数学随机事件与概率知识点归纳

合集下载

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。

高二数学随机事件的概率知识精讲

高二数学随机事件的概率知识精讲

高二数学随机事件的概率【本讲主要内容】随机事件的概率事件的定义、随机事件的概率、概率的性质、基本事件、等可能性事件、等可能性事件的概率【知识掌握】【知识点精析】1. 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件。

随机现象的两个特征⑴结果的随机性:即在相同的条件下做重复的试验时,如果试验的结果不止一个,则在试验前无法预料哪一种结果将发生。

⑵频率的稳定性:即大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。

这一常数就成为该事件的概率。

2. 随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()P A。

理解:需要区分“频率”和“概率”这两个概念:(1)频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的随机事件出现的可能性。

(2)概率是一个客观常数,它反映了随机事件的属性。

大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。

这一常数就成为该事件的概率。

3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。

4. 概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A≤≤,必然事件和不可能事件看作随机事件的两个极端情形。

5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件。

例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成)。

6. 等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件。

概率论知识点

概率论知识点

第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间: 概率论术语。

我们将随机试验E 的一切可能结果组成的集合称为E 的样本空间,记为Ω。

样本空间的元素,即E 的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E 的样本空间Ω的子集为E 的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A 与事件B 不可能同时发生,亦即ΦB A = ,则称事件A 与事件B 是互斥(或互不相容)事件。

互逆事件: 事件A 与事件B 满足条件ΦB A = ,Ω=B A ,则称A 与B 是互逆事件,也称A 与B 是对立事件,记作A B =(或B A =)。

互不相容完备事件组:若事件组n A A A ,,21满足条件ΦA A j i = ,(n 1,2j i, =),Ω== n 1i i A,则称事件组n A A A ,,21为互不相容完备事件组(或称n A A A ,,21为样本空间Ω的一个划分)。

概率论重要知识点总结

概率论重要知识点总结

概率论重要知识点总结概率论重要知识点总结第一章随机事件及其概率第一节基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。

必然事件:在试验中必然出现的事情,记为Ω。

样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间.样本空间用Ω表示.一个随机事件就是样本空间的一个子集。

基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B包含A,记为,则称事件A与事件B相等,记为A=B。

事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B事件的积:称事件“事件A与事件B都发生”为A或AB。

事件的差:称事件“事件A发生而事件B不发生”为事件A与事件B的差事件,记为A-B。

用交并补可以表示为互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。

互斥时可记为A+B。

对立事件:称事件“A不发生”为事件A的对立事件(逆事件),记为A。

对立事件的性质:事件运算律:设A,B,C为事件,则有:(1)交换律:AB=BA,AB=BAA(BC)=(AB)C=ABC(3)分配律:A(BC)=(AB)(AC)ABAC(4)对偶律(摩根律):第二节事件的概率概率的公理化体系:第三节古典概率模型1、设试验E是古典概型,其样本空间Ω个样本点组成.则定义事件A的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的相互独立:若两事件A、B满足P(AB)=相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)=相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)=两两独立独立的性质:若A均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。

