2020年高考数学选择题试题分类汇编——概率与统计
2020届全国各地高考试题分类汇编11 统计和概率

11 统计和概率1.(2020•北京卷)在52)-的展开式中,2x 的系数为( ). A. 5- B. 5C. 10-D. 10【答案】C【解析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【详解】)52展开式的通项公式为:()()55215522r rrrrr r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C. 【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. 2.(2020•北京卷)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34;。
2020年高考数学试题分项版—统计概率(原卷版)

2020年高考数学试题分项版——统计概率(原卷版)一、选择题1.(2020·全国Ⅰ理,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x2.(2020·全国Ⅰ理,8)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15 D .203.(2020·全国Ⅱ理,3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名4.(2020·全国Ⅲ理,3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i =14pi =1,则下面四种情形中,对应样本的标准差最大的一组是()A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.25.(2020·新高考全国Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种6.(2020·新高考全国Ⅰ,12)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着p i 的增大而增大C .若p i =1n(i =1,2,…,n ),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )7.(2020·北京,3)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .108.(2020·新高考全国Ⅱ,6)3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( ) A .4种 B .5种 C .6种 D .8种9.(2020·新高考全国Ⅱ,9)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均增大都超过80%D .第9天至第11天复产指数增量大于复工指数的增量10.(2020·天津,4)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为( )A .10B .18C .20D .3611.(2020·全国Ⅰ文,4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B.25 C.12 D.4512.(2020·全国Ⅰ文,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x13.(2020·全国Ⅱ文,3)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k -j =3且j -i =4,则称a i ,a j ,a k 为原位大三和弦;若k -j =4且j -i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .1514.(2020·全国Ⅱ文,4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名15.(2020·全国Ⅲ文,3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A .0.01B .0.1C .1D .10 二、填空题1.(2020·全国Ⅱ理,14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种. 2.(2020·全国Ⅲ理,14)⎝⎛⎭⎫x 2+2x 6的展开式中常数项是________.(用数字作答) 3.(2020·天津,11)在⎝⎛⎭⎫x +2x 25的展开式中,x 2的系数是________. 4.(2020·天津,13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.5.(2020·江苏,3)已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是________. 6.(2020·江苏,4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.7.(2020·浙江,12)二项展开式(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4=________,a 1+a 3+a 5=________.8.(2020·浙江,16)盒中有4个球,其中1个红球,1个绿球,2 个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=________,E (ξ)=________. 三、解答题1.(2020·全国Ⅰ理,19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.2.(2020·全国Ⅱ理,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.3.