1.2基本逻辑连接词
高中数学(各版本教材目录)

高中数学各版本新教材目录体系比较第三章统计案例§1 回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析阅读材料高尔顿与回归§2 独立性检验2.1条件概率与独立事件阅读材料概率与法庭2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用《数学选修4-1 几何证明选讲》第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质《数学选修4-2 矩阵与变换》第一章平面向量与二阶方阵§1平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章几何变换与矩阵§1几种特殊的矩阵变换§2矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2矩阵乘法的性质第四章逆变换与逆矩阵§1逆变换与逆矩阵§2初等变换与逆矩阵§3二阶行列式与逆矩阵§4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1矩阵变换的特征值与特征向量§2特征向量在生态模型中的简单应用《数学选修4-4坐标系与参数方程》第一章坐标系§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质《数学选修4-5不等式选讲》第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利不等式。
高中数学详细目录章节

高中数学目录数学必修1第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6函数模型及其应用数学必修2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离数学必修3第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归方程第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学必修4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式 数学必修5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修1-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用选修1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图选修2-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用选修2-2第1章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义选修2-3第1章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析4.4聚类分析。
高中数学目录

第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数I2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂.指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与-元二次方程用二分法求方程的近似解2.6函数模型及其应用数学2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离数学3第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归访程.第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式数学5.第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式题13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修系列11-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1保数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算第4章框图4.1流程图5.2结构图选修系列22-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用2-2第1章导数及其应用1.导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义2-3第1章计数原理1.1两个基本原理. 1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布.第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析3.4聚类分析。
conj的用法

conj的用法一、什么是连词(conj)?连词(conjunction)是用来连接句子、短语或单词的一类词语。
它们在句子中起到将不同的元素组合在一起、构建上下文关系的作用。
连词可以连接并列部分、引导从句或表达转折等关系。
正确使用连词能够使文章通顺,逻辑清晰。
二、并列连词1.1 正义连词“and”正义连词“and”常用于将两个相似或相关的部分连接在一起。
它表示添加信息,并列列举事物,与前后内容无明显转折关系。
例句:She is intelligent and diligent.她聪明且勤奋。
1.2 转折连词“but”转折连词“but”常用于引出对比的情况,表示前后两个部分具有相反或对立关系。
例句:He is rich, but he is not happy.他富有,但不快乐。
1.3 选择连词“or”选择连词“or”用来提供选择项,并表示其中一个成立即可。
例句:You can have coffee or tea.你可以喝咖啡或茶。
三、从属连词2.1 引导陈述从句的从属连词2.1.1 引导原因状语从句的从属连词“because”“because”用来引导陈述原因的从句。
例句:I stayed home because it was raining.我待在家里是因为下雨了。
2.1.2 引导结果状语从句的从属连词“so”“so”用来引导陈述结果的从句。
例句:He studied hard, so he got a high score.他努力学习,所以取得了高分。
2.1.3 引导条件状语从句的从属连词“if”“if”用来引导陈述条件的从句。
例句:If you don't hurry, you will miss the train.如果你不赶快,就会错过火车。
2.2 引导名词性从句的从属连词2.2.1 引导主语从句的从属连词“that / what / if / whether”这些连词常用于引导主语从句,作为整个主语部分出现在一个完整主谓结构中。
高中数学必修一知识点总结归纳

