苏教版七年级数学下册第七单元测试题
【单元卷】苏科版七年级数学下册:第7章 平面图形的认识 单元质量检测卷(二)含答案与解析

苏科版七年级数学下册单元质量检测卷(二)第7章平面图形的认识姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°2.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°4.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.65.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°9.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个10.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD (0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.12.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.13.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.14.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.16.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.17.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.18.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2 ().22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED 的度数.23.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.25.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.26.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结P A、PB.猜想:如图①,若点P在线段CD上,∠P AC=15°,∠PBD=40°,则∠APB的大小为度.探究:如图①,若点P在线段CD上,直接写出∠P AC、∠APB、∠PBD之间的数量关系.拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠P AC、∠APB、∠PBD之间的数量关系.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°【答案】B【分析】根据同位角相等、内错角相等、同旁内角互补,两直线平行即可判断.【解答】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【知识点】平行线的判定2.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°【答案】C【分析】先根据三角形外角的性质求出∠EDG的度数,再由平行线的性质得出∠4CEF度数,由直角三角形的性质即可得出结论.【解答】解:如图,根据对顶角的性质得:∠1=∠3,∠2=∠4,∵∠EDG是△ADG的外角,∴∠EDG=∠A+∠3=30°+20°=50°,∵l1∥l2,∴∠EDG=∠CEF=50°,∵∠4+∠FEC=90°,∴∠FEC=90°﹣50°=40°,∴∠2=40°.故选:C.【知识点】平行线的性质3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°【答案】B【分析】根据平行线的性质即可求解.【解答】解:延长BC至G,如下图所示,由题意得,AF∥BE,AD∥BC,∵AF∥BE,∴∠1=∠3(两直线平行,同位角相等),∵AD∥BC,∴∠3=∠4(两直线平行,同位角相等),∴∠4=∠1=40°,∵CD∥BE,∴∠6=∠4=40°(两直线平行,同位角相等),∵这条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,∴∠5=∠6=40°,∴∠2=180°﹣∠5﹣∠6=180°﹣40°﹣40°=100°,故选:B.【知识点】平行线的性质4.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6【答案】D【分析】根据三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边,可得出AB的取值范围,进而得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.【知识点】平行四边形的性质、三角形三边关系5.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【答案】B【分析】根据平行线的性质即可求解.【解答】解:过E作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.【知识点】平行线的性质6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)【答案】D【分析】根据平行线的判定与性质逐一进行推论即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行);所以A正确;B.∵AD∥BC,∴∠2=∠4(两直线平行,内错角相等);所以B正确;C.∵∠BAD+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行);所以C正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),所以D错误.故选:D.【知识点】平行线的判定与性质7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定【答案】A【分析】根据平行线的性质求出∠EAB+∠ABF=180°,根据∠DAE=∠BAE和∠DBF=∠ABF求出∠DAB+∠ABD=135°,根据三角形内角和定理求出即可.【解答】解:∵a∥b,∴∠EAB+∠ABF=180°,∵∠DAE=∠BAE,∠DBF=∠ABF,∴∠DAB+∠ABD=×180°=135°,∴∠ADB=180°﹣(∠DAB+∠ABD)=180°﹣135°=45°,故选:A.【知识点】平行线的性质8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°【答案】A【分析】解法一:根据多变的内角和定理可求解∠B+∠C+∠D+∠E=510°,∠1+∠2+∠B+∠C+∠D+∠E =(6﹣2)×180°=720°,进而可求解.解法二:利用三角形的内角和定理和平角的定义也可求解.【解答】解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°故选:A.【知识点】多边形内角与外角9.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【分析】根据平行线的判定得出GH∥BC,根据平行线的性质得出∠1=∠HGM,∠1=∠D,再逐个判断即可.【解答】解:∵∠B=∠AGH,∴GH∥BC,故①正确;∴∠1=∠HGM,∵∠1=∠2,∴∠2=∠HGM,∴DE∥GF,∵GF⊥AB,∴HE⊥AB,故④正确;∵GF∥DE,∴∠D=∠1,∵∠1=∠CMF,根据已知条件不能推出∠F=∠CMF,即不能推出∠D=∠F,故②错误;∵∠AHG=∠2+∠AHE,根据已知不能推出∠2=∠AHE,故③错误;即正确的有2个,故选:B.【知识点】平行线的判定与性质10.