传感器原理及工程应用答案
【最新试题库含答案】传感器原理及工程应用习题参考答案_0

传感器原理及工程应用习题参考答案:篇一:《传感器原理及工程应用》第四版(郁有文)课后答案第一章传感与检测技术的理论基础1.什么是测量值的绝对误差、相对误差、引用误差?答:某量值的测得值和真值之差称为绝对误差。
相对误差有实际相对误差和标称相对误差两种表示方法。
实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。
引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。
引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。
2.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?答:测量误差是测得值与被测量的真值之差。
测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差时也必须知道绝对误差的大小才能计算。
采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
3.用测量范围为-50~+150kPa的压力传感器测量140kPa压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差??142?140?2kPa实际相对误差标称相对误差引用误差??142?140?100%?1.43%140 ??142?140?100%?1.41%142 142?140?100%?1%150?(?50) ??4.什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。
《传感器原理及工程应用》课后答案

第1章传感器概述1.什么是传感器?(传感器定义)2.传感器由哪几个部分组成?分别起到什么作用?3. 传感器特性在检测系统中起到什么作用?4.解释下列名词术语: 1)敏感元件;2)传感器; 3)信号调理器;4)变送器。
第1章传感器答案:3.答:传感器处于研究对象与测试系统的接口位置,即检测与控制之首。
传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。
4.答:①敏感元件:指传感器中直接感受被测量的部分。
②传感器:能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
③信号调理器:对于输入和输出信号进行转换的装置。
④变送器:能输出标准信号的传感器第2章传感器特性1.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择?2.某传感器精度为2%FS ,满度值50mv ,求出现的最大误差。
当传感器使用在满刻度值1/2和1/8 时计算可能产生的百分误差,并说出结论。
3.一只传感器作二阶振荡系统处理,固有频率f0=800Hz,阻尼比ε=0.14,用它测量频率为400的正弦外力,幅植比,相角各为多少?ε=0.7时,,又为多少?4.某二阶传感器固有频率f0=10KHz,阻尼比ε=0.1若幅度误差小于3%,试求:决定此传感器的工作频率。
5. 某位移传感器,在输入量变化5 mm时,输出电压变化为300 mV,求其灵敏度。
6. 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、S2=2.0V/mV、S3=5.0mm/V,求系统的总的灵敏度。
7.测得某检测装置的一组输入输出数据如下:a)试用最小二乘法拟合直线,求其线性度和灵敏度;b)用C语言编制程序在微机上实现。
8.某温度传感器为时间常数 T=3s 的一阶系统,当传感器受突变温度作用后,试求传感器指示出温差的1/3和1/2所需的时间。
传感器原理及应用第三版课后答案

传感器原理及应用第三版课后答案1. 答案:传感器是一种能够感知环境变化并将其转化为可识别的信号的装置。
它通过使用特定的物理效应或工作原理来感知和测量环境中的物理量或特定的参数。
2. 答案:传感器的应用非常广泛,涵盖了许多不同的领域。
以下是几个常见的传感器应用示例:- 温度传感器:用于监控和控制温度,例如室内温度控制、工业加热系统等。
- 压力传感器:用于测量液体或气体的压力,例如汽车轮胎压力监测、压力容器监控等。
- 光学传感器:用于检测光照强度和颜色,例如光电开关、自动亮度调节系统等。
- 气体传感器:用于检测和测量空气中的气体成分,例如二氧化碳传感器、氧气传感器等。
- 加速度传感器:用于测量物体的加速度和震动,例如运动传感器、汽车碰撞传感器等。
- 湿度传感器:用于测量空气中的湿度水份,例如室内湿度控制、大气湿度监测等。
3. 答案:传感器的工作原理有很多种,常见的包括:- 电阻效应传感器:基于电阻值的变化来感知和测量物理量,例如温度传感器和应变传感器。
- 电容效应传感器:基于电容值的变化来感知和测量物理量,例如湿度传感器和接近传感器。
- 电感效应传感器:基于电感值的变化来感知和测量物理量,例如金属检测传感器和霍尔效应传感器。
