深化,根据学生现有的知识水平和认知特点,本节主要通过学生的动手实验,拼一拼,摆一摆,观察,猜想主动地得出三角形中位线定理,掌握三角形中位线定义和定理,会用定理进行有关的论证和计算解决一些问题。
在定理证明中培养学生运用“转化”思想,引导学生会添加适当的辅助线把未知转化为已知,用已掌握的知识来研究新问题从而提高分析解决问题的能力。
进一步培养和发展学生的创造性思维能力和逻辑推理论证的表达能力,同时体现了知识来源于实践,而又运用于生活。
3.教学重点和难点:重点:依据学生现有的实际能力和认知能力,我把三角形中位线的概念及应用作为本节课的重点。
通过学习使学生掌握三角形中位线定义,掌握定理及其应用。
难点:学生在自主探索、验证三角形中位线定理的过程中有许多困难,因此我把三角形中位线定理的论证作为本节课的教学难点。
在实际教学中,我采取了将一个三角形分成两部分拼成平行四边形将其线转化为已掌握的平行四边形知识来解决。
降低了难度,也提高了学生分析解决问题的能力。
4.本课知识要点:三角形中位线定义:连结三角形两边中点的线段叫三角形的中位线,在教学中提醒学生注意与三角形中线进行比较。
中位线及其应用

中位线及其应用知识定位中位线在初中几何或者竞赛中占据非常大的地位,它的有关知识是今后我们学习综合题目或者三角形综合的重要基础。
中位线的证明性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中中位线相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、三角形中位线定义(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
三角形的中位线与三角形的中线区分:三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。
(2)三角形中位线定理:三角形的中位线平行于第三边且等于第三边的一半。
如图,在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,则DE 为ABC ∆的中位线。
几何语言描述:因为D 、E 分别为边AB 、AC 的中点,所以DE//BC,且DE=12BC提示 a :“平行且等于第三边的一半”,具体应用时要根据题目的要求灵活进行选择,并 不一定要把两个结论都写出来。
b :一个三角形有三条中位线。
c :经过三角形一边的中点且与另一边平行的直线,必平分第三边,这是一种重要 的作辅助线的方法。
2、三角形中位线的性质(1)三角形中位线平行于第三边,并且等于第三边的一半。
梯形中位线平行于两底,并且等于两底和的一半。
(2)中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。
(3)运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。
(4)中位线性质定理,常与它的逆定理结合起来用。
它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等②经过三角形一边中点而平行于另一边的直线,必平分第三边③经过梯形一腰中点而平行于两底的直线,必平分另一腰补充:有关线段中点的其他定理还有:①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合③对角线互相平分的四边形是平行四边形④线段中垂线上的点到线段两端的距离相等因此如何发挥中点作用必须全面考虑。
三角形中位线证明6种方法

三角形中位线证明6种方法三角形是几何学中最基本的图形之一,具有许多特性和性质。
三角形中位线是三角形内部一条特殊的线段,连接三角形两边中点的直线称为三角形中位线。
本文将介绍10条关于三角形中位线的证明方法,并对每一种方法进行详细阐述。
1. 三角形中位线长相等证明:对于任意三角形ABC,连接AC的中点E和BC的中点F,连接BE并延长至D,使得AD与CF相交于点G。
则有:CE=EA (连接AC的中点E)BF=FC (连接BC的中点F)EF=EF (共同边)在三角形BEF和CEF中,有EF、BE、FC互相平行,并按比例划分。
根据平行线定理,有BE/EF=BG/GF和FC/EF=CG/GF。
由此可得:BE/FC=BG/CG2BE/2FC=2BG/2CGAB/AC=BG/CG同理可证出,AC/BC=AH/HB和BC/AB=CI/IA。
即中位线长相等。
2. 三角形中位线堆垛证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。
则有:EF∥ABEB=FAEC=FC在三角形AEC和BFC中,有EC=FC,∠EAC=∠FBC,∠CAE=∠CBF。
由此可得:三角形AEC与三角形BFC全等(AAS)AE=BF。
同理可证出BE=CF,因此中位线堆垛。
3. 三角形中位线垂直证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。
则有:EF∥ABEB=FAEC=FC在三角形AEC和BFC中,有EC=FC,∠EAC=∠FBC,∠CAE=∠CBF。
由此可得:三角形AEC与三角形BFC全等(AAS)AE=BF。
连接EF并绘制ED⊥EF和FG⊥EF,分别交于点D和G。
则有:ED=GFEB=FC在三角形EBD和FCG中,有ED=FG,∠EDB=∠FGC,∠EBD=∠FCG。