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD (0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能【答案】B【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.【知识点】平行线的判定二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.【答案】65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【解答】解:∵∠1=50°,∴∠DBE=180°﹣∠1=180°﹣50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC==65°.故答案为:65.【知识点】平行线的判定与性质12.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.【答案】75°【分析】由同旁内角互补,两直线平行可得l1∥l2,可得∠3+∠6=180°,即可求解.【解答】解:如图,∵∠2=∠5=100°,∠1=80°,∴∠1+∠2=180°,∴l1∥l2,∴∠3+∠6=180°,∴∠6=180°﹣∠3=75°,∴∠4=∠6=75°,故答案为:75°.【知识点】平行线的判定与性质13.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.【答案】20【分析】根据平行线的性质和角平分线的性质,可以得到∠AFE的度数.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,∵EF∥AC,∴∠EF A=∠CAP,∴∠BAP=∠EF A,∵∠BEF=40°,∠BEF=∠BAP+∠EF A,∴∠BAP=∠EF A=20°,即∠AFE=20°,故答案为:20.【知识点】平行线的性质14.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.【答案】140°【分析】由AD∥BC,利用“两直线平行,内错角相等”可得出∠CBD的度数,由折叠的性质可得出∠EBD 的度数,结合∠CBE=∠CBD+∠EBD可得出∠CBE的度数,由AD∥BC,利用“两直线平行,同旁内角互补”可求出∠BED的度数.【解答】解:∵AD∥BC,∴∠CBD=∠BDE=20°.由折叠的性质可知:∠EBD=∠CBD=20°,∴∠CBE=∠CBD+∠EBD=40°.∵AD∥BC,∴∠BED=180°﹣∠CBE=140°.故答案为:140°.【知识点】平行线的性质、翻折变换(折叠问题)15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.【答案】5【分析】只要证明△BDF和△CEF为等腰三角形,即可解决问题.【解答】证明:∵BF、CF分别平分∠ABC、∠ACG,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴△BDF和△CEF为等腰三角形;∵DF=BD,CE=EF,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=9﹣4=5(cm),∴EC=5(cm),故答案为:5.【知识点】等腰三角形的判定与性质、平行线的性质16.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质17.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.【答案】70°【分析】设∠C=∠AOC=∠BOD=∠BDO=x,∠CAP=∠P AB=y,∠P=z,则∠B=2y,构建方程组解决问题即可.【解答】解:∵∠C=∠COA,∠BDC=∠BOD,∠AOC=∠BOD,∴∠C=∠AOC=∠BOD=∠BDO,设∠C=∠AOC=∠BOD=∠BDO=x,∴∠B=∠CAO,设∠CAP=∠P AB=y,∠P=z,则∠B=2y,则有,解得,∴∠C=70°,故答案为70°.【知识点】三角形内角和定理18.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为.【答案】2或4【分析】分两种情况进行解答,分别画出图形,结合图形,利用三角形内角和、平行线的性质,等量代换,得出各个角之间的倍数关系.【解答】解:如图,①当∠ABP1=∠DCA时,即∠1=∠2,∵∠D=120°,∴∠1+∠3=180°﹣120°=60°,∵∠BAD=3∠CAD,∠ABE=2∠CBE,AD∥BC,∴3∠3+3∠EBC=180°,∴∠3+∠EBC=60°,∴∠EBC=∠1=∠2=∠P1BE,∴∠CBP1:∠ABP1的值为2,②当∠ABP2=∠DCA时,∴∠CBP2:∠ABP2的值为4,故答案为:2或4.【知识点】平行线的性质三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,结合角平分线的定义可得出∠CAD的度数,在△ACD中,利用三角形内角和定理可求出∠ADC的度数,结合对顶角相等可得出∠PDE 的度数,再在△PDE中利用三角形内角和定理可求出∠P的度数.【解答】解:在△ABC中,∠ACB=80°,∠B=24°,∴∠BAC=180°﹣∠ACB﹣∠B=76°.∵AD平分∠BAC,∴∠CAD=∠BAC=38°.在△ACD中,∠ACD=80°,∠CAD=38°,∴∠ADC=180°﹣∠ACD﹣∠CAD=62°,∴∠PDE=∠ADC=62°.∵PE⊥BC于E,∴∠PED=90°,∴∠P=180°﹣∠PDE﹣∠PED=28°.【知识点】三角形内角和定理、角平分线的定义、对顶角、邻补角20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.【分析】(1)由∠1与∠2互补,利用“同旁内角互补,两直线平行”可得出AC∥DF,再利用“两直线平行,同位角相等”可求出∠BFD的度数;(2)由(1)可知∠BFD=∠C,结合∠C=∠3可得出∠BFD=∠3,再利用“内错角相等,两直线平行”即可找出DE∥BC.【解答】解:(1)∵∠1与∠2互补,∴AC∥DF,∴∠BFD=∠C=40°;(2)DE∥BD,理由如下:由(1)可知:∠BFD=∠C,∵∠C=∠3,∴∠BFD=∠3,∴DE∥BC.【知识点】平行线的判定与性质21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2 ().【答案】【第1空】DE【第2空】BC【第3空】同位角相等,两直线平行【第4空】两直线平行,同旁内角互补【第5空】等量代换【第6空】EF【第7空】AB【第8空】同旁内角互补,两直线平行,【第9空】两直线平行,内错角相等【分析】先判断出DE∥BC得出∠B+∠BDE=180°,再等量代换,即可判断出EF∥AB即可.【解答】解:因为∠AED=∠C(已知)所以DE∥BC(同位角相等,两直线平行)所以∠B+∠BDE=180°(两直线平行,同旁内角互补)因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°(等量代换)所以EF∥AB(同旁内角互补,两直线平行)所以∠1=∠2 (两直线平行,内错角相等).故答案为:DE,BC,同位角相等,两直线平行,两直线平行,同旁内角互补,等量代换EF,AB,同旁内角互补,两直线平行,两直线平行,内错角相等.【知识点】平行线的判定与性质22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED的度数.【分析】(1)作EF∥AB,如图1,利用角平分线的定义得到∠ABE=25°,∠EDC=40°,利用平行线的性质得到∠BEF=∠ABE=25°,∠FED=∠EDC=40°,从而得到∠BED的度数;(2)作EF∥AB,如图2,利用角平分线的定义得到∠ABE=60°,∠EDC=40°,利用平行线的性质得到∠BEF=120°,∠FED=∠EDC=40°,从而得到∠BED的度数.