- 光学效应传感器:基于光学特性的变化来感知和测量物理量,例如光电传感器和光纤传感器。
- 声波效应传感器:基于声波信号的变化来感知和测量物理量,例如声波距离传感器和声速传感器。
4. 答案:传感器的选择取决于具体的应用需求和要测量的物理量。
需要考虑以下几个方面:- 测量范围:传感器是否能够覆盖所需的测量范围,以及是否有足够的灵敏度和精度。
- 工作环境:传感器是否适用于所需的工作环境,例如温度、湿度、压力等。
- 响应时间:传感器的反应速度是否满足实际要求,是否能够快速响应变化的物理量。
- 成本和可靠性:传感器的价格是否适宜,并且能够稳定可靠地工作。
- 安装和维护:传感器的安装和维护是否方便,是否需要额外的设备或配件。
传感器原理及工程应用_第三版__课后答案_(郁有文著)_西安电子科技大学出版社

2 100% 100% 1.43% 140 L 2 标称相对误差: 100% 100% 1.41% 142 x 引用误差:
实际相对误差:
2 100% 100% 1% 150 50 测量范围上限 测量范围下线
1-3 什么是系统误差?系统误差可分为哪几类?系统误差有哪些检验方法?如何减小和消 除系统误差? 答:在同一测量条件下,多次测量被测量时,绝对值和符号保持不变,或在条件改变时,按 一定规律(如线性、 多项式、 周期性等函数规律)变化的误差称为系统误差。 分两种:前者为恒值系统误差, 后者为变值系统误差。 系统误差的检验方法: 1.实验对比法 2.残余误差观察法 3.准则检测法 系统误差的减小和消除: 1.在测量结果中进行修正 2.消除系统误差的根源 3.在测量系统中采用补偿措施 4.实时反馈修正
YFS
YFS
传感器的漂移:是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为 漂移。温度漂移通常用传感器工作环境温度偏离标准环境温度(一般为 20℃)时的输出值的 变化量与温度变化量和满量程乘积之比(ξ)来表示, 即 y y20 t 。
YFS t
2-4 某压力传感器测试数据如表 2-1 所示,计算非线性误差、迟滞、重复性误差。 答:拟合曲线的两个端点取两个最远点: (0.00,-2.71)与(0.10,14.45) 则方程式为:
U0
E R1 3 0.1968 1.23mV 4 R1 4 120
非线性误差
③ 若要减小非线性误差, 可采用半桥差动电路, 且选择 R1 = R2 = R3 = R4 = 120Ω ∆ R1 =∆R2 =0. 1968Ω R1 和 R2 所受应变大小相等,应变方向相反。 此时
传感器原理及工程应用习题参考答案_0

传感器原理及工程应用习题参考答案篇一:第四版(郁有文)课后答案第一章传感与检测技术的理论基础1.什么是测量值的绝对误差、相对误差、引用误差?答:某量值的测得值和真值之差称为绝对误差。
相对误差有实际相对误差和标称相对误差两种表示方法。
实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。
引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。
引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。
2.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?答:测量误差是测得值与被测量的真值之差。
测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差时也必须知道绝对误差的大小才能计算。
采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
3.用测量范围为-50~+150kPa的压力传感器测量140kPa压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差??142?140?2kPa实际相对误差标称相对误差引用误差??142?140?100%?%140 ??142?140?100%?%142 142?140?100%?1%150?(?50) ??4.什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。
传感器原理及工程应用作业

目录第三章 (5)3-1.什么是应变效应?什么是压阻效应?利用应变效应和压阻效应解释金属电阻应变片和半导体应变片的工作原理。
(5)3-2.试述应变片温度误差的概念,产生原因和补偿方法。
(5)3.试用应变片传感器实现一种应用。
(6)第四章 (6)4-1.说明差动变隙式电感传感器的主要组成、工作原理和基本特征。
(6)4 -3.差动变压器式传感器有哪几种结构形式?各有什么特点? (6)4-10.何为涡流效应?怎用利用涡流效应进行位移测量? (7)4-11.电涡流的形成范围包括哪些内容?他们的主要特点是什么? (7)5.用电感式传感器设计应用 (8)第五章 (8)5-1.根据工作原理可以将电容式传感器分为哪几类?每种类型各有什么特点?各适用于什么场合? (8)5-9.简述差动式电容测厚传感器系统的工作原理。