(2020·全国Ⅲ理,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),4.(2020·新高考全国Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),5.(2020·新高考全国Ⅱ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),6.(2020·北京,18)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率估计值记为p0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)7.(2020·江苏,23)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示).8.(2020·全国Ⅰ文,17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?9.(2020·全国Ⅱ文,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.10.(2020·全国Ⅲ文,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),。
2020高考数学复习—概率与统计练习试题卷

4 C 2 1 高考数学复习—概率与统计练习试题卷一、选择题(10×5′=50′)1.设导弹发射的事故率为 0.01,若发射导弹 10 次,其中出事故的次数为ξ,则下列结论正确的是()A.E ξ=0.1B.P (ξ=k )=0.01k ·0.9910-kC.D ξ=0.1D.P (ξ=k )=C k 0.99k ·0.0110-k102.一个盒子里装有相同大小的黑球 10 个,红球 12 个,白球 4 个,从中任取 2 个,其中白球的个数记为ξ , 则下列算式中等于C 1 C 122 22C 2 26的是()A.P (0<ξ≤2)B.P (ξ≤1)C.E ξD.D ξ3.已知随机变量ξ和η,其中η=12ξ+7,且 E η=34,若ξ的分布列如下表,则 m 的值为ξ 12 3 4P m n41 12A. 1B. 1C. 1D. 134684.一整数等可能地在 1、2、…、10 中取值,以ξ记除得尽这一整数的正整数的个数,那么Eξ等于()A.2.6B.2.5C.2.7D.2.85.若ξ的分布列为:ξ01P p q其中p∈(0,1),则()A.Eξ=p,Dξ=p3B.Eξ=p,Dξ=p2C.Eξ=q,Dξ=q2D.Eξ=1-p,Dξ=p-p26.如果ξ是离散型随机变量,η=3ξ+2,那么()A.Eη=3Eξ+2,Dη=9DξB.Eη=3Eξ,Dη=3Dξ+2C.Eη=3Eξ+2,Dη=9Eξ+4D.Eη=3Eξ+4,Dη=3Dξ+27.设随机变量ξ~B(n,P),且Eξ=1.6,Dξ=1.28,则()A.n=8,P=0.2B.n=4,P=0.4C.n=5,P=0.32D.n=7,P=0.458.设掷1颗骰子的点数为ξ,则()A.Eξ=3.5,Dξ=3.52B.Eξ=3.5,Dξ=3512C.Eξ=3.5,Dξ=3.5D.Eξ=3.5,Dξ=35169.设离散型随机变量ξ满足Eξ=-1,Dξ=3,则E[3(ξ2-2)]等于()⎪2(1 ≤ x < 2) ⎪2(1 ≤ x < 2) ⎪ 1⎪ 1 (1 ≤ x < 2) ⎪1( x ≥ 2) ⎪ 1⎪ 3 (1 ≤ x < 2) P a BA.9B.6C.30D.3610.设随机变量ξ的分布列如下所示:ξ12P1 31 61 2则函数 F (x )=P (ξ≤x )(x ∈R )的解析式为( )⎧0( x < 0) A.F (x )=P (ξ≤x )= ⎪1(0 ≤ x < 1)⎨ ⎪⎩3( x ≥ 2)⎧0( x < 0) B.F (x )=P (ξ≤x )= ⎪3(0 ≤ x < 1)⎨ ⎪⎩1( x ≥ 2)C.F (x )=P (ξ≤x )=⎧0( x < 0) ⎪ (0 ≤ x < 1) ⎪ 3 ⎨ ⎪ 2⎩D.F (x )=P (ξ≤x )= ⎧0( x < 0) ⎪ (0 ≤ x < 1)⎪⎪ 6⎨ 1 ⎪⎪ 1 ( x ≥ 2) ⎪⎩ 2二、填空题(4×4′=16′)11.已知某离散型随机变量ξ的数学期望 E ξ= 7 ,ξ的分布列如下:6ξ 0 1231 1 36则 a =.12.两名战士在一次射击比赛中,战士甲得 1 分、2 分、3 分的概率分别为 0.4、0.1、0.5;战士乙得 1 分、2 分、3 分的概率分别为 0.1、0.6、0.3,那么两名战士得胜希望大的是 .13.某人有6把钥匙,其中只有一把能打开门,今任取一把试开,不能打开的除去,则打开此门所需试开次数ξ的数学期望Eξ=.14.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望Eξ=.三、解答题(4×10′+14′=54′)15.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.13(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.16.某市出租车的起步价为6元,行驶路程不超过3km时,租车费为6元,若行驶路程超过3km,则按每超出1km(不足1km也按1km计程)收费3元计费.设出租车一天行驶的路程数ξ(按整km数计算,不足1km的自动计为1km)是一个随机变量,则其收费也是一个随机变量.已知一个司机在某个月每次出车都超过了3km,且一天的总路程数可能的取值是200、220、240、260、280、300(km),它们出现的概率依次是0.12、0.18、0.20、0.20、100a2+3a、4a.(1)求这一个月中一天行驶路程ξ的分布列,并求ξ的数学期望和方差.(2)求这一个月中一天所收租车费η的数学期望和方差.17.某先生居住在城镇的A处,准备开车到单位B处上班.若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图所示(例如A→C→D算作两个路段:路段AC发生堵车事件的概率为110,路段CD发生堵车事件的概率为115).