数学中的随机事件与概率

数学中的随机事件与概率

数学中的随机事件与概率在数学中,随机事件和概率是重要的概念,它们与我们日常生活息息相关。

从抛硬币、掷骰子到彩票抽奖,随机事件无处不在。

概率则是对这些随机事件的发生可能性进行量化和描述的工具。

本文将探讨数学中的随机事件与概率,并详细介绍它们的定义、性质和应用。

一、随机事件的定义在数学中,随机事件是指具有不确定性的事件。

简单来说,它是指在一定条件下,可能发生也可能不发生的事件。

例如,抛一枚硬币,正面朝上和反面朝上都是可能发生的结果,因此抛硬币的结果就是一个随机事件。

二、概率的定义概率是对随机事件发生可能性的一种量化描述。

用来衡量事件发生的可能性大小。

概率的取值范围为0到1之间,其中0代表不可能事件,1代表必然事件。

如果一个事件的概率为0.5,则表示事件发生与不发生的可能性相等。

三、随机事件和概率的性质1. 互斥事件:两个事件不能同时发生,则称这两个事件为互斥事件;例如掷骰子得到偶数和得到奇数。

2. 对立事件:两个事件互为对立事件,是指两个事件中必有一个发生,且两个事件同时不可能发生;例如抛硬币得到正面朝上和得到反面朝上。

3. 加法法则:当两个事件互斥时,它们发生的概率可以相加;例如抛一枚硬币,得到正面朝上的概率加上得到反面朝上的概率等于1。

4. 乘法法则:当两个事件相互独立时,它们同时发生的概率可以相乘;例如掷一个骰子,第一次得到1的概率乘上第二次得到2的概率为总体得到1和2的概率。

四、随机事件与概率的应用随机事件和概率在现实生活中有广泛的应用,下面列举几个典型的例子:1. 游戏与赌博:掷骰子、抽奖和扑克等游戏都涉及到随机事件和概率。

玩家可以根据事件的概率来制定游戏策略,增加自己的获胜概率。

2. 保险与风险评估:保险公司利用概率统计的方法评估风险,确定保险费用和理赔金额。

这些概率模型可以帮助公司合理分配风险,并为客户提供合适的保险计划。

3. 金融与投资:投资者可以利用概率模型对股票、债券等金融产品进行风险评估和收益预测。

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。

小学数学概率知识点总结

小学数学概率知识点总结

小学数学概率知识点总结一、概率的基本概念1. 随机事件随机事件是指在一定条件下,可能发生也可能不发生的事件,比如掷硬币得到正面、掷色子得到点数等等。

2. 样本空间样本空间是指所有可能结果的集合,用S表示。

3. 事件的概率在所有可能结果中,一个事件发生的概率就是这个事件发生的次数和总次数的比值。

在数学中,概率用P(A)表示,其中A为事件。

4. 互斥事件互斥事件是指两个事件不可能同时发生,比如掷色子得到奇数和偶数。

5. 独立事件独立事件是指一个事件的发生不受另一个事件的影响,比如抛硬币得到正面和掷色子得到5点。

二、概率的计算1. 概率的计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A的概率,n(A)表示事件A的发生次数,n(S)表示样本空间中所有可能结果的总次数。

2. 互斥事件的概率如果两个事件是互斥事件,那么它们的概率之和等于1,即P(A) + P(B) = 1。

3. 独立事件的概率如果两个事件是独立事件,那么它们同时发生的概率等于各自事件的概率之积,即P(A并B) = P(A) * P(B)。

4. 复合事件的概率复合事件是由多个事件组成的事件,比如掷色子得到奇数并且抛硬币得到正面。

对于复合事件的概率计算,需要根据具体情况分析。

三、概率在日常生活中的应用1. 游戏中的概率在游戏中,比如抛硬币、掷骰子、抽卡等等,概率是一个非常重要的概念。

孩子们可以通过这些游戏,了解到概率的基本概念和计算方法。

2. 概率在抽奖中的应用在抽奖活动中,我们经常会听到“中奖概率”这个词。

概率可以帮助我们计算出中奖的可能性,从而在抽奖活动中做出合理的选择。

3. 概率在生活中的应用比如天气预报、疫情预测等等,都离不开概率的计算。

通过学习概率,孩子们可以更好地理解这些实际问题,并做出科学的判断。

四、小学生学习概率的方法1. 游戏教学法通过一些有趣的游戏,比如投掷色子、抛硬币等等,可以让孩子们在游戏中体验到概率的乐趣,从而更好地理解概率的概念和运用。

必修第二册第十章概率(随机事件与概率、事件的相互独立性)知识点

必修第二册第十章概率(随机事件与概率、事件的相互独立性)知识点

第十章概率一、随机事件与概率(1)有限样本空间与随机事件1.随机试验我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.常见随机试验:(1)试验可以在相同条件下重复进行(2)试验的所有可能结果是明确可知的,并且不止一个(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果2.样本空间我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间,一般地,用ω表示样本空间,用の表示样本点,如果一个随机试验有个可能结果,则称样本空间Ω={ω1,ω2,…ωn}为有限样本空间3.随机事件、确定事件(1)一般地,随机试验中的每个随机事件都可以用这个试验的样本空间的子集来表示,为了叙述方便,我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.当且仅当A中某个样本点出现时,称为事件A发生(2) Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件(3)空集不包含任何样本点,在每次试验中都不会发生,我们称为为不可能事件.(4)确定事件:必然事件和不可能事件统称为相对随机事件的确定事件.我们将样本空间2的子集称为随机事件,简称事件,并把只包含一个样本点的事件1.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为()A. ①B. ②C. ③D. ④2.盒子内有3个红球,2个白球,1个黑球,从中任取2个球,则下列选项中的两个事件互斥而不对立的是()A. 至少有1个白球,至多有1个白球B. 至少有1个白球,至少有1个红球C. 至少有1个白球,没有白球D. 至少有1个白球,红、黑球各1个3.许洋说:“本周我至少做完三套练习题.”设许洋所说的事件为A,则A的对立事件为()A. 至多做完三套练习题B. 至多做完两套练习题C. 至多做完四套练习题D. 至少做完两套练习题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学随机事件与概率知识点归纳
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;
(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则
P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.
当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.。

相关文档
最新文档