(8)第六章 (9)6-1.什么叫正压电效应和逆压电效应?什么叫纵向压电效应和横向压电效应? (9)6-3.简述压电陶瓷的结构及其特性。
(9)3.利用压电式传感器设计一个应用系统 (10)第七章 (10)7-4.什么是霍尔效应?霍尔电势与哪些因素有关? (10)7-6.温度变化对霍尔元件输出电势有什么影响?怎样补偿? (10)第八章 (11)8-1.光电效应有哪几种?相对应的光电器件有哪些? (11)8-2.试述光敏电阻、光敏二极管、光敏晶体管和光电池的工作原理,在实际应用时各有什么特点? (11)8-6.光在光纤中是怎样传输的?对光纤及入射光的入射角有什么要求? (12)8-7.试用光电开关设计一个应用系统。
(13)第九章 (13)9-1.简述气敏元件的工作原理 (13)9-2.为什么多数气敏元件都附有加热器 (13)9-3.什么叫湿敏电阻?湿敏电阻有哪些类型?各有什么特点? (14)第十章 (14)10-1.超声波在介质中传播具有哪些特性? (14)10-2.图10-3中,超声波探头的吸收块作用是什么? (15)10-3.超声波物位测量有几种方式?各有什么特点? (15)10-5.已知超声波探头垂直安装在被测介质底部,超声波在被猜测介质中的传播速度为1460m/s,测得时间间隔为28μs,试求物位高度? (15)第十一章 (15)11-1.简述微波传感器的测量机理。
传感器原理与工程应用完整版习题参考答案

《传感器原理及工程应用》完整版习题答案第1章 传感与检测技术的理论基础(P26)1—1:测量的定义?答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。
所以, 测量也就是将被测量与同种性质的标准量进行比较, 确定被测量对标准量的倍数。
1—2:什么是测量值的绝对误差、相对误差、引用误差?1-3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa∴ 绝对误差 Δ=x-L=142-140=2(kPa)实际相对误差 %==43.11402≈∆L δ标称相对误差%==41.11422≈∆x δ引用误差%--=测量上限-测量下限=1)50(1502≈∆γ1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ):120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。
答:绝对误差是测量结果与真值之差, 即: 绝对误差=测量值—真值 相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值 ×100% 引用误差是绝对误差与量程之比,以百分数表示, 即: 引用误差=绝对误差/量程 ×100%解:当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。
则 2072.410.03270.0788()0.104d G mm v σ=⨯=<=-,所以7d 为粗大误差数据,应当剔除。
最新《传感器原理及工程应用》第四版(郁有文)课后答案之欧阳德创编

第一章传感与检测技术的理论基础1.2.什么是测量值的绝对误差、相对误差、引用误差?答:某量值的测得值和真值之差称为绝对误差。
相对误差有实际相对误差和标称相对误差两种表示方法。
实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。
引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。
引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。
3.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?答:测量误差是测得值与被测量的真值之差。
测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差时也必须知道绝对误差的大小才能计算。
采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
4. 用测量范围为-50~+150kPa 的压力传感器测量140kPa 压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差2140142=-=∆kPa 实际相对误差%43.1%100140140142=⨯-=δ 标称相对误差%41.1%100142140142=⨯-=δ 引用误差%1%10050150140142=⨯---=)(γ5. 什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器原理及工程应用答案1—1:测量的定义,答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。