(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ.第17题图18.一出租车司机从饭店到火车站途中有6个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是1.3(1)求这位司机遇到红灯前,已经通过了2个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差.19.A有一个放有x个红球、y个白球、z个黄球的箱子(x、y、z≥1,x+y+z=6),B有一个放有3个红球、2个白球、1个黄球的箱子,两人各自从自己的箱子中任取一球,规定当两球同色时为A胜,异色时为B胜.(1)用x、y、z表示A胜的概率;(2)若又规定当A取红、白、黄而得胜的得分分别为1、2、3;负则得0分,求使A得分的期望最大的x、y、z.概率与统计练习100分参考答案一、选择题1.A∵P(ξ=k)=C k·0.01k(1-0.01)10-k,Eξ=nP=0.1.102.B作出概率分布可得.3.A本题考查随机变量的期望及有关的运算,由2 P 1 P 2 P n-1 P nη=12ξ+7 ⇒ E η=12E ξ+7 ⇒ 34=12E ξ+7 ⇒ E ξ= 94⇒ 94=1× 1 +2×m +3×n +4× 1 ,4 2 又 1 +m+n + 1 =1, 联立求解可得 m = 1 ,故选 A.4234.C P (ξ=1)= 1 ,P (ξ=2)= 4 ,P (ξ=3)= 2 ,P (ξ=4)= 3 . 10 10 10 10∴E ξ= 1 +2× 4 +3× +4× 3 =2.7.101010105.D 由于 p +q =1,所以 q =1-p ,从而 E ξ=0×p +1×q =q =1-p ,D ξ=[0-(1-p )]2p +[1-(1-p )]2q =(1-p )2p +p 2(1-p )=p -p 26.A 设随机变量ξ的分布列是:ξx 1 x 2 …x n-1 x nPP 1P 2…P n-1P n则η=3ξ+2 的分布列为:η3x 1+2 3x 2+2 …3x n-1+2 3x n +2P从而…E η =E (3 ξ +2)=(3x 1+2)P 1+(3x 2+2)P 2+ …+(3x n-1+2)P n-1+(3x n +2)P n=3(x 1P 1+x 2P 2+… +x n-1P n-1+x n P n )+2(P 1+P 2+ …+P n -1+P n )=3E ξ+2;D η = [ (3x 1+2)-(3E ξ +2) ] 2P 1+ [ (3x 2+2)-(3E ξ +2) ] 2P 2+ … +⎩nP(1 - P) = 1.28.[(3x n-1+2)-(3E ξ+2)] P n-1+[(3x n +2)-(3E ξ+2)] P n =9(x 1-E ξ)2P 1+9(x 2-Eξ)2P 2+…+9(x n-1-E ξ)2P n-1+9(x n -E ξ)2P n=9[(x 1-E ξ)2P 1+(x 2-E ξ)2P 2+…+(x n-1-E ξ)2P n-1+(x n -E ξ)2P n ]=9D ξ.点评 对于随机变量ξ和η,如果η=a ξ+b (a 、b 为常数),则有 E η=aEξ+b ,D η=a 2D ξ.7.A ∵ξ~B (n ,P ),∴E ξ=nP ,D ξ=nP (1-P),从而有 ⎧nP = 1.6,⎨ 解之,得 n =8,P =0.2.8.B 随机变量ξ的分布列是:ξ123456P161 61 61 61 61 61 6 从而 E ξ=1× 1 +2× 1 +3× 1 +4× 1 +5× 1 +6× 1 =3.5,6 6 6 6 6 6D ξ=(1-3.5)2× 1 +(2-3.5)2× 1 +(3-3.5)2× 1 +(4-3.5)2× 1 +(5-3.5)2×6 6 6 6+(6-3.5)2× 1 = 35 . 6 129.B E [3(ξ2-2)]=E (3ξ2-6)=3E ξ2-6=3[D ξ+(E ξ)2]-6=6.10.C 从表中可见,当 x <0 时,P (ξ≤x )=0;当 0≤x <1 时,P (ξ≤x )=P (ξ=0)= 1 ;3当 1≤x <2 时,P (ξ≤x )=P (ξ=0)+P (ξ=1)= 1 ;2当 x ≥2 时,P (ξ≤x )=P (ξ=0)+P (ξ=1)+P (ξ=2)=1.点评 对于密度函数,要理解其意义,搞清它与概率分布的联系与区别.⎪ ∴p =C 3 ⎛ 1 ⎫ 3 ⎛1 ⎫ 3 =20× 16 ⎪ 1 - ⎪ 二、填空题11. 1本题需运用离散型随机变量的期望等知识.3 E ξ= 7 =0×a +1× 1 +2× 1 +3b ⇒ b = 1 .6366又 P (ξ=0)+P (ξ=1)+P (ξ=2)+P (ξ=3)=1a + 1 + 1 + 1 =1 ⇒ a = 1 .366312.乙 甲获胜的期望与方差分别是:(E ξ) 甲 =0.4×1+0.1×2+0.5×3=2.1,(D ξ) 甲 =(2.1-1)2 ×0.4+(2.1-2)2 ×0.1+(2.1-3)2×0.5=0.89.乙获胜的期望与方差分别是:(E ξ) 乙 =0.1×1+0.6×2+0.3×3=2.2,(D ξ) 乙 =(2.2-1)2 ×0.1+(2.2-2)2 ×0.6+(2.2-3)2×0.3=0.456.∵乙的期望高于甲,且乙的水平比甲稳定,故得胜希望大的是乙.13. 7E ξ=1× 1 +2× 1 +3× 1 +4× 1 +5× 1 +6× 1 = 7 .2666666214. 12因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)5的概率均为 3 ,连续摸 4 次(做 4 次试验),ξ为取得红球(成功)的次数, 5则ξ~B ⎛ 4, 3 ⎫ ,从而有 E ξ=nP =4× 3 = 12 .⎝5 ⎭55三、解答题15.解 (1)p =(1- 1 )2· 1 =334 27.