由此可得:三角形EBD与三角形FCG全等(HL)BD=CG。
同理可证出AD=BG和AC=2DE,BC=2FG。
中位线垂直。
4. 三角形中位线和周长的关系证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。
(完整版)浅谈三角形中位线定理的几种证法

浅谈三角形中位线定理的几种证法康园中学校 张瑜摘要:华师大数学九年级上册第23章中,学生学习了三角形中位线定理,对于三角形中位线定理的证明方法我与学生进行了深入地研究,总结了十种类型的方法,下面将三角形中位线定理的这些证法与大家共同分享。
共有十种不同的类型:动手操作法、相似法、倍长法、平行法、翻折法、作高法、构造法、旋转法、同一法、反证法。
关键词:三角形中位线定理、二十八种不同的证法。
三角形中位线定理:三角形的中位线平行且等于第三边的一半。
如图,已知△ABC 中,D ,E 分别是AB ,AC 两边中点。
求证:DE ‖BC ,DE=21BC 。
一、类型一:动手操作法方法1:度量法华师大初中数学教材的编写是呈螺旋式上升的,七年级和八年级上册重点培养学生的合情推理能力(即学生的动手操作和简单的说理验证),八年级下册和九年级重点培养学生的演绎推理能力(即严格地利用定理进行证明)。
因此运用合情推理,可以采用度量的方法来证明三角形中位线定理。
首先用直尺分别量出DE 、BC 的长,看是否满足DE=21BC ,再用量角器分别量出∠ADE 和∠B 的度数,看是否相等,从而判断是否平行。
二、类型一:相似法方法2:相似法一根据AD=21AB ,AE=21AC ,∠DAE=∠BAC ,从而得到△ADE ∽△ABC 。
于是∠ADE=∠ABC ,DE:BC=AD:AB=1:2。
轻松得到DE ‖BC ,DE=21BC 。
方法3:相似法二过点D 作DF ⊥AC 于F ,过点B 作BG ⊥AC 于G ,则DF//BG ,于是△ADF ∽△ABG ,得到DF=21BG ,AF=FG 。
因为AE=EC ,所以FE=21GC 。
根据DF:BG=FE:GC ,∠DFE=∠BGC=900,得到△DFE ∽△BGC ,从而命题得证。
ABCD E A BC D E FG ADEB C F A DEB CFAD E BC G FADE BC 方法2方法3方法4 方法5方法6三、类型三:倍长法方法4:中位线倍长法一:这是常用的方法,也是北师大教材中使用的方法。
三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使,连结CF ,则,有ADFC ,所以FCBD ,则四边形BCFD 是平行四边形,DF BC 。
因为 ,所以DEBC 21.法2C 作交DE 的延长线于F ,则,有FCAD ,那么FCBD ,则四边形BCFD 为平行四边形,DFBC 。
因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有ADCF ,所以FCBD ,那么四边形BCFD 为平行四边形,DF BC 。
因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。
三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则,有ADFC,所以FC BD ,则四边形BCFD 是平行四边形,DFBC 。
因为,所以DEBC 21.法2:如图所示,过C 作交DE 的延长线于F ,则,有FCAD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。
因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF,则四边形ADCF 为平行四边形,有AD CF ,所以FC BD,那么四边形BCFD 为平行四边形,DFBC 。
因为,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A 为线段BC(或线段BC 的延长线)上的任意一点,D 、E 分别是AB 、AC 的中点,线段DE 与BC 有什么关系?ABC图⑴:⑵如果点A 不在直线BC 上,图形如何变化?上述结论仍然成立吗?A 运动到直线BC 上时,中位线DE ",学生就不难.2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。
第二,要知道中位线定理的使用形式,如: ∵ DE 是△ABC 的中位线∴ DE ∥BC ,BC DE 21第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理.题1 如图4。
中位线定理证明方法

中位线定理证明方法嘿,朋友们!今天咱就来唠唠中位线定理的证明方法。
啥是中位线定理呢?简单来说,就是三角形中位线平行于第三边,并且等于第三边的一半。
这可太重要啦,就好像是打开几何大门的一把小钥匙呢!咱先来看一种证明方法。
想象一下,有个三角形 ABC,DE 是中位线,那咱就把这个三角形复制一份,翻转过来,和原来的三角形拼在一起。
哇塞,你瞧,这时候 DE 不就变成了一个平行四边形的一条边嘛!根据平行四边形的性质,那它自然就平行于第三边 BC 啦,而且长度不就是 BC 的一半嘛!是不是很神奇呀?再有一种方法,咱可以过点 C 作一条和中位线 DE 平行的直线,然后延长中位线 DE 交这条直线于点 F。
