第11课时一次函数

合集下载

中考复习第11课时一次函数的应用课件

中考复习第11课时一次函数的应用课件
y=20x-10, x=1.75, ∴ 解得 ∴交点 y = 60 x - 80 , y = 25.
F 的坐标为(1.75,25).
答:小明出发 1.75 小时(105 分钟)被妈妈追上,此时离家 25 km.
考点聚焦
豫考探究
当堂检测
第11课时┃一次函数的应用
(3) 方法一:设从家到乙地的路程为 m km. 则点 E(x1,m),点 C(x2,m)分别代入 y=60 x-80 ,y=20 x- m+80 m+10 10 ,得 x1= ,x2= . 60 20 m+10 m+80 1 10 1 ∵x2-x1= = ,∴ - = .∴m=30. 60 6 20 60 6 方法二:设从妈妈追上小明的地点到乙地的路程为 n km, n n 10 由题意得 - = , 20 60 60 ∴n=5. ∴从家到乙地的路程为 5+25 =30( km).
考点聚焦 豫考探究 当堂检测
买 2 个 A 品牌和 3 个 B 品牌的计算器共需 156 元;购买 3 个 A 品牌和 1
第11课时┃ 一次函数的应用 解
(1) 设 A 品牌计算器的单价为 x 元,B 品牌计算器的单价 2x+3y=156, x=30, 为 y 元,则由题意 ,得 解得 3x+y=122, y=32. 即 A,B 两种品牌计算器的单价分别为 30 元,32 元. (2) 由题意可知 y1=0.8 ×30x,即 y1=24x,当 0≤x≤5 时,y2 =32x,当 x>5 时,y2=32×5+32( x-5)×0.7 ,即 y2=22.4 x+48. (3) 当购买数量超过 5 个时,y2=22.4 x+48. ①当 y1<y2 时,24x<22.4 x+48,∴x<30 ,即当购买数量超过 5 个而不足 30 个时,购买 A 品牌的计算器更合算; ②当 y1=y2 时,24x=22.4 x+48,∴x=30,即当购买数量为 30 个时,购买两种品牌的计算器花费相同. ③当 y1>y2 时,24x>22.4 x+48,∴x>30 ,即当购买数量超过 30 个时,购买 B 品牌的计算器更合算.

人教版数学九年级上册第11节 一次函数的图象和性质-课件

人教版数学九年级上册第11节 一次函数的图象和性质-课件
(2)当x=a时,yc=2a+1,当x=a时,yD=4-a. ∵CD=2,
∴|2a+1-(4-a)|=2,解得a=13或a=53. ∴a的值为13或53
10.如图,直线l1:y=x+3与直线l2:y=ax+b相交于点 A(m,4).
(1)求出m的值; y=x+3,
(2)观察图象,请你直接写出关于x,y的方程组 y=ax+b 的 解和关于x的不等式x+3≤ax+b的解集.
(2)如图,直线l1即为所求,直线l1的解析式为y=-2x+2+4 =-2x+6,故答案为:y=-2x+6
(3)如图,直线l2即为所求, ∵直线l绕点A顺时针旋转90°得到l2, 易证∠OBA=∠CAD,
∴tan∠CAD=tan∠OBA=OOAB=12
12.如图,已知直线y=x+3与x轴、y轴交于A,B两点,直线l经过原点, 与线段AB交于点C,把△AOB的面积分为2∶1的两部分,求直线l的解析 式.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/152021/8/152021/8/152021/8/158/15/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月15日星期日2021/8/152021/8/152021/8/15 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/152021/8/152021/8/158/15/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/152021/8/15August 15, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/152021/8/152021/8/152021/8/15

【2014中考复习方案】(河北专版)中考数学复习权威课件:第11课时 一次函数的应用(含13年试题)