(2)6 场胜 3 场的情况有 C 3 种. 6⎝ 3 ⎭ ⎝ 3 ⎭27 × 8 27 = 160 .729 (3)由于ξ服从二项分布,即ξ~B (6, 1 ),3∴Eξ=6×1=2,Dξ=6×1×(1-1)=4.3333答:(1)这支篮球队首次胜场前已负两场的概率为4;27(2)这支篮球队在6场比赛中恰胜3场的概率为160;729(3)在6场比赛中这支篮球队胜场的期望为2,方差为4.3点评在二项分布ξ~B(n,p)中,期望Eξ=np,方差=npq.这两个公式只要求考生了解、会用,不要求给予证明.16.解(1)由概率分布的性质有0.12+0.18+0.20+0.20+100a2+3a+4a=1.∴100a2+7a=0.3,∴1000a2+70a-3=0,a=3100,或a=-110(舍去),即a=0.03,∴100a2+3a=0.18,4a=0.12,∴ξ的分布列为ξ200220240260280300P0.120.180.200.200.180.12∴Eξ=200×0.12+220×0.18+240×0.20+260×0.20+280×0.18+300×0.12=250(km)Dξ=502×0.12+302×0.18+102×0.20+102×0.20+302×0.18+502×0.12=964;(2)由已知η=3ξ-3(ξ>3,ξ∈Z),∴Eη=E(3ξ-3)=3Eξ-3=3×250-3=747(元)Dη=D(3ξ-3)=32Dξ=8676.17.解(1)记路段MN发生堵车事件为MN,因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A→C→D→B中遇到堵车的概率P1为1-P(AC·CD·DB)=1-P(AC)·P(CD)·(DB)=1-[1-P(AC)][1-P(CD)][1-P(DB)]=1-910·14·5= 156310;同理:路线A→C→F→B中遇到堵车的概率P2为1-P(AC·CF·FB)=239(大于800310);路线A→E→F→B中遇到堵车的概率P3为1-P(AE·EF·FB)=91300(小于310);显然要使得由A到B路线途中发生堵车事件的概率最小,只可能在以上三条路线中选择.因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小.(2)路线A→C→F→B中遇到堵车次数ξ可取值为0,1,2,3.P(ξ=0)=P(AC ·CF·FB)=561.800P(ξ=1)=P(AC·CF·FB)+P(AC·CF·FB)+P(AC·CF·FB)=110×17×11+2012910×320×11+12910×17×20112=6372400.P(ξ=2)=P(AC·CF·FB)+P(AC·CF·FB)+P(AC·CF·FB)=110×320×11+12110×17×20112+910×320×112=772400,P(ξ=3)=P(AC·CF·FB)=1×3×1=3,1020122000Eξ=0×561+1×8006372400+2×772400+3×32000=1.3答:路线A→C→F→B中遇到堵车次数的数学期望为1.3111 x1y1z36=18+y18.解(1)因为这位司机第一二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=(1-1)(1-1)×1=3334 27 .(2)易知ξ~B(6,1).∴Eξ=6×1=2,Dξ=6×1×(1-1)=4.3333319.解(1)从两个箱子里各取1球,共C1C1=36种取法,66其中同色的取法有C1C1+C1C1+C1C1=3x+2y+z故A胜的概率为x3y2z13x+2y+z.36(2)设A得分为ξ,则ξ可能取值为0、1、2、3,其概率分别为P(ξ=0)=1-C1C3+C1C4+C1C5=1-3x+4y+5zC1C16636P(ξ=1)=C1C3C1C166=3x 36P(ξ=2)=C1C2C1C166=2y 36P(ξ=3)=C1C1=z 36C1C166∴Eξ=0×1-3x+4y+5z+1×3x+2×2y+3×363636z36=3x+4y+3z36∵x+y+z=6,∴Eξ=3(6-y)+4y36∵x,y,z≥1,∴当x=1,y=4,z=1时,Eξ最大为11.18。
2020年全国及各省市高考数学试题分类汇编(11 排列组合与概率统计)

全国及各省市高考数学试题分类汇编(11 排列组合与概率统计)1.(2019·全国I 文·6)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ).A.8号学生B.200号学生C.616号学生D.815号学生答案:C解析:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.2.(2019·全国I 理·6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116 答案:A 解析:每爻有阴阳两种情况,所以总的事件共有62种,在6个位置上恰有3个是阳爻的情况有36C 种,所以36620526416C P ===.3.(2019·全国II 文·4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B.35 C.25 D.15答案:B解析:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B 则恰好有两只测量过的有6种,所以其概率为35. 4.(2019·全国II 理·5)演讲比赛共有9位评委分别给出某位选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。
2020年高考试题分类汇编(统计与概率)