【解答】解:(1)作EF∥AB,如图1,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=25°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=∠ABE=25°,∠FED=∠EDC=40°,∴∠BED=25°+40°=65°;(2)作EF∥AB,如图2,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=60°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=180°﹣∠ABE=120°,∠FED=∠EDC=40°,∴∠BED=120°+40°=160°.【知识点】平行线的性质、平移的性质23.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.【答案】【第1空】1470平方米【第2空】108米【分析】(1)结合图形,利用平移的性质求解;(2)结合图形,利用平移的性质求解;(3)结合图形,利用平移的性质求解.【解答】解:(1)将小路往左平移,直到E、F与A、B重合,则平移后的四边形EFF1E1是一个矩形,并且EF=AB=30,FF1=EE1=1,则草地的面积为:50×30﹣1×30=1470(平方米);故答案为:1470平方米;(2)小路往AB、AD边平移,直到小路与草地的边重合,则草地的面积为:(50﹣1)×(30﹣1)=1421(平方米);(3)将小路往AB、AD、DC边平移,直到小路与草地的边重合,则所走的路线(图中虚线)长为:30﹣1+50+30﹣1=108(米).故答案为:108米.【知识点】生活中的平移现象24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.【答案】【第1空】∠EFC【第2空】两直线平行,内错角相等【第3空】∠EFC【第4空】两直线平行,同位角相等【第5空】50°【第6空】115°【分析】探究:依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=50°.应用:依据两直线平行,同位角相等;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣65°=115°.【解答】解:探究:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=50°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,50°;应用:∵DE∥BC,∴∠ABC=∠ADE=60°.(两直线平行,同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣65°=115°.故答案为:115°.【知识点】平行线的性质、相交线25.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.【分析】(1)如图①,延长AB交DE于点F,根据平行线的性质即可得结论∠BED+∠D=120°;(2)设∠BEF=α,∠CDE=β,可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,结合(1)可知∠BED+∠CDE=120°,进而可得结论;(3)根据已知条件和三角形的外角可得∠G+30°=∠E+(120°﹣∠E),进而可得结论.【解答】解:(1)结论:∠BED+∠D=120°,证明:如图①,延长AB交DE于点F,∵AB∥CD,∴∠BFE=∠D,∵∠ABE=120°,∴∠BFE+∠BED=∠ABE=120°,∴∠D+∠BED=120°;(2)如图②,∵∠DEF=2∠BEF,∠CDF=∠CDE,即∠CDE=3∠CDF,设∠BEF=α,∠CDF=β,∴∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,由(1)知:∠BED+∠CDE=120°,∴3α+3β=120°,∴α+β=40°,∴2α+2β=80°,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣(2α+2β)=180°﹣80°=100°,答:∠EFD的度数为100°;(3)如图③,∵BG⊥AB,∴∠ABG=90°,∵∠ABE=120°.∴∠GBE=∠ABE﹣∠ABG=30°,∵∠CDE=4∠GDE,∴∠GDE=∠CDE,∵∠G+∠GBE=∠E+∠GDE,∴∠G+30°=∠E+∠CDE,由(1)知:∠BED+∠CDE=120°,∴∠CDE=120°﹣∠E,∴∠G+30°=∠E+(120°﹣∠E),∴∠G=∠E,∴=.【知识点】平行线的性质、垂线26.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结P A、PB.猜想:如图①,若点P在线段CD上,∠P AC=15°,∠PBD=40°,则∠APB的大小为度.探究:如图①,若点P在线段CD上,直接写出∠P AC、∠APB、∠PBD之间的数量关系.拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠P AC、∠APB、∠PBD之间的数量关系.【答案】55【分析】猜想:如图①,根据平行线的性质和∠P AC=15°,∠PBD=40°,即可得∠APB的大小;探究:如图①,结合猜想即可写出∠P AC、∠APB、∠PBD之间的数量关系;拓展:如图②,分两种情况画出图形,当点P在射线CE上或在射线DF上时,结合探究过程即可写出∠P AC、∠APB、∠PBD之间的数量关系.【解答】解:猜想:如图①,过点P作PG∥l1,∵l1∥l2,∴l1∥l2∥PG,∴∠APG=∠P AC=15°,∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=∠P AC+∠PBD=15°+40°=55°,∴∠APB的大小为55度,故答案为:55;探究:如图①,∠P AC=∠APB﹣∠PBD,理由如下:∵l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠APB=∠APG+∠BPG=∠P AC+∠PBD,∴∠P AC=∠APB﹣∠PBD;拓展:∠P AC=∠PBD﹣∠APB或∠P AC=∠APB+∠PBD,理由如下:如图,当点P在射线CE上时,过点P作PG∥l1,∴l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠P AC=∠APG=∠BPG﹣∠APB,∴∠P AC=∠PBD﹣∠APB;当点P在射线DF上时,过点P作PG∥l1,∴l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠P AC=∠APG=∠APB+∠BPG,∴∠P AC=∠APB+∠PBD,综上所述:当点P在射线CE上或在射线DF上时,∠P AC=∠PBD﹣∠APB或∠P AC=∠APB+∠PBD.【知识点】平行线的性质31。
苏教版七年级数学下册第七单元测试题

七下第七章单元测试一、选一选:1、如图,在所标识的角中,同位角是( )A .1∠和2∠B .1∠和3∠C .1∠和4∠D .2∠和3∠2、如图所示,两条直线AB 、CD 被第三条直线EF 所截,∠1=75°,下列说法正确的是( ) A. 若∠4=75°,则AB ∥CD B. 若∠4=105°,则AB ∥CDC. 若∠2=75°,则AB ∥CDD. 若∠2=155°,则AB ∥CD3、对于平移后,对应点所连的线段,下列说法正确的是 ( )①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上。
A .①③ B. ②③ C. ③④ D. ①②4、有下列长度的三条线段能构成三角形的是 ( )A.1 cm 、2 cm 、3 cmB.1 cm 、4 cm 、2 cmC.2 cm 、3 cm 、4 cmD.6 cm 、2 cm 、3 cm 5、如图,A D ⊥BC, A D ⊥BC, GC ⊥BC, CF ⊥AB,D,C,F 是垂足,下列说法中错误的是( ) A .△ABC 中,AD 是BC 边上的高 B .△ABC 中,GC 是BC 边上的高 D .△GBC 中,GC 是BC 边上的高 D .△GBC 中,CF 是BG 边6、如图,AB ∥CD 。