【2014中考复习方案】(河北专版)中考数学复习权威课件:第11课时 一次函数的应用(含13年试题)
90=1.5 k′+b, ∴ 170 =2.5 k′+b,
解之,得 k′=80,b=-30. ∴y=80x-30(1.5 ≤x≤2.5) . (3) 当 x=2 时,y=80×2-30=130,170 -130 =40. ∴他们出发 2 小时时,离目的地还有 40 千米.
冀考解读
考点聚焦
房款 y 万元,请求出 y 关于 x 的函数表达式; 房款为 y 万元,且 57 <y≤60 时,求 m 的取值范围.
冀考解读
考点聚焦
冀考探究
第11课时┃一次函数的应用
解 (1) 三口之家应缴购房款为 0.3 ×90 + 0.5 ×30 =42( 万元). (2) ①当 0≤x≤30 时,y=0.3 ×3x=0.9 x; ②当 30 < x≤m 时, y= 0.9 ×30 + 0.5 ×3×(x- 30) = 1.5 x-18 ; ③当 x>m 时,y=1.5 m-18 +0.7 ×3×(x-m)=2.1 x -18 -0.6 m. 0.9 x(0≤x≤30 ), ∴y=1.5 x-18 (30< x≤m), 2.1 x-18 -0.6 m(x>m,45 ≤m≤60 ).
冀考解读
考点聚焦
冀考探究
第11课时┃一次函数的应用
探究二 利用一次函数解决分段收费问题
命题角度: 1.利用一次函数解决个税收取问题; 2.利用一次函数解决水、电、煤气等资源收费问题 . [2013·荆门] 为了节约资源 ,科学指导居民改善居住条 件,小王向房管部门提出了一个购买商品房的政策性方案 . 人均住房面积 (平方米 ) 不超过 30(平方米 ) 超过 30 平方米不超过 m (平方米 )(45≤m≤60) 超过 m 平方米部分
冀考解读

中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件

中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件
中的函数表达式为
y=-x+2
.
图 11-1
2021/12/9
第十一页,共三十二页。

y= x

,图②
课前双基巩固
5. [八上 P164 探索改编] 已知一次函数 y=2x+4.
图 11-2
(1)在如图 11-2 所示的平面直角坐标系中,画出函数的图像;
(2)图像与 x 轴的交点 A 的坐标是 (-2,0) ,与 y 轴的交点 B 的坐标是 (0,4)
与 x 轴交点坐标
令 y=0,求出对应的 x 值
两直线的
与 y 轴交点坐标
令 x=0,求出对应的 y 值
交点坐标
与其他函数图
像的交点坐标
一条直线与坐标轴围
成的三角形的面积
2021/12/9
解由两个函数表达式组成的二元一次方程组,方程组的解即两函数
图像的交点坐标

1


2

直线 y=kx+b(k≠0)与 x 轴的交点为 - ,0 ,与 y 轴的交点为(0,b),三角形面积为 S△= - ×|b|(用
a2+a2=
直线 y=2x+1 向右、向上平移 3 个单位后的解析式是 y=2x-2.
2021/12/9
第二十二页,共三十二页。
2
3 2 ,解得 a=3.
高频考向探究
[方法模型] 直线 y=kx+b(k≠0)在平移过程中 k 值不变.平移的规律是:若上下平移,则直接在常数 b 后加上或减
去平移的单位长度数;若向左(或向右)平移 m 个单位长度,则直线 y=kx+b(k≠0)变为 y=k(x±m)+b,其口诀是上加