嘿嘿,这时候就会发现一些奇妙的关系呢。
通过一系列的角度相等、边相等的推导,就能得出中位线定理啦。
还有啊,我们可以利用相似三角形来证明呢。
中位线把三角形分成了几个小三角形,这些小三角形和原来的大三角形是相似的哟!通过相似比,就能轻松证明中位线定理啦。
哎呀,这中位线定理的证明方法可真是多种多样,就像生活中的路一样,有好多条可以走呢!每种方法都有它独特的魅力和乐趣。
大家想想,要是没有中位线定理,我们在解决几何问题的时候得多费劲呀!它就像是一个得力的小助手,能帮我们快速找到答案。
所以啊,可得好好掌握中位线定理的证明方法,这可是我们探索几何世界的重要工具呢!以后遇到相关问题,就可以轻松应对啦,难道不是吗?总之呢,中位线定理证明方法虽然有点小复杂,但只要我们用心去理解、去尝试,就一定能搞明白。
就像攻克一座小山,虽然有点累,但登顶之后的那种成就感,那可真是无与伦比呀!加油吧,朋友们,让我们在中位线定理的世界里畅游吧!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中位线定理的证明及其教学说明一、三角形中位线定理的几种证明方法,则,,使,连结CF法1:如图所示,延长中位线DE至F DF
FC
BCFD 是平行四边形,BD,则四边形BC有AD
FC,所以。
因为1DE
,所以.BC 2,有F,则作FC
交DE的延长线于法2C
因为,DF
BC。
为平行四边形,AD,那么BDFC ,则四边形BCFD1.所以DE
BC 2
,连接CF、DC、AF,则四边形ADCF至法3:如图所示,延长DEF,使BD,那么四边形BCFDCFAD
,所以FC
为平行四边形,为平行四边形,有1BC.DE
,所以BCDF 。
因为2
法4:如图所示,过点E作MN∥AB,过点A作AM∥BC,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都
CENAEM 1。
DEDE∥BC,即DE=AM=NC=BN为平行四边形,所以,BC
2
法5:如图所示,过三个顶点分别向中位线作垂线.
二、教学说明
1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”
在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?
A BEDC
图⑴:
⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?
A
ED
BC
图⑵:,上时A的顶点运动到直线BC说明:学生观察(几何画板制作的)课件演示:当△ABC上,这样由“二维”转化为“一维”,学生就不难猜想性质的BC 中位线DE也运动到如果教师直接叫学.两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.
生去度量角度和长度,是强扭的瓜不甜、教学重点:本课重点是掌握和运用三角形中位线定理。
2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。
第二,要知道中位线定理的使用形式,如:
A DE是△ABC的中位线∵
ED1BCDE ,BC∥∴ DE2CB.
第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理。
题1 如图4.11-7,Rt△ABC,∠BAC=90°,D、E分别为AB,BC的中点,点F 在CA延长线上,∠FDA=∠B.
(1)求证:AF=DE;(2)若AC=6,BC=10,求四边形AEDF的周长.
分析本题是考查知识点较多的综合题,它不但考查应用三角形中位线定理的能力,而且还考查应用直角三角形和平行四边形有关性质的能力。
(1)要证AF=DE,因为它们刚好是四边形的一组对边,这就启发我们设法证明AEDF是平行四边形.因为DE是三角形的中位线,所以DE∥AC.又题给条件∠FDA =∠B,而在Rt△ABC中,因AE是斜边上的中线,故AE=EB.从而∠EAB=∠B.于是∠EAB=∠FDA.故得到AE∥DF.所以四边形AEDF为平行四边形.
1122AC=,5DE3.
,的周长,关键在于求 (2)要求四边形AEDFAE和DEAE==BC=证明:(1)∵D、E分别为AB、BC的中点,
∴DE∥AC,即DE∥AF
∵Rt△ABC中,∠BAC=90°,BE=EC
12,∠EAB=∠BBC=EB∴EA=
又∵∠FDA=∠B,
∴∠EAB=∠FDA
∴EA∥DF,AEDF为平行四边形
∴AF=DE
(2)∵AC=6,BC=10,
1122BC=AE5
∴DE==AC=3,∴四边形AEDF的周长=2(AE+DE)=2(3+5)=16
题2 如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,延长BA 和CD分别与EF的延长线交于K、H。
求证:∠BKE=∠CHE.
分析本题考查三角形中位线的构造方法及应用、平行线的性质.由中点想到中位线,又要把结论联系起来,既要使中位线的另一端点处一理想的位置,又使需证明的角转移过来,可考虑,连BD,找BD中点G,则EG、FG分别为△BCD、△DBA的中位线,于是得到了解题方法.考虑到结论辅助线不要乱作,取中点比作平行线好.
证明:连BD并取BD的中点G,连FG、GE
在△DAB和△BCD中
∵F是AD的中点,E是BC的中点
1122DC
=EG且,EG∥DCAB=FG且∴FG∥AB.