AD 、BC 交于点O ,∠BAD=320,∠BOD =780,则∠C 的度数是( ) (A )460(B )320(C )360 (D )无法确定7、若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 ( )A.垂直B.平行C.重合D.相交8、如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H 的度数等于( )(A )1800(B )3600(C )5400(D )7200二、填空题:9、三角形的三边长为3,a ,7,则a 的取值范围是 ;如果这个三角形中有两条边相等,那么它的周长是 10、在△ABC 中, ∠A -∠B =36°,∠C =2∠B ,则∠A = ,∠B = ,∠C = 。
苏科版七年级数学下册第7单元复习《单元测试》(一)附答案

苏科七年级下单元测试第7单元班级________ 姓名________一.选择题(共8小题,满分40分)1.如图,在下列给出的条件中,可以判定AB∥CD的有()①∠1=∠2;②∠1=∠3;③∠2=∠4;④∠DAB+∠ABC=180°;⑤∠BAD+∠ADC=180°.A.①②③B.①②④C.①④⑤D.②③⑤2.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于()A.35°B.45°C.50°D.55°3.如图,已知AD⊥BC,FG⊥BC,∠BAC=90°,DE∥AC.则结论:①FG∥AD;②DE 平分∠ADB;③∠B=∠ADE;④∠CFG+∠BDE=90°.正确的是()A.①②③B.①②④C.①③④D.②③④4.如图,BD是四边形ABCD的对角线.若∠1=∠2,∠A=80°,则∠ADC等于()A.60°B.80°C.90°D.100°5.如图所示,△ABC的边AC上的高是()A.线段AE B.线段BA C.线段BD D.线段DA6.已知三角形两边长分别为4和8,则该三角形第三边的长可能是()A.4B.5C.12D.137.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=45°,∠C=73°,则∠DAE的度数是()A.14°B.24°C.19°D.9°8.已知直线l1∥l2,将一块直角三角板ABC(其中∠A是30°,∠C是60°)按如图所示方式放置,若∠1=84°,则∠2等于()A.56°B.64°C.66°D.76°二.填空题(共8小题,满分40分)9.如图,共有个三角形.10.盖房子的时候,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条的根据是.11.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE 的度数为.12.如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=62°,射线GP⊥EG于点G,则∠PGF的度数为度.13.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=83°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转度.14.已知直线a∥b,用一块含30°角的直角三角板按图中所示的方式放置,若∠1=25°,则∠2=.15.如图,将一张长方形纸片如图所示折叠后,如果∠1=130°,那么∠2等于.16.已知:直线a∥b,点A,B分别是a,b上的点,APB是a,b之间的一条折线段,且50°<∠APB<90°,Q是a,b之间且在折线段APB左侧的一点,如图.若∠AQC的一边与P A的夹角为40°,另一边与PB平行,请直接写出∠AQC,∠1,∠2之间满足的数量关系是.三.解答题(共5小题,满分40分)17.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.18.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?19.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G 在射线EF上,已知∠HFB=20°,∠FED=45°,求∠GFH的度数.20.如图,已知点E在BD上,AE⊥CE且EC平分∠DEF.(1)求证:EA平分∠BEF;(2)若∠1=∠A,∠4=∠C,求证:AB∥CD.21.已知直线BC∥ED.(1)如图1,若点A在直线DE上,且∠B=44°,∠EAC=57°,求∠BAC的度数;(2)如图2,若点A是直线DE的上方一点,点G在BC的延长线上,求证:∠ACG=∠BAC+∠ABC;(3)如图3,FH平分∠AFE,CH平分∠ACG,且∠FHC比∠A的2倍少60°,直接写出∠A的度数.参考答案一.选择题(共8小题,满分40分)1.D.2.A.3.C.4.D.5.C.6.B.7.A.8.C.二.填空题(共8小题,满分40分)9.6.10.三角形具有稳定性.11.20°.12.59或121.13.13.14.35°.15.80°.16.∠AQC+∠1+∠2=140°或∠AQC﹣∠1﹣∠2=40°或∠AQC=∠1+∠2+40°或∠AQC =220°﹣∠1﹣∠2.三.解答题(共5小题,满分40分)17.证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∴∠C=∠AMN,∵∠3=∠C,∴∠3=∠AMN,∴AB∥MN.18.解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.19.解:∵AB∥CD,∴∠GFB=∠FED=45°.∵∠HFB=20°,∴∠GFH=∠GFB﹣∠HFB=45°﹣20°=25°.20.证明:(1)∵AE⊥CE,∴∠AEC=90°,∴∠2+∠3=90°且∠1+∠4=90°,又∵EC平分∠DEF,∴∠3=∠4,∴∠1=∠2,∴EA平分∠BEF;(2)∵∠1=∠A,∠4=∠C,∴∠1+∠A+∠4+∠C=2(∠1+∠4)=180°,∴∠B+∠D=(180°﹣2∠1)+(180°﹣2∠4)=360°﹣2(∠1+∠4)=180°,∴AB∥CD.21.解:(1)∵BC∥ED,∠B=44°,∴∠DAB=∠B=44°,∵∠BAC=180°﹣∠DAB﹣∠EAC∴∠BAC=180°﹣44°﹣57°=79°.(2)过点A作MN∥BG,∴∠ACG=∠MAC,∠ABC=∠MAB而∠MAC=∠MAB+∠BAC∴∠ACG=∠MAB+∠BAC=∠ABC+∠BAC.(3)如图,设AC与FH交于点P∵FH平分∠AFE,CH平分∠ACG∴∠AFH=∠EFH=∠AFE,∠ACH=∠HCG=∠ACG ∵BC∥ED∴∠AFE=∠B∴∠AFH=∠B∵∠A+∠B=∠ACG∴∠ACH=∠ACG=∠A+∠B在△APF和△CPH中∵∠APF=∠CPH∴∠A+∠B=∠A+∠B+∠FHC∴∠FHC=∠A∵∠FCH=2∠A﹣60°∴∠A=2∠A﹣60°∴∠A=40°.。
苏科版七年级数学下册第7章测试题(附答案)