所以, 测量也就是将被测量与同种性质的标准量进行比较,确定被测量对标准量的倍数。
1—2:什么是测量值的绝对误差、相对误差、引用误差,答:绝对误差是测量结果与真值之差,即: 绝对误差=测量值—真值相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值×100%引用误差是绝对误差与量程之比,以百分数表示,即: 引用误差=绝对误差/量程×100%1—3什么是测量误差,测量误差有几种表示方法,它们通常应用在什么场合, 答: 测量误差是测得值减去被测量的真值。
测量误差的表示方法:绝对误差、实际相对误差、引用误差、基本误差、附加误差。
当被测量大小相同时,常用绝对误差来评定测量准确度;相对误差常用来表示和比较测量结果的准确度;引用误差是仪表中通用的一种误差表示方法,基本误差、附加误差适用于传感器或仪表中。
2,1:什么是传感器,它由哪几部分组成,它的作用及相互关系如何,答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
通常,传感器由敏感元件和转换元件组成。
其中,敏感元件是指传感器中能直接感受或响应被测量的部分; 转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
2—2:什么是传感器的静态特性,它有哪些性能指标,分别说明这些性能指标的含义, 答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
灵敏度定义是输出量增量Δy与引起输出量增量Δy的相应输入量增量Δx之比。
传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。
输出与输入关系可分为线性特性和非线性特性。
传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。
重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。
2,3:什么是传感器的动态特性,它有哪几种分析方法,它们各有哪些性能指标, 答:(1)动态特性是指传感器对随时间变化的输入量的响应特性;(2)分析方法:时域分析法—— ? 时间常数; ? 延迟时间t? 上升时间tr; d? 峰值时间tp? 超调量σ ? 衰减比d 复频域传递函数频率域特性频率——通频带、工作频带、时间常数、固有频率、相位误差、跟随角。
第三章应变式传感器1( 什么叫应变效应,利用应变效应解释金属电阻应变片的工作原理。
答:在外力作用下,导体或半导体材料产生机械变形,从而引起材料电阻值发生相应变化的现象,称为应变效应。
其表达式为dR/R=kε,式中K为材料的应变灵敏系数,当应变材料为金属或合金时,在弹性极限内K 为常数。
金属电阻应变片的电阻相对变化量dR/R 与金属材料的轴向应变ε成正比,因此,利用电阻应变片,可以将被测物体的应变ε 转换成与之成正比关系的电阻相对变化量,这就是金属电阻应变片的工作原理。
2( 试述应变片温度误差的概念,产生原因和补偿办法。
1答:由于测量现场环境温度偏离应变片标定温度而给测量带来的附加误差,称为应变片温度误差。
产生应变片温度误差的主要原因有:?由于电阻丝温度系数的存在,当温度改变时,应变片的标称电阻值发生变化。
?当试件与与电阻丝材料的线膨胀系数不同时,由于温度的变化而引起的附加变形,使应变片产生附加电阻。
电阻应变片的温度补偿方法有线路补偿法和应变片自补偿法两大类。
电桥补偿法是最常用且效果较好的线路补偿法,应变片自补偿法是采用温度自补偿应变片或双金属线栅应变片来代替一般应变片,使之兼顾温度补偿作用。
3( 什么是直流电桥,若按桥臂工作方式不同,可分为哪几种,各自的输出电压如何计算, 答:如题图3-3 所示电路为电桥电路。
若电桥电路的工作电源E 为直流电源,则该电桥称为直流电桥。
按应变所在电桥不同的工作桥臂,电桥可分为:单臂电桥,R 1为电阻应变片,R 2 、R 3、R 4为电桥固定电阻。
其输出电压为。
差动半桥电路,R 1、R 2为两个所受应变方向相反的应变片,R 3 、R 4 为电桥固定电阻。
其输出电压为:。
差动全桥电路,R1、R2、R3、R4 均为电阻应变片,且相邻两桥臂应变片所受应变方向相反。
其输出电压为:。
5. 图示为一直流应变电桥。
图中E=4V,R1= R 2= R 3= R 4= 120Ω,试求: (1)R1为金属应变片,其余为外接电阻。
当R1的增量为ΔR1 = 1.2Ω时,电桥输出电压Uo=? (2) R1、R2 都是应变片,且批号相同,感应应变的极性和大小都相同,其余为外接电阻,电桥输出电压Uo =?(3) 题(2)中,如果R1与R2感受应变的极性相反,且ΔR1= ΔR2 = 1.2,电桥输出电压Uo=,23第四章电感式传感器1.差动变压器式传感器的零点残余电压产生的原因是什么,怎样减小和消除它的影响,答:原因:(1)由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,在两电感线圈上的电压幅值和相位不同,从而形成零点残余电压的基波分量。