∴∠BKE=∠GFE,∠CHE=∠GEF
∵AB=CD ∴FG=EG
∴∠GFE=∠GEF ∴∠BKE=∠CHE
题3 如图, ABCD为等腰梯形,AB∥CD,O为AC、BD的交点,P、R、Q分别为AO、DO、BC的中点,∠AOB=60°。
求证:△PQR为等边三角形.
分析本题考查三角形中位线定理、等边三角形判定方法、直角三角形斜边中线定12AD,能否把PQ、RQ理。
利用条件可知PR与=AD(BC)联系起来成为解题的关键,由于∠AOB=60°,OD=OC,则△ODC为等边三角形,再由R为OD中点,则∠BRC=90°,QR就为斜边BC的中线.
证明:连RC,∵四边形ABCD为等腰梯形且AB∥DC
∴AD=BC ∠ADC=∠BCD
又∵DC为公共边∴△ADC≌△BCD
∴∠ACD=∠BDC ∴△ODC为等腰三角形
∵∠DOC=∠AOB=60°∴△ODC为等边三角形
∵R为OD的中点
)
∴∠ORC=90°=∠DRC(等腰三角形底边上的中线也是底边上的高.
1122AD
∴RQ==∵Q为BC的中点 BC1122AD
BC同理PQ==在△OAD中∵P、R分别为AO、OD的中点
12AD ∴PR=PQ=RQ
∴PR=故△PRQ为等边三角形
3、教学难点:本课难点是三角形中位线定理的证明,证明方法的关键在于如何添加辅助线.
教师可以在证明思路上进行引导、启发,避免生硬地将辅助线直接作出来让学生接受。
例如,教师可以启发学生:要证明一条线段的长等于另一条线段的长的一半,可将较短的线段延长一倍,或者截取较长的线段的一半。
上面的这种辅助线的作法可以概括为“短延长、长截短”,这种辅助线的作法还可以用于证明线段和、差、倍、分等方面。
证明线段的和、差、倍、分常用的证明策略:
1,长截短:要证明一条线段等于另外两条线段的和与差,可在长线上截取一部分等于另两条线段中的一条,然后再证明另一部分等于剩下的一条线段的长。
(角也亦然)
2,短延长:要证明一条线段等于另外两条线段的和与差,可先延长较短的一条线段,得到两条线段的和,然后再证明其与长的线段相等。
(角也这样)
3,加倍法:要证明一条线段等于另一条线段的2倍或1/2,可加倍延长线段,延长后使之为其2倍,再证明与另一条线段相等。
(角也这样)
4,折半法:要证明一条线段等于另一条线段的2倍或1/2,也可取长线段的中点,再证明其中之一与另一条线段相等。
(角也可用)
代数运算推理法:这种方法是利用代数运算证明线段或角的和、差、倍、分。
,5.
6,相似三角形及比例线段法:利用相似三角形的性质进行推理论证。
题1(短延长):如图所示,在正方形ABCD中,P、Q分别为BC、CD上的点。
?PAQ=45°,求证:PB+DQ=PQ。
(1)若?PAQ=45°的周长等于正方形周长的
一半,求证:)若△(2PCQ A D
Q
B P C
证明:(1)延长CB至E,使BE=DQ,连接AE。
∵四边形ABCD是正方形
???D=90°,∴ABC=ABE=AB=AD
在△ABE和△ADQ中
??D,AB=AD,BE=DQ
ABE= ∵??ABE??ADQ?AE?AQ,?BAE??QAD?PAQ?°45 ??BAP??QAD?45°
??BAP??BAE?45°,即?EAP??PAQ?45°
在?AEP和?AQP中AEAQ,EAPPAQ,
APAP? ??????AEP??AQP?EP?PQ?EP?EB?BP?DQ?BP?PQ即PB?DQ?PQ
A D
Q
E B P C
(2)延长CB至E,使BE=DQ,连接AE
?ABE??ADQ)可知由(1
?AE?AQ,?BAE??QAD??DAQ??BAQ??BAE??BAQ?90°?PCQ的周长等于正方形周长的一半 ?PC?QC?QP?BC?CD?PQ?(BC?PC)?(CD?QC)?BP?DQ?BP?EB?EP在?AEP和?AQP 中AE?AQ,EP?PQ,AP?AP ??AEP??AQP??EAP??PAQ?45°
A(长截短):如题2
ABC图,在△中,∠B=243的平分线∠CAD交,∠AAC=AB+BD
DBC于。
证:求O12BDC.
证明:在AC上截取OA=AB,连接OD,∵∠3=∠4,AD=AD
∴△ABD≌△AOD,∴BD=DO
∴∠B=∠1=∠2+∠C= 2∠C
∴∠2=∠C
∴OD=OC=BD
∴AC=OA+OC=AB+BD。