人教版数学九年级上册第11课时 一次函数及其应用-课件

人教版数学九年级上册第11课时 一次函数及其应用-课件

2.一次函数图象的平移 左右平移:y=kx+b 向右平移m个单位
x换为x-m
y=k(x-m)+b;
上下平移:y=kx+b 向上平移n个单位 y=kx+b+n,
表达式右边加n
口诀:左加右减,上加下减.
提分必练
5.已知一次函数的图象经过点(2,3)和点(-2,-5), 则这个函数解析式为___y_=__2_x_-__1____. 6.把直线y=2x-1向上平移2个单位,所得直线的解 析式是__y_=__2_x_+__1___;再将平移后的解析式向左平移 3个单位,所得直线的解析式是___y_=__2_x_+__7__.
例3 为了追求更舒适的出行体验, 利用网络呼叫专车的打车方式受 到大众欢迎.据了解在非高峰期 时,某种专车所收取的费用y(元) 与行驶里程x(km)的函数关系如图 所示,请根据图象解答下列问题:
例3题图
(1)求y与x之间的函数关系式; 【思维教练】根据所给函数图象可知在0<x≤3和x>3这 两段所对应的函数图象不同,可考虑分别计算0<x≤3,x >3对应的函数关系式,根据图象上数据信息,运用待定 系数法即可得出函数关系式.
②表格型:运输分配类表格一般涉及到两种货物和两 个目的地,使用x分别表示出两种货物分别运往两个目 的地的数量,然后写出函数解析式.自变量和函数值 的对应表格则直接从表格中任选2组对应值,使用待定 系数法求解析式;
方法指导
③图象型:任意找出函数图象上的两个点,常用到的有图 象与坐标轴的交点,起点,转折点,终点等;将其坐标分 别代入解析式中列方程组求出函数解析式;若函数图象为 分段函数,注意要选同一段函数图象上两点坐标,代入求 值,依照此方法分别计算出各段函数的解析式,最后记得 加上各段函数图象对应的自变量的取值范围;

浙江省18年中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用含近9年中考真题试题_1162

浙江省18年中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用含近9年中考真题试题_1162

第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用浙江近9年中考真题精选(2009-2017)类型一阶梯费用问题(绍兴2考)1.(2017绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014绍兴18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015杭州23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015温州22题10分)某农业观光园计划将一块面积为900 m 2的园圃分成A 、B 、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B 区域面积是A 的2倍,设A 区域面积为x(m 2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分)(2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300,∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,∴a =0.3×35=10.5(千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当s =2.1时,0.3t =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当s =0时,-0.21t +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离衢州的距离与乘车的时间之间的函数关系式为y =kt ,则有120=1.5k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60,∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分)设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80,∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分)(2)由直线CD 的解析式为y =-20t +80, 可得乙的速度为20 km/h. ∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内, 当20<y <30时, 20<40t -60<30 ① 20<-20t +80<30 ②(6分) 解①得:2<t <2.25, 解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分) (3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开,又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分) ∴s 甲=60(t -1)=60t -60(1≤t ≤73),s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地, ∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km , 当丙出发43小时,s 乙=20×43=803km ,∴s 丙=80-803=1603km ,∴v 丙=1603÷43=40 km/h.∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t=60t-60,解方程得t=1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,(2分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A区域的面积为200 m2,B区域的面积为400 m2,C区域的面积为300 m2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a元、b元、c元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3,∵a 、b 、c 为正整数, ∴a 、b 、c 可能取的值如下表,又∵a 、b 、c 的差不超过10, ∴a =20,b =15,c =10,(8分) ∵B 区域的面积为400 m 2,最大,∴种植面积最大的花卉总价为400×6×15=36000(元). 答:种植面积最大的花卉总价为36000元.(10分) 12.解:(1)由题意可知y 1=k 1x +80,(1分) 且图象过点(1,95), 则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),(2分) 由题意易得y 2=30x (x ≥0).(4分) (2)当y 1=y 2时,解得x =163;(5分)当y 1>y 2时,解得x <163;(6分)当y 1<y 2时,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分)(也可求出x =163之后,观察函数图象得到结论.)。

中考数学复习讲义课件 第3单元 第11讲 一次函数

第三单元 函数
第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )

2015年河北中考数学总复习课件(第11课时_一次函数)