(2)由于传感器导磁材料磁化曲线的非线性(如铁磁饱和、磁滞损耗),使激励电流与磁通波形不一致,从而形成零点残余电压的高次谐波分量。
为减小电感式传感器的零点残余电压,可采取以下措施:在设计和工艺上,力求做到磁路对称,铁芯材料均匀;要经过热处理以除去机械在电路上进行补偿。
2.简述相敏检波电路的工作原理,保证其可靠工作的条件是什么?答:相敏检波电路如图4-18所示。
图中V、 V、V、V为四个性能相同的二极管,D1D2D3D4以同一方向串联接成一个闭合回路,形成环形电桥。
输入信号u(差动变压器式传感器2输出的调幅波电压)通过变压器T加到环形电桥的一个对角线上。
参考信号u通过变压1s器T加到环形电桥的另一个对角线上。
输出信号u从变压器T与T的中心抽头引出。
2o12图中平衡电阻R起限流作用,以避免二极管导通时变压器T的次级电流过大。
R为负2L载电阻。
u的幅值要远大于输入信号u的幅值,以便有效控制四个二极管的导通状态,s24且u和差动变压器式传感器激磁电压u由同一振荡器供电,保证二者同频同相(或反s1相)。
3.何谓涡流效应,怎样利用涡流效应进行位移测量,答:电涡流效应是指金属导体置于交变磁场中会产生电涡流,且该电涡流所产生磁场的方向与原磁场方向相反的一种物理现象。
电涡流传感器的敏感元件是线圈,当给线圈通以交变电流并使它接近金属导体时,线圈产生的磁场就会被导体电涡流产生的磁场部分抵消,使线圈的电感量、阻抗和品质因数发生变化。
这种变化与导体的几何尺寸、导电率、导磁率有关,也与线圈的几何参量、电流的频率和线圈到被测导体间的距离有关。
至于进行位移测量,可根据实际的已知位移量来标定固定的线圈下的电感量,从而以此进行位移的测量。
第五章电容式传感器1.根据工作原理可将电容式传感器分为那几种类型,每种类型各有什么特点,各适用于什么场合,答:根据电容式传感器的工作原理,电容式传感器有三种基本类型,即变极距(d)型(又称变间隙型)、变面积(A)型和变介电常数(ε)型。
变间隙型可测量位移,变面积型可测量直线位移、角位移、尺寸,变介电常数型可测量液体液位、材料厚度。
电容式传感器具有以下特点:功率小,阻抗高,由于电容式传感器中带电极板之间的静电引力很小,因此,在信号检测过程中,只需要施加较小的作用力,就可以获得较大的电容变化量及高阻抗的输出;动态特性良好,具有较高的固有频率和良好的动态响应特性;本身的发热对传感器的影响实际上可以不加考虑;可获取比较大的相对变化量;能在比较恶劣的环境条件下工作;可进行非接触测量;结构简单、易于制造;输出阻抗较高,负载能力较差;寄生电容影响较大;输出为非线性。
2.如何改善单极式变极距型传感器的非线性,答:采用差动式结构,可以使非线性误差减小一个数量级。
第六章压电式传感器1.什么叫正压电效应和逆压电效应,什么叫纵向压电效应和横向压电效应,5答:某些电介质在沿一定的方向上受到外力的作用而变形时,内部会产生极化现象,同时在其表面上产生电荷,当外力去掉后,又重新回到不带电的状态,这种现象称为压电效应。
这种机械能转化成电能的现象,称为“顺压电效应”。
反之,在电介质的极化方向上施加交变电场或电压,它会产生机械变形,当去掉外加电场时,电介质变形随之消失,这种现象称为“逆压电效应”。
在石英晶体中,通常把沿电轴x方向的力作用下产生电荷的压电效应称为“纵向压电效应”,而把沿机械轴y方向的力作用下产生电荷的压电效应称为“横向压电效应”。
2.压电式加速度传感器的工作原理,答:其原理利用压电晶体的电荷输出与所受的力成正比,而所受的力在敏感质量一定的情况下与加速度值成正比。
在一定条件下,压电晶体受力后产生的电荷量与所感受到的加速度值成正比。
第七章磁电式传感器1.什么是霍尔效应,霍尔电势与哪些因素有关,答:金属或半导体薄片置于磁场中,当有电流通过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应。
霍尔电动势的大小正比于激励电流与磁感应强度I,且当或的方向改变时,霍尔电动势的方向也随着改变,但当和的方向同时改BBBII变时霍尔电动势极性不变。
第八章光电式传感器1. 光电效应有哪几种类型,与之对应的光电元件各有哪些,答:光电效应根据产生结果的不同,通常可分为外光电效应、内光电效应和光生伏特效应三种类型。
光电管和光电流倍增管是属于外光电效应的典型光电元件。
基于内光电效应的光电元件有光敏电阻、光敏二极管、光敏三极管、光敏晶闸管。
基于光生伏特效应的光电元件主要是光电池。
2.试述光敏电阻、光敏二极管、光敏晶体管、光电池的工作原理,在实际应用各有什么特点, 答:无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。
一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。
光敏二极管在电路中一般是处于反向工作状态,在没有光照射时,反向电阻很大,反向电流很小,这反向电流称为暗电流,当光照射在PN结上,光子打在PN结附近,使PN结附近产生光生电子和光生空穴对,它们在PN结处的内电场作用下作定向运动,形成光电流。
光的照度越大,光电流越大。
因此光敏二极管在不受光照射时处于截止状态,受光照射时处于导通状态。