高中数学必修一知识点总结归纳引言高中数学必修一通常涵盖了代数、函数、几何等多个基础数学领域,为学生进一步学习数学打下坚实的基础。
一、代数基础1.1 集合论概念:集合的表示、子集、并集、交集、补集。
1.2 逻辑用语逻辑连接词:与、或、非、蕴含、当且仅当。
1.3 不等式解法:一元一次不等式、一元二次不等式的解法。
二、函数2.1 函数的概念定义:函数的定义、定义域、值域。
2.2 函数的性质性质:单调性、奇偶性、周期性、有界性。
2.3 反函数概念:反函数的定义、性质及求法。
2.4 复合函数运算:复合函数的定义、运算法则。
2.5 函数图像绘制:函数图像的绘制方法和变换规律。
三、解析几何3.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
3.2 直线的方程形式:直线的点斜式、斜截式、一般式。
3.3 圆的方程形式:圆的标准方程、一般方程。
3.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
四、算法初步4.1 算法的概念定义:算法的定义、特征。
4.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。
4.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。
五、统计5.1 随机事件与概率概念:随机事件的定义、概率的计算方法。
5.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。
5.3 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。
5.4 统计图类型:条形图、直方图、饼图的绘制与解读。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。
6.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。
七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。
7.2 证明的方法步骤:直接证明、间接证明、反证法的一般步骤。
7.3 证明的策略技巧:构造法、归纳法、演绎法在证明中的应用。
史上最全雅思写作逻辑连接词

史上最全雅思写作逻辑连接词史上最全雅思写作逻辑连接词因为雅思作文重在论述,论述重在逻辑,逻辑的表现就是逻辑连接词。
灵活而不重样地使用这些词汇,即代表着语法的游刃有余,也代表着逻辑的清晰明了。
ART 1逻辑连接词##1.1 让步###1. Despite+n/ving = in spite of 尽管. (不能加句子)Despite the fact that + 句子(太累赘)Despite myself, 。
情不自禁地。
Her words were so satirical(讽刺的)that I lost my temper in spite ofmyself。
2. Although(更书面)= though(更口语) =even if (即使,更偏假设性)=eventhough(虽然,更偏事实性)+句子注:不能与but连用。
Devoted though we are to prosperity and freedom, we cannot shakeoff the judgmental strand of justice.用倒装3. No matter how/what/who等= 疑问句+everNo matter who/Whoever you are, you must keep the law.注意:疑问句+ever 可以引导名词性从句Whoever(≠ no matter who)comes will be welcome.4. 。
, as long as。
You can do what you want, as long as you like.5. 名词/表语/动词+ as(though)倒装,。
,表“纵使”Object as/though you may, I’ll go。
Small as atoms are, they are made up of still smaller units。
离散数学 第3章 基于归结原理的推理证明

7
3.1.1.2 斯柯林(Skolem)标准范式
定义 3.1.2 从前束范式中消去全部存在量词所得到的公式即为 Skolem 标准范式。 例如,如果用 Skolem 函数 f(x)代替前束形范式 x (y)(z)( P( x) F ( y, z) Q( y, z)) 中 的 y 即得到 Skolem 标准范式: ( x) ( z)(P(x)∧F(f(x), z)∧Q(f(x), z)) Skolem 标准型的一般形式是
(x1 )(x2 )...(xn )M ( x1, x2 ,...,xn )
其中,M(x1,x2,…,xn)是一个合取范式,称为 Skolem 标准型的母式。
8
将谓词公式 G 化为 Skolem 标准型的步骤如下: (1)消去谓词公式 G 中的蕴涵(→)和双条件符号() ,以A∨B 代替 A→B,以(A∧ B)∨(A∧B)替换 AB。 (2)减少否定符号()的辖域,使否定符号“”最多只作用到一个谓词上。 (3)重新命名变元名,使所有的变元的名字均不同,并且自由变元及约束变元亦不同。 (4)消去存在量词。这里分两种情况,一种情况是存在量词不出现在全称量词的辖域内,此 时,只要用一个新的个体常量替换该存在量词约束的变元,就可以消去存在量词;另一种情况 是,存在量词位于一个或多个全称量词的辖域内,这时需要用一个 Skolem 函数替换存在量词 而将其消去。
15
例 3.2.1 求子句集 S={T(x)∨Q(z),R(f(y))}的 H 域。 解 此例中没有个体常量,任意指定一个常量 a 作为个体常量;只有一个函数 f(y),有: H0={a} H1={a,f(a)} H2={a,(a),f(f(a))} …… H∞={a,f(a),f(f(a)),f(f(f(a))),…}
离散数学 第3章 基于归结原理的推理证明