冀考解读
课前热身
考点聚焦
冀考探究
第11课时┃ 一次函数
3.在一次函数 y=kx+2 中,若 y 随 x 的增大而增大, 则它的图像不经过第________ 象限. 四 先根据函数的增减性判断出 k 的符号,再利 用一次函数的图像与系数的关系做出判断.
解 析
冀考解读
课前热身
考点聚焦
冀考探究
第11课时┃ 一次函数
冀考解读
课前热身
考点聚焦
冀考探究
第11课时┃ 一次函数
解:(1)∵y=(2m-1)x+1-3m 为正比例函数. 1 ∴1-3m=0,∴m= , 3 1 ∴当 m= 时,y=(2m-1)x+1-3m 为正比例函数. 3 (2)∵y=(2m-1)x+1-3m 为一次函数, 1 ∴2m-1≠0,∴m≠ , 2 1 ∴当 m≠ 时,y=(2m-1)x+1-3m 为一次函数. 2
第11课时 一次函数
第11课时┃ 一次函数
冀 考 解 读
考点梳理 常考题型 一次函数、 正比 选择、填空 例函数的概念 一次函数的 图像和性质 年份 2014 2015 热度预测 ☆ ☆☆☆☆☆
2012 选择、填空、 2013 解答 2014
待定系数法求 选择、填空、 一次函数的表 2013 解答 达式
冀考解读 课前热身 考点聚焦 冀考探究
解 析
第11课时┃ 一次函数
考 点 聚 焦
考点1 一次函数与正比例函数的概念
一般地,如果 y=kx+b(k,b 是常数,k≠0), 一次函数 那么 y 叫做 x 的一次函数 特别地,当 b=0 时,一次函数 y=kx+b 变为 正比例 y=kx(k 为常数,k≠0),这时 y 叫做 x 的正比 函数 例函数

中考数学复习方案 第11课时 一次函数的应用

当x>125,175-x≤75时,3x-50+2.5(175-x)=455,
解得x=135,175-135=40,符合题意;
当75<x≤125,175-x≤75时,2.75x-18.75+2.5(175-x)=455,
解得x=145,不符合题意,舍去;
当75<x≤125,75<175-x≤125时,2.75x-18.75+2.75(175-x)-18.75=455,此方程无解.
④交点:表示两个函数的自变量与函数值分别对应相等,这个交点是函数值大
小关系的“分界点”.












对点演练
题组一
必会题
1.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(单位:cm)与燃
烧时间t(单位:h)(0≤t≤4)之间的关系是
h=-5t+20
.






∴乙用户2,3月份的用气量分别是135 m3,40 m3.
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m3的部分
a+0.25












| 考向精练 |
1.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关
2. [八上P157问题2改编]某公司准备与汽车租赁公司签订租车合同.以每月用车里

2025年中考数学总复习 第十一讲 函数的表达式++++课件+


对角线AC,BD相交于点E,反比例函数y= (x>0)的图象经过点A.

(1)求这个反比例函数的表达式.
(2)请先描出这个反比例函数图象上不同于点A的三个
格点,再画出反比例函数的图象.
(3)将矩形ABCD向左平移,当点E落在这个反比例函
数的图象上时,平移的距离为_________.
19

【自主解答】(1)∵反比例函数y= (x>0)的图象经过点A(3,2),
已知抛物线上三点的坐标
选用表达式的形式
y=ax2+bx+c(a,b,c为常数,a≠0)
已知抛物线顶点坐标或对称轴与最 y=a(x-h)2+k(a≠0),(h,k)为二次函数的顶点
大(小)值
坐标
已知抛物线与x轴的两个交点的横坐 y=a(x-x1)(x-x2)(a≠0),x1,x2为抛物线与x轴

交点的横坐标
_________________.
高频考点·释疑难
考点1
10
确定一次函数表达式
【例1】(2024·广州中考)一个人的脚印信息往往对应着这个人某些方面的基本特
征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和
分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:
脚长x(cm)
第十一讲
函数的表达式
必备知识·夯根基
高频考点·释疑难
山东3年真题
必备知识·夯根基
知识要点
1.一次函数表达式
(1)确定正比例函数表达式:将正比例函数图象上原点外的一点坐标(m,n)代入


x
y=kx,可得k=_____,则y=______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2、已知一次函数y=kx+b(k≠0)在x=1时,y=5,且
它的图象与x轴交点的横坐标是6,求这个一次函数的 解析式。 解:设一次函数解析式为y=kx+b, 把x=1时, y=5;x=6时,y=0代入解析式,得
k b 5 解得 k 1 b 6 6k b 0
一、基础问题
例1 填空题: (1) 有下列函数:① y 6 x 5 , ② y=5x ,