苏科版七年级数学下册第7章测试题(附答案)一、单选题1.如图,若,,,则的大小是()A. B. C. D.2.具备下列条件的四个三角形中,不是直角三角形的是()A. ∠A ∠B ∠CB. ∠A-∠B 90°C. ∠A+∠B ∠CD. ∠A 90°-∠B3.如图,将周长为18的△ABC沿BC方向平移2个单位得△DEF,则四边形ABFD的周长为()A. 22B. 24C. 26D. 284.如图,已知,则的度数是()A. B. C. D.5.下图给出了过直线外一点作已知直线的平行线的一种方法,其依据是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线平行D. 平行于同一直线的两条直线平行6.如图所示,△DEF经过平移可以得到△ABC,那么∠C的对应角和ED的对应边分别是()A. ∠F,ACB. ∠BOD,BAC. ∠F,BAD. ∠BOD,AC7.如图,下列条件能判定的是()A. B.C. D. 且8.如图,下列条件中不能判断直线与直线平行的是().A. B. C. D.9.如图所示,平移后得到,已知,,则()A. B. C. D.10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A. 30°B. 25°C. 20°D. 15°11.已知一个多边形的内角和为720°,则这个多边形为()A. 三角形B. 四边形C. 五边形D. 六边形12.如图,能判定EB∥AC的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠5=∠6D. ∠2=∠3二、填空题13.一个多边形的每一个外角都等于18°,则这个多边形的边数是________.14.已知三角形的三边长均为整数,其中两边长分别为1和3,则第三边长为________.15.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=________°.16.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=36,则S1-S2=________.17.小张同学观察如图1所示的北斗七星图,小张同学把北斗七星:摇光、开阳、玉衡、天权、天玑、天璇、天枢按图2分别标为点A、B、C、D、E、F、G,然后将点A、B、C、D、E、F、G顺次首尾连接,发现AG 恰好经过点C,且∠B-∠DCG=115°,∠B-∠D=10°,若AG//EF,则∠E=m°,这里的m=________.18.如图是用三角尺和直尺画平行线的示意图,将三角尺沿着直尺平移到三角尺的位置,就可以画出的平行线.若,,则直线平移的距离为________cm.19.如图,将三角形ABC沿水平方向向右平移到三角形DEF的位置,若BF=11,EC=5,则A,D之间的距离为________.20.如图,在ABC 中,AD、CE 是中线,若四边形BDFE 的面积是6,则ABC 的面积为________.三、解答题21.已知:如图,直线AB∥CD,直线EF与直线AB、CD分别交于点M、N,MG平分∠AMF,NH平分∠END.求证:MG∥NH.22.如图,在ABC中,F、H是BC上的点,FG⊥AC,HD⊥AC,垂足分别为G、D,在AB上取一点E,使∠BED+∠B=180°.求证:∠CFG=∠HDE.23.如图,AB∥CD,∠AFE=140°,∠C=30°,求∠CEF的度数.24.如图,已知∠1=∠2,∠GFA=40°,∠HAQ=15°,∠ACB=70°,AQ平分∠FAC,求证:BD∥GE∥AH.答案一、单选题1. D2. B3. A4. B5. A6. C7. D8. B9. C 10. B 11. D 12. D二、填空题13. 20 14. 3 15. 240 16. 6 17. 18. 5.5 19. 3 20. 18三、解答题21. 证明:∵AB CD,∴∠AMF=∠END,∵MG平分∠AMF,NH平分∠END,∴∠GMN=∠AMF,∠HNM=∠END,∴∠GMN=∠HNM,∴GM NH.22. 证明:∵HD⊥AC,FG⊥AC,∴∠CDH=∠CGF=90°.∴ FG∥HD.∴∠CFG=∠CHD.∵∠BED+∠B=180°,∴ BC∥ED.∴∠CHD=∠HDE.∴∠CFG=∠HDE.23. 解:延长FE交CD于G点,∵AB∥CD,∴∠AFE+∠CGF=180°,∵∠AFE=140°,∴∠CGF=40°,∵∠CEF=∠C+∠CGE,∠C=30°,∠CGE=∠CGF=40°,∴∠CEF=∠C +∠CGE =70°.24. 证明:∵∠1=∠2,∴AH∥GE,∴∠GFA=∠FAH.∵∠GFA=40°,∴∠FAH=40°,∴∠FAQ=∠FAH+∠HAQ,∴∠FAQ=55°.又∵AQ平分∠FAC,∴∠QAC=∠FAQ=55°,∵∠HAC=∠QAC+∠HAQ,∴∠HAC=55°+15°=70°=∠ACB,∴BD∥AH,∴BD∥GE∥AH.。
(典型题)苏科版七年级下册数学第7章 平面图形的认识(二)含答案

苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个B.5个C.4个D.3个2、如图,将直尺与含30°角的三角尺摆放在一起,若∠1=25°,则∠2的度数是( )A.35°B.45°C.55°D.65°3、已知三角形的三边长分别为4,a, 8,那么下列在数轴上表示该三角形的第三边a的取值范围正确的是()A. B. C.D.4、下列长度的各组线段,可以组成一个三角形三边的是()A.1,2,3B.3,3,6C.1,5,5D.4,5,105、如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°6、不能作为正多边形的内角的度数的是( )A.120°B.108°C.144°D.145°7、△ABC的角平分线AD是()A.射线ADB.射线DAC.直线ADD.线段AD8、如图,将边长为5个单位的等边△ABC沿边BC向右平移4个单位得到△A′B′C′,则四边形AA′C′B的周长为()A.22B.23C.24D.259、若四边形ABCD中,∠A:∠B:∠C=1:2:4,且∠D=108°,则∠A+∠C的度数等于()A.108°B.180°C.144°D.216°10、如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为( )A.72B.36°C.60°D.82°11、如图,在△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于( )A.63°B.62°C.55°D.118°12、如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠B的度数是( )A.40°B.35°C.30°D.15°13、如图,若∠1=∠2,DE∥BC,则下列结论中正确的有( )①∠AED =∠ACB;②FG∥DC;③CD平分∠ACB;④∠1+∠B =90°;⑤∠BFG =∠BDC.A.1个B.2个C.3个D.4个14、如图,一次函数与轴,轴交于两点,与反比例函数相交于两点,分别过两点作轴,轴的垂线,垂足为,连接,有下列四个结论:① 与的面积相等;② ∽ ;③ ;④ ,其中正确的结论个数是()A.1B.2C.3D.415、如图,AB是⊙O的直径,弦CD⊥AB,DE∥CB交⊙O于点E,若∠CBA=20°,则∠AOE的度数为()A.120°B.80°C.110°D.100°二、填空题(共10题,共计30分)16、在△ABC中,∠B=45°,cosA=,则∠C的度数是________.17、一个等腰三角形的两边长分别为5cm和6cm,则该等腰三角形的周长为________cm.18、若a,b,c是一个三角形的三条边,且a,b满足+|7﹣b|=0,则第三边c的取值范围为________19、若一个多边形的每个外角都是40°,则从这个多边形的一个顶点出发可以画________条对角线.20、如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=________(等量代换)∴________∥________.(________)∴∠ABD+∠D=180°.(________)∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)21、如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=________.22、如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB 上一动点,将△AEF沿直线EF折叠,点A落在点A′处,连接CA′,则CA′的最小值为________.23、已知一个正多边形的内角是140°,则这个正多边形的边数是________.24、如图,AB∥ED, ∠CAB=135°,∠ACD= 75°,则∠CDE=________度25、若一个等腰三角形的周长为26,一边长为10,则它的腰长为________.三、解答题(共5题,共计25分)26、如图,在△ABC中,D是BC上的一点,∠1=∠2,∠3=∠4,∠B=40°,求∠BAC的度数.27、一个边数为的多边形中所有对角线的条数是边数为的多边形中所有对角线条数的6倍,求这两个多边形的边数.28、若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h边形的内角和与外角和相等.求代数式h•(m﹣k)n的值.29、如图,△ABC与△DBE中,AC∥DE,点B、C、E在同一直线上,AC,BD相交于点F,若∠BDE=85°,∠BAC=55°,∠ABD:∠DBE=3:4,求∠DBE的度数.30、如图,已知∠1=∠2,∠GFA=40°,∠HAQ=15°,∠ACB=70°,AQ平分∠FAC,求证:BD∥GE∥AH.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、C5、B6、D7、D8、B9、B10、A11、B12、B13、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