4
第三章:基于归结原理的推理证明
主要内容:谓词公式与子句集的概念,斯柯林(Sko
lem)标准范式及其求取过程,海伯伦(Herbrand) 理论的H域及其解释,置换与合一,命题和谓词归结 原理,归结过程的控制策略。
教学要求:深刻理解和掌握归结原理的基本概念
和基本归结过程。
重点:归结原理的基本概念和基本归结方法 难点:归结原理的实现方法 。 实践活动:归结原理的程序实现
离散数学讲义之
数理逻辑
主讲:邱晓红
数理逻辑简介
• 数理逻辑是用数学方法研究形式逻辑的科学。 数学方法即符号方法,故数理逻辑又称符号 逻辑。包含命题逻辑、谓词逻辑、证明论、 模型论、递归函数、公理化集合论、归纳逻 辑、模态逻辑、多值逻辑和时态逻辑等内容, 与计算机有密切关系。
2
各知识点关联图
命题逻辑 简单命题 命题 复合命题 对偶式 命题公式 真值表 主合取范式 主析取范式 合取范式 析取范式 蕴含式 前提引入 P 规则 置换等 T 规则 推理规则 推理系统 置换 归结原理 自动推理 合一 量词引入规则 量词消去规则
9
(5)把全称量词全部移到公式的左边,并使每个量词的辖域包括这个量词后面公式的整 个部分。 (6)母式化为合取范式:任何母式都可以写成由一些谓词公式和谓词公式否定的析取的 有限集组成的合取。 需要指出的是,由于在化解过程中,消去存在量词时作了一些替换,一般情况下,公式 G 的 Skolem 标准型与 G 并不等值。
(x1 )(x2 )...(xn )M ( x1, x2 ,...,xn )
其中,M(x1,x2,…,xn)是一个合取范式,称为 Skolem 标准型的母式。
8
将谓词公式 G 化为 Skolem 标准型的步骤如下: (1)消去谓词公式 G 中的蕴涵(→)和双条件符号() ,以A∨B 代替 A→B,以(A∧ B)∨(A∧B)替换 AB。 (2)减少否定符号()的辖域,使否定符号“”最多只作用到一个谓词上。 (3)重新命名变元名,使所有的变元的名字均不同,并且自由变元及约束变元亦不同。 (4)消去存在量词。这里分两种情况,一种情况是存在量词不出现在全称量词的辖域内,此 时,只要用一个新的个体常量替换该存在量词约束的变元,就可以消去存在量词;另一种情况 是,存在量词位于一个或多个全称量词的辖域内,这时需要用一个 Skolem 函数替换存在量词 而将其消去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x = −3 y = −9
六、课堂小结 (1) “p且q” 与“p 或q”的含 ) 且 的含
义) (2)“p且q” 与“p 或q”真假命题的判断 且 真假命题的判断 同真为真, “p且q” 形式的命题当 、q同真为真,其余为 且 形式的命题当p、 同真为真 假. 或q” 形式的命题当 、q 同假为假,其余为 形式的命题当p 同假为假, “p 真 真值表的应用 (3) .
{ (3)p:1∈{1,2} ,q:1} ⊆ {1,2} . ) : ∈ :
(4)p:∅ ⊆ {0} ,q: ∅ = {0} . ) : :
例2:指出下列命题的形式及构成它的命题, 2:指出下列命题的形式及构成它的命题 指出下列命题的形式及构成它的命题, 并判断真假。 并判断真假。
(1)p:矩形的对角线互相平分且相等。 (2) q:1既不是合数也不是质数。 (3) s:∀m ∈ R, m ≥ m (4) t:28既是2的倍数也是7的倍数。 (5) a : 10 ≥ 9
1.2 1.2
基本逻辑联结词
一、复习引入
1、命题的概念与判断
2、已知下列命题: (1)p:矩形的对角线互相平分且相等。 ( ) q:1既不是合数也不是质数。 2 (3) s:∀m∈ R, m ≥ m (4) t:28既是2的倍数也是7的倍数。