y x4
, ④ y 4 x 3 。其中过原点的直
② ①、②、③ 线是_____;函数y随x的增大而增大的是___________; ④ 函数y随x的增大而减小的是______;图象过第一、二、 三象限的是_____。 ③ (2)、如果一次函数y=kx-3k+6的图象经过原点,那么 k=2 k的值为________。 (3)、已知y-1与x成正比例,且x=-2时,y=4,那么y与 3 y x 1 x之间的函数关系式为_________________。 2 方法:待定系数法:①设;②代;③解;④还原
分别代入上式,得 b 40
22.5 3.5k b
解得
k 5 b 40
Q 40
解析式为:Q=-5t+40
(0≤t≤8)
图象是包括 两端点的线段
(2)取点A(0,40),B(8,0), 然后连成 线段AB,即是所求的图形。
点评:画函数图象时,应根据函数自变量的 取值范围来确定图象的范围,比如此题中, 因为自变量0≤t≤8,所以图像是一条线段。 0
y kxk 0
正比例函数 的图象是经过原 点(0,0)的一条直线. 画一次函数的图象,只要先描出两点, 再连成直线.
②一次函数图象位置: 从表中可以看出:由一次函数经过的象
限可以判断k、b 的符号,反过来,由k、b 的符号也可以判断图象经过的象限. ③某一点在一次函数的图象上,则该点的坐 标满足一次函数的解析式 y kx bk 0 .
y y y y
o
x
o
x
o
x
o
x
A
B
C
D
3.直线y1=kx与直线y2=kx-k在同一坐标系内的大致 图象是( C )
(A)
(B)
(C)
(D)
k>0 k>0 -k>0
k<0 k<0 -k<0
k<0 k<0 -k>0 不平行
三、能力提升1
.1、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时) 成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时 后,油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。 解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5
y y

当k>0时
b<0
b>0 b=0 o x
b<0 b=0

当k<0时
o b<0
x

y随x的增大而增大;

y随x的增大而减小.
驶向胜利 的彼岸
解析式
正 比 例 函 数 y = k x ( k≠0 ) k>0 k<0
一 次 函 数 y=k x + b(k,b为常数,且k ≠0) k>0 y
k>0,b>0
5、直线y=2x+1与y=3x-1的交点P的坐标为____,点P到x轴的距 (2, 5) 离为_______,点P到y轴的距离为______。 5 2
6.一次函数的图象过点(0,3) ,且与两坐标轴围成的三 角形面积为 9/4,一次函数的解析式为 y=±2x+3 _________________。
一次函数图像与性质
知识梳理

1、正比例与一次函数的概念 2、正比例与一次函数的图像、性质
1、一次函数的概念
y=kx+b ①形如 _________(k、b为常数,k____)的函 ≠0 数叫做一次函数; kx =0 ②当b____时,函数y=___叫做正比例函数。 ③强调:正比例函数也是一次函数,但一 次函数不一定是正比例函数.
图甲的边框按B→C→D→A的路径移动,相应的△ABP的面 积s关于时间t的函数图象如图乙.根据下图回答问题:
问题:(1)P点在整个的移动过程中△ABP的面积是怎样变化的?
A Ds(cm)
30 a
p 10cm
B P 图甲 C
o
5 8
图乙