苏科版数学七下第7章《数据的收集、整理、描述》单元综合检测题

第7章 数据的收集、整理、描述(满分:100分 时间:90分钟)一、选择题(每小题2分,共20分)1. 如图,∠1与∠2是 ( )A.对顶角B.同位角C.内错角D.同旁内角第1题 第2题2. 如图,直线AB 、CD 相交于点O , ∠1=80°,如果DE ∥AB ,那么D ∠的度数是( ) A. 80° B. 90° C. 100° D. 110°3. 小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x千米远,则x 的值应满足 ( )A.3x =B.7x =C.3x =或7x =D.37x ≤≤4. 如图是“福娃欢欢”的五幅图案,②、③、④、⑤中可以通过平移图案①得到的是( )第4题 A.② B.③ C.④ D.⑤ 5. 在ABC ∆中,1135A B C ∠=∠=∠,则ABC ∆是 ( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.无法确定6. 如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有 ( )A.2对B. 3对C. 4对D. 6对第6题 第7题 第8题 7. 如图,直线1l //2l ,125A ∠=︒,85B ∠=︒,则12∠+∠的度数为 ( ) A. 30° B. 35° C. 36° D. 40°8. 如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 的内部时,A ∠与12∠+∠之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A.12A ∠=∠+∠ B.212A ∠=∠+∠ C.3212A ∠=∠+∠ D.32(12)A ∠=∠+∠9.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是 ( )10. 如图,在方格纸中,线段a ,b ,c ,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有 ( ) A. 3种 B. 6种 C. 8种 D. 12种12.第12题 第13题 第14题 第15题 13. 如图,一块直角三角尺的两个顶点分别在长方形的一组对边上,若130∠=︒,则∠14. cm 2(15. 16. 则∠第18题 第19题 第20题 17. 18. 19. 20. ︒,那么12∠+∠= °.三、解答题(共60分)21. (6分)请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.第21题22. ( 6分)有一块长方形钢板ABCD ,现将它加工成如图所示的零件,按规定1∠、2∠应分别为45°B和30°. 检验人员量得EGF ∠为78°,就判断这个零件不合格,你能说明理由吗?第22题23. (8分)小明想:2015年世博会将在意大利米兰举行,设计一个内角和是2015°的多边形图案多有意义啊!你同意小明的想法吗?为什么?24. (8分)阅读下面的材料:如图①,在ABC ∆中,试说明180A B C ∠+∠+∠=︒.分析:通过画平行线,将A ∠、B ∠、C ∠作等量代换,使各角之和恰为一个平角,依辅助线不同而得多种方法.第24题解:如图②,延长BC 到点D ,过点C 作CE //BA . 因为BA //CE (作图所知),所以2B ∠=∠,1A ∠=∠(两直线平行,同位角、内错角相等). 又因为21180BCD BCA ∠=∠+∠+∠=︒(平角的定义), 所以180A B ACB ∠+∠+∠=︒(等量代换).如图③,过BC 上任一点F ,作FH //AC , FG //AB ,这种添加辅助线的方法能说明180A B C ∠+∠+∠=︒吗?并说明理由.25. (10分)如图,在△ABC 中(BC >AC ),∠ACB =90°,点D 在AB 边上,DE ⊥AC 于点E .设点F 在线段EC 上,点G 在射线CB 上,以F ,C ,G 为顶点的三角形与△EDC 有一个锐角相等,FG 交CD 于点P ,问:线段CP 可能是△CFG 的高线还是中线?或两者都有可能?请说明理由.E ADBC26. (10分)如图,D 是ABC ∆的边BC 上任意一点,E 、F 分别是线段AD 、CE 的中点,且ABC ∆的面积为20 cm 2,求BEF ∆的面积.第26题27. (12分)在ABC ∆中,C B ∠>∠.如图①,AD BC ⊥于点D ,AE 平分BAC ∠,则易知1()2EAD C B ∠=∠-∠.(1)如图②,AE 平分BAC ∠, F 为AE 上的一点,且FD BC ⊥于点D ,这时EFD ∠与B ∠、C ∠有何数量关系?请说明理由;(2)如图③,AE 平分BAC ∠,F 为AE 延长线上的一点,FD BC ⊥于点D ,请你写出这时AFD∠与B ∠、C ∠之间的数量关系(只写结论,不必说明理由).14151617181920. 2)180︒,其一定是而2015°不能被180°整除,所以不可能有内角和为2015°的多边形.24. 能 理由:因为FH ∥AC ,所以1,2C CGF ∠=∠∠=∠,因为FG ∥AB ,所以3,B CGF A ∠=∠∠=∠,所以2A ∠=∠,因为180BFC ∠=︒, 所以180A B C ∠+∠+∠=︒.25.①若1CFG ECD ∠=∠,此时线段CP 1为△CFG 1的斜边FG 1上的中线.证明如下: ∵1CFG ECD ∠=∠,∴11CFG FCP ∠=∠.又∵1190CFG CG F ∠+∠=︒,∴11190FCP PCG ∠+∠=︒. ∴111CG F PCG ∠=∠. ∴111CP G P =.又∵11CFG FCP ∠=∠,∴11CP FP =. ∴1111CP FP G P ==.∴线段CP 1为△CFG 1的斜边FG 1上的中线.②若2CFG EDC ∠=∠,此时线段CP 2为△CFG 2的斜边FG 2上的高线.证明如下: ∵2CFG EDC ∠=∠,又∵DE ⊥AC ,∴90DEC ∠=︒. ∴90ECD EDC ∠+∠=︒. ∴290ECD CFG ECD EDC ∠+∠=∠+∠=︒. ∴CP 2⊥FG 2. ∴线段CP 2为△CFG 2的斜边FG 2上的高线.③当CD 为∠ACB 的平分线时,CP 既是△CFG 的FG 边上的高线又是中线.26. 因为E 是AD 的中点,所以BE 是ABD ∆的中线,CE 是ACD ∆的中线,所以BF 是BCE ∆的中线,所以12BEF BEC S S ∆∆==5(cm 2). 27. (1)如图辅助线:作AG BC ⊥,1()2EFD C B ∠=∠-∠. (2)1()2AFD C B ∠=∠-∠。
苏科版七年级下册数学第七章测试题