(1)(2)(3)(4) 真命题的序号为_______
二预习提示
2
求使“p ∧ q”为真命题的点A(x,y )。
解:若p ∧ q为真命题,则p, q都为真命题。 ∴点A既在直线y = 2 x上,也在曲线y = − x 2上。 y = 2x − 3 ∴ 2 y = −x x = 1 解之得: 或 y = −1 ∴ A(1, −1)或A(−3, −9)
(6)
b:
y=cosx是周期函数也是奇函数
五、应用 1、一次射击试验,小王连续射击两次,设 命题 一次射击试验,小王连续射击两次, p: “第一次击中目标”,命题q: “第二次击中目 “第一次击中目标 第一次击中目标” 命题q: “第二次击中目 标” 试用p 试用p, q及“或”与“且”表示下列命题 (1)两次都射中目标 (2)至少有一次射中目标
∨ 2、或:记为“ 记为“
”
一般地,用连接词“ 连接起来, 一般地,用连接词“或”把两个命题p,q连接起来, 把两个命题p,q连接起来 所得到的新命题记作“ ∨ q”,读作“ 所得到的新命题记作“p q”,读作“p或q” 可类比集合中的“ 可类比集合中的“并” 。
注意:“ 注意:
∨
∧ ”,“
”仅为一种表示符号。 仅为一种表示符号。
正用:由p 、q 的真假判断“p且q” 与“p 或q” 的真假判断“ 且逆用: 的真假判断p 逆用:由“p且q” 与“p 或q” 的真假判断 、q 且 的真假,(应用3) 的真假,(应用 ) ,(应用
p
真值表 真 真 假 假
真命题 真命题 假命题
q
真 假 真 假
p 或q
真 真 真 假
S1
电路图表示: 电路图表示:
S2
四、典型例题
例1.分别指出由下列各组命题构成的“p或q”, “p且q”, .分别指出由下列各组命题构成的“ 或 , 且 , 并判断命题的真假: 并判断命题的真假: (1)p:3=2,q:3>2. ) : , : > . 是质数, : 是 的约数 的约数. (2)p:9是质数,q:8是12的约数. ) : 是质数
1、回忆集合中 A U B 与 A I B 的含义,并 的含义, 用韦恩图表示。 用韦恩图表示。 2、预习课本找出“且”与“或”的含义并 预习课本找出“ 记住表示符号及其判断真假的方法。 记住表示符号及其判断真假的方法。 3、 用 “ 判断真假
∧
”与“
∨
”连接两个命题并 q: 2是质数 2是质数 q: 6<4 q:8+5=12
2、已知命题p : 若xy = 0, 则x + y = 0
2 2
命题q : 若x + y = 0, 则xy = 0
2 2
判断命题p ∧ q, p ∨ q的真假。
析:
p: q: p∧q: p∨q:
假命题 真命题 假命题 真命题
3、p : 点A在直线y = 2 x − 3上, q : 点A在曲线y = − x 上
() 析: 1 p ∧ q :2既是偶数又是质数
真命题 假命题 假命题
(2)p ∧ q : 2+2=4且6<4
( )p ∧ q : 6 < 4且8+5= 3 12
真值表: 真值表:
p
真 真 假 假
q
真 假 真 假
S1
p 且q 真 假 假 假
S2
电路图表示: 电路图表示:
( 析: 1)p ∨ q : 2是偶数或是质数 (2)p ∨ q : 2+2=4或6 < 4 (3)p ∨ q : 6 < 4或 8+5=12
(1)p: 2是偶数 2是偶数 (2)p:2+2=4 (3) p:6<4
三、知识讲解
∧ 1、且: “并且”、“和”,记为“ 并且” 记为“
”
一般地,用连接词“ 把两个命题p,q连接起来 连接起来, 一般地,用连接词“且”把两个命题p,q连接起来, 所得到的新命题记作“ ∧ q”,读作 读作“ 所得到的新命题记作“p q”,读作“p且q” 可类比集合中的“ 可类比集合中的“交” 。