t(s)
(2)图甲中BC的长是多少?
(3)图乙中的a在图甲中具有什么实际意义?a的值是多少?
解:(1) P点在整个的移动过程中△ABP的面积先 逐渐从0增大到30,然后在3分钟内保持30不变, 再从30逐渐减小; (2)BC=10; (3)a=30. a的值表示点P在CD边上运动时, △ABP的面积;
点评:此类动点问题中,应根据点P的不同运动路线,找出对应 的函数图像以及每段图像对应的自变量取值范围,抓住几个关键 点,并理解函数图像中横、纵坐标的实际意义。
Байду номын сангаас
k<0 y x
k<0,b>0
图 象
y o
y
o x
k>0,b<0
o
x
k<0,b<0
x
o
y o
x
y
o
x
性 质
k>0时,在Ⅰ, Ⅲ象限; k<0时,在Ⅱ, Ⅳ象限.
正比例函数是特殊的一次函数
k>0,b>0时在Ⅰ, Ⅱ,Ⅲ象限; k>0,b<0时在Ⅰ, Ⅲ, Ⅳ 象限 k<0, b>0时,在Ⅰ,Ⅱ, Ⅳ象限. k<0, b<0时,在Ⅱ, Ⅲ, Ⅳ象限
7、若函数y=kx+b的图象平行于y= -2x的图 象且经过点(0,4), 则直线y=kx+b与两坐 标轴围成的三角形的面积是多少?
8.正方形A1B1C1O,A2B2C2C1, A3B3C3C2,…按如图所示的方式放 置.点A1,A2,A3,…和点C1, C2,C3,…分别在直线y=kx+b(k >0)和x轴上,已知点B1(1,1), B2(3,2),则Bn的坐标是 (2n 1, 2n1 ) _________.
点评(1)根据图像反映的信息解答有关问 题时,首先要弄清楚两坐标轴的实际意义,抓 O 2 5 住几个关键点来解决问题; x/时 (2)特别注意,第5问中由y=3对应的x值有两个; (3)根据函数图像反映的信息来解答有关问题,比较形象、直观,从中能 进一步感受“数形结合思想”。
3
能力提升3 3.如图,矩形ABCD中,AB=6,动点P以2个单位/s速度沿
y
A3 A2 A1
O
B3
B2
B1
C1
C2
C3
x

应用
知 识 线

应 用 线
方 法 线
一次函数 的概念、 图象、性 质
图象与 现实生 活的联 系
三个关系 : (1)概念与 k, b
(2)图象与 k, b
(3)面积与交点坐 标
会用待定系数法确定一次函数的 解析式。 能通过图象或图表读取信息,会 运用“数形结合”思想分析解决 实际问题。 会解决以构建一次函数为模型的 应用型问题。
1.下列函数中,不是一次函数的是
x A. y 6 B. y 1 x 10 C. y x
()
D. y 2( x 1)
2.一次函数y=x+2的图像不经过第____象限 3.点P(a,b)点Q(c,d)是一次函数y=-4x+3图像 上的两个点,且a<c,则b与d的大小关系是____ 4.一个函数图像过点(1,2),且y随x增大而增大, 则这个函数的解析式是___
平行于 y = k x ,可由它平移而得
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
应 用
(1). 待定系数法;
(2).实际问题的应用
3.一次函数的图象: ①图象特征: 一次函数 y kx bk 0 的图象是经过 点 0,b 、 b , 0 k 的一条直线.
8
t
能力提升2
2.某医药研究所开发了一种新药,在实际验药时发现,如果成人按 规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时) 的变化情况如图所示,当成年人按规定剂量服药后。 6 (1)服药后____时,血液中含药量最高,达到每毫升_______毫克。 2 (2)服药5时,血液中含药量为每毫升____毫克。 3 y=3x (3)当x≤2时,y与x之间的函数关系式是_____。 y=-x+8 (4)当x≥2时,y与x之间的函数关系式是_________。 (5)如果每毫升血液中含药量3毫克 y/毫克 或3毫克以上时,治疗疾病最有效, 6 那么这个有效时间是___ 小时。. 4
∴一次函数的解析式为 y= - x+6。 方法:待定系数法:①设;②代;③解;④还原

二、图像辨析
1.已知一次函数y=kx+b,y随着x的增大而减小,且 kb<0,则在直角坐标系内它的大致图象是( A )
(A)
(B)
(C)
(D)
2.一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的 图象可能是( A)
④一般情况下,一次函数的自变量X取值范围为 是全体实数.实际问题中注意使问题有意义。
思 考
y=k xn +b为 一次函数的 条件是什么?
一. 指数n=1
二.
系数 k ≠0
相关文档
最新文档