苏科版七年级下册数学第七章测试题姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.在四边形的四个内角中,钝角的个数最多为A. 1个B. 2个C. 3个D. 4个2.如图的4×4的方格纸中有一格点△ABC,其面积等于cm2,则这个方格纸的面积等于()A. 16cm2B. 20cm2C. 21cm2D. 24cm23.以下列各组线段为边,能组成三角形的是()A. 2、2、4B. 8、6、3C. 2、6、3D. 11、4、64.如图,直线a∥b,∠1=70°,那么∠2等于()A. 70°B. 100°C. 110°D. 20°5.如图,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()A. ∠C=60°B. ∠DAB=60°C. ∠EAC=60°D. ∠BAC=60°6.如图,在四边形ABCD中,点F,E分别在边AB,BC上,将△BFE沿FE翻折,得△GFE,若GF∥AD,GE∥DC,则∠B的度数为()7.如图所示,下列说法正确的是()A. ∠1和∠2是同位角B. ∠1和∠4是内错角C. ∠1和∠3是内错角D. ∠1和∠3是同旁内角8.一个多边形的每个内角都等于144°,则这个多边形的边数是()A. 8B. 9C. 10D. 119.如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD上的四点,则图中阴影部分的总面积是( )A.6B.8C.4D.1210.如图,直线l1∥l2,∠1=62°,则∠2的度数为()A. 152°B. 118°C. 28°D. 62°11.如下图,在下列条件中,能判定AB//CD的是()A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠412.如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC的面积比为()二、填空题(共10题;共54分)13.已知△ABC的两条边长分别为5和8,那么第三边长x的取值范围________.14.如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=________°.15.如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=________度.16.一个多边形的内角和是它外角和的2倍,则它的边数是________.17.如图,AE、BF、DC是直线,B在直线AC上,E在直线DF上,∠1=∠2,∠A=∠F.求证:∠C=∠D.证明:因为∠1=∠2(已知),∠1=∠3________ 得∠2=∠3________ 所以AE//________ ________ 得∠4=∠F________ 因为________(已知) 得∠4=∠A所以________//________ ________ 所以∠C=∠D________18.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=________.19.若一个多边形每个内角的度数都为150°,则这个多边形的边数为________.20.如图,填空①如果∠1=∠2,那么根据________,可得________∥________;②如果∠DAB+∠ABC=180°,那么根据________,可得________∥________.③当________∥________时,根据________,得∠3=∠C.21.一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形有________条边。
苏教版七年级下册第七单元测试

七年级第二学期第七单元测试(考试时间:90分钟,试卷总分120分)一、细心填一填(每空2分,共计26分)1.5的相反数是______________ ,平方等于49的数是 ________2.___________________________ 单项式-2x2 y 3的系数是__________________________________ ;次数是________ •13.若单项式2χ2y m与一—x n y3是同类项,则m n的值是34•如果X2m1+8=0是一元一次方程,则m= •5.在△ ABC中,∠ A+∠ B=88° 这个三角形是________ 三角形.6•八边形的内角和为_______ ; 一个多边形的每个内角都是 17.如图,如果希望直线C // d,那么需要添加的条件是:_9.如图,在△ ABC中,AD是高,AE是角平分线,∠ B=28°,∠第8题&如图,把△ ABC沿线段DE折叠,使点A落在点F处,BC//则∠ BDF= _______ °.第10题若∠B=50°,,则它是________ 边形.______ .(所有的可能)C=60°,则∠ DAE=10.如图,点D 是厶ABC 的边BC 上任意一点,点E F 分别是线段 AD CE 的中点,且厶ABC的面积为36cm?,则△ BEF 的面积=Cm二、精心选一选(每题只有一个符合要求的答案,每题 3分,共计24分)11. 下列运算正确的是( )12.画△ ABC 中BC 边上的高,下面的画法中,正确的是( )13. 有五个正方体搭成的几何体的俯视图如图,则物体的主视图不可能是()丑I 住吐丑廿Λ.Ei TC-I )¥14. 将一张长方形纸片如图所示折叠后,再展开.如果∠ 仁56°,那么∠ 2等于 (A.肚 = & B .盘* ÷ tj" = &DA .B .C D.(A) 56 °(B) 68 °(C )第17题第18题2 4 8A. 2x26x412x8 B4 m(y )3 m(y )15.下列计算正确的是()C. (3ab )39a 3b 3D. 4a 2a 2316. 如果在数轴上表示 a 、b 两个实数的点的位置如图,那么丨 a-b I + I a+b I 化简的结果等于();O ⅛A. 2a B . -2a C . 0 D . 2b 17.如图所示,直线 a , b 与直线C 相交,给出下列条件:①∠仁∠2;②∠ 3=∠ 6:③/4+∠ 7=180°;④∠ 5+∠ 3=180 °.其中能判断 a // b 的是() A.①②③④B .①③④C .①③D .②④18•某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m 长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积是()2 2 2 2A . 6 ∏ mB . 5 ∏ mC . 4 ∏ mD . 3 ∏ m三、耐心解一解(写出必要的解题过程)(共70分)19 .计算:(每题4分,共计16分)2 2120. (1)( 6 分)先化简,再求值: 2 (X - Xy )-( 3x - 6xy ),其中 X= , y=- 1.2(2)( 7分)已知厂 -一,求①一广’的值;②'r 的值;(1) 2× ( - 1) - 3÷ ( - 5)× -⑵3 1 3 × ( — 24) 8 6 4⑷ l∖" /■' √ / L21 . (6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ ABC的三个顶点的位置如图所示,现将△ ABC平移,使点A对应点A',点(1)画出平移后的△ A B' C';(2)连接AA , CC ,则这两条线段之间的关系是 ____________(3)A A B' C 的面积= __________ 22.(每空1分,共8分)根据题意结合图形填空:已知:如图,AD丄BC于D, EGL BC与G ∠ E=∠ 3,试问:AD是∠ BAC的平分线吗?若是请说明理由答:是,理由如下:∙∙∙ ADL BC, EG丄BC ( _ ).∙.∠ 4=∠ 5=90°( ________________________ )∙∙∙ AD// EG ( ________________________ ).∠ 1 = ∠ E ( _____________________________ )∠ 2=∠ 3 ( _________________________________ )τ∠ E=∠ 3 ( ______ )∙______________ (等量代换)∙AD是∠ BAC的平分线( __________________ )23.(本题满分7分)如图,已知AE// BD ∠ 1=3∠ 2,∠ 2=25°,求C的度数.24. (10分).探究:2221 2 211 212423(1) 请仔细观察,写出第 4个等式; (2) 请你找规律,写出第 n 个等式;(3) 计算:212223220192202025. ( 10分)在厶ABC 中,∠ A=50°点D, E 分别是边 AC, AB 上的点(不与 A B , C 重 合),点P 是平面内一动点(P 与D, E 不在同一直线上),设∠ PDC ∠ 1,∠ PEB=∠ 2,∠ DPE=×α.∠ 2= _____ (用α的代数式表示);(2)( 4分)若点P 在ABC 的外部,如图(2)所示,则∠α,∠ 1,∠ 2之间有何关系? 写出你的结论,并说明理由•(3) (3分)当点P 在边CB 的延长线上运动时,试画出相应图形,标注有关字母与数字, 并写出对应的∠α,∠1 , ∠ 2之间的关系式.(不需要证明)2322(1)( 3分)若点P 在边BC 上运动(不与点B 和点C 重合),如图(1)所示,则∠ 1 +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七下第七章单元测试
姓名 得分
一、选一选:
1、如图,在所标识的角中,同位角是( )
A .1∠和2∠
B .1∠和3∠
C .1∠和4∠
D .2∠和3∠
2、如图所示,两条直线AB 、CD 被第三条直线EF 所截,∠1=75°,下列说法正确的是( ) A. 若∠4=75°,则AB ∥CD B. 若∠4=105°,则AB ∥CD
C. 若∠2=75°,则AB ∥CD
D. 若∠2=155°,则AB ∥CD
3、对于平移后,对应点所连的线段,下列说法正确的是 ( )
①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上。
A .①③ B. ②③ C. ③④ D. ①②
4、有下列长度的三条线段能构成三角形的是 ( )
A.1 cm 、2 cm 、3 cm
B.1 cm 、4 cm 、2 cm
C.2 cm 、3 cm 、4 cm
D.6 cm 、2 cm 、3 cm 5、如图,A D ⊥BC, A D ⊥BC, GC ⊥BC, CF ⊥AB,D,C,F 是垂足,下列说法中错误的是( ) A .△ABC 中,AD 是BC 边上的高 B .△ABC 中,GC 是BC 边上的高 D .△GBC 中,GC 是BC 边上的高 D .△GBC 中,CF 是BG 边
6、如图,AB ∥CD 。
AD 、BC 交于点O ,∠BAD=320
,∠BOD =780
,则∠C 的度数是( ) (A )460
(B )320
(C )360 (D )无法确定
7、若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 ( )
A.垂直
B.平行
C.重合
D.相交
8、如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H 的度数等于( )
(A )1800
(B )3600
(C )5400
(D )7200
二、填空题:
9、三角形的三边长为3,a ,7,则a 的取值范围是 ;如果这个三角形中有两条边相等,那么它的周长是 10、在△ABC 中, ∠A -∠B =36°,∠C =2∠B ,则∠A = ,∠B = ,∠C = 。
11、等腰三角形中,一腰的中线把这个三角形的周长分成12cm 和8cm 两部分,则这个等腰三角形的底边长为_________
12、一个六边形,每一个内角都相等,每个内角的度数为 13、若多边形的内角和等于外角和的3倍,则这个多边形的边数是______
5
4
3
F
E
D
C
B A
2
1
A
B
C
D
O
320 780
A
B C D
E
F
G H
M
N
P Q
40
A 40
40
G 32
1
F
E D C B A
14、如图,小明在操场上从A 点出发,沿直线前进10米后向左转40o ,再沿直线前进10米后,又向左转40o ,……,照这样走下去,他第一次回到出发地A 点时,一共 走了 米.
15、如图,把一副三角板按如图方式放置,则两条斜边所形成的钝角α=_______度 16、如图,已知∠1=60°,∠C +∠D+∠E+∠F+∠A+∠B = 17、如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2 等于
18、如图所示.∠A=10°,∠ABC=90°,∠ACB=∠DCE ,∠ADC=∠EDF ,∠CED=∠FEG .则∠F=____________ 三、解答下列各题:
19、操作与探究 探索 在如图25-1至图25-3中,△ABC 的面积为a .
(1)如图25-1, 延长△ABC 的边BC 到点D ,使CD=BC ,连结DA .若△ACD 的面积为S 1,
则S 1=________(用含a 的代数式表示);
(2)如图25-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD=BC ,AE=CA ,连结DE .若
△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;
(3)在图25-2的基础上延长AB 到点F ,使BF=AB ,连结FD ,FE ,得到△DEF (如图25
-3).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).
发现 像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图25-3),此时,我们称△ABC 向外扩展了一次.可以发
现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_____倍.
20、如图,EF ∥AD,∠1=∠2,∠BAC=70°.将求∠AGD
A B C
D E 图25-2 D
E
A
B
C F 图25-3
图25-1
A
B C
D 45α30 F D E
A B
C 1
21、如图,MN//EF ,GH//EF ,∠CAB=900,∠1=700,求:∠ABF 的度数。
22、在△ABC 中,已知∠ABC=60°,∠ACB=50°,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点。
求∠ABE 、∠ACF 和∠BHC 的度数。
23、已知a,b,c 是一个三角形的三条边长,化简:|a-b-c|+|b-a-c|-|c-a+b|
24、如图所示,在△ABC 中,∠B=90°,AB=12cm ,BC=16cm ,P 点从A 开始沿AB 边向B 点以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后△PQB 为等腰三角形?
C B H
E F A
C G E M A 2
1 H F B
N
25、如图(1),△ABC 是一个三角形的纸片,点D 、E 分别是△ABC 边上的两点, 研究(1):如果沿直线DE 折叠,则∠BDA ′与∠A 的关系是_____ __。
研究(2):如果折成图2的形状,猜想∠BDA ′、∠CEA ′和∠A 的关系,并说明理由。
研究(3):如果折成图3的形状,猜想∠BDA ′、∠CEA ′和∠A 的关系,并说明理由。
26、如图①,在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O 。
a) 若∠A =40º,则∠BOC= 。
若∠A =60º,则∠BOC= 。
b) 若∠BOC =3∠A
,则∠BOC= 。
(2)如图②,在△A ′B ′C ′中的外角平分线相交于点O ′,∠A =40º,则∠B ′O ′C ′
= (3)上面(1)、(2)两题中的∠BOC 与∠B ′O ′C ′有怎样的数量关系?若∠A =∠A ′=nº,∠BOC 与∠B ′
O ′C ′是否有这样的关系?这个结论你是怎样得到的?
(4)如图③,△A 〞B 〞C 〞的内角∠ACB 的外角平分线与∠ABC 的内角平分线相交于点O 〞,∠BOC 与∠B 〞O 〞C 〞有怎样的数量关系?若∠A =∠A ′=nº,∠BOC 与∠B 〞O 〞C 〞是否有这样的关系?这个结论你是怎样得到的?
C B A A ′ D
E 图2 A A ′ B E D C 图1 A
A ′
B E D C
图3 B C 图1 O 图2 图3。