2020年高考试题分类汇编(统计与概率)考点1计数1.(2020·全国卷Ⅱ·理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有 种.2.(2020·海南卷·山东卷)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A .120种B .90种C .60种D .30种 3.(2020·全国卷Ⅱ·文理科)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A .10名B .18名C .24名D .32名 考点2数据的数字特征1.(2020·全国卷Ⅲ·文科)设一座样本数据1x ,2x ,,n x 的方差为0.01,则数据110x ,210x ,,10n x 的方差为A .0.01B .0.1C .1D .102.(2020·全国卷Ⅲ·理科)在一组样本中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是A .140.1p p ==,230.4p p ==B .140.4p p ==,230.1p p ==C .140.2p p ==,230.3p p ==D .140.3p p ==,230.2p p == 3.(2020·北京卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42% 4.(2020·天津卷)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47],[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .36考点4回归分析1.(2020·全国卷Ⅰ·理科)某校一个课外学习小组为研究某作物的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子发芽实验,有实验数据(,)i i x y (1i =,2,,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+ 考点5概率1.(2020·天津卷)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为 ;甲、乙两球至少有一个落入盒子的概率为 .2.(2020·北京卷)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随发芽率20%40% 60% 80% 100% 010 20 3040◆◆ ◆ ◆ ◆ ◆ ◆◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆◆ ◆ ◆ ◆ ◆假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率; (Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)3.(2020·全国卷Ⅰ·文科)某厂接受了一项加工业务,加工起来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元、50元、20元,对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂承接加工业务.甲分厂加工成本费25元/件,乙分厂加工成本费20元/件.厂家为决定由哪家分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:(Ⅰ)分别估计甲、乙两个分厂加工出来的一件产品为A 级品的概率; (Ⅱ)分别求甲、乙两个分厂加工出来的100件产品的平均利润,厂家应选哪个分厂承接加工业务?4.(2020·全国卷Ⅰ·理科)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,福者下一场轮空,直至由一人被淘汰;当一人被淘汰后,剩余的两人继续比赛直至其中一人被淘汰,另一人最终获胜,比赛结束.甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(Ⅰ)求甲连胜四场的概率;(Ⅱ)求需要进行第五场比赛的概率;(Ⅲ)求丙最终获胜的概率.考点6独立性检验及相关系数1.(2020·海南卷·山东卷)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的2.5PM和2SO浓度(单位:3/ug m),得下表:(Ⅰ)估计事件“该市一天空气中 2.5PM浓度不超过75,且2SO浓度不超过150”的概率;(Ⅲ)根据(Ⅱ)中的列联表,判断是否有99%的把握认为该市一天空气中 2.5PM浓度与2SO浓度有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,2.(2020·全国卷Ⅱ·文理科)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其方程面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(,)i i x y (1i =,2,,20),其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得2060i i x ==∑,201200ii y==∑,202()80i i x x =-=∑,202()9000i i y y =-=∑,20()()800i i i x x y y =--=∑.(Ⅰ)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数); (Ⅱ)求样本的相关系数(精确到0.01);(Ⅲ)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一你认为更合理的抽样方法,说明理由.附:相关系数()()niix x y y r --=∑1.414≈.3.(2020·全国卷Ⅲ·理科)某学生兴趣小组随机调查了某市100天中每天的空(Ⅰ)分别估计该市一天的空气质量等级为1,2,3,4的概率;(Ⅱ)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(Ⅲ)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面22⨯列联表,并根据列联表判断是否有95%的把握认为一天中到公园锻炼的人次与该市当天的空气质量有关?附:其中22()()()()()n ad bcKa b c d a c b d-=++++,。
2020年高考数学试题分类汇编 专题概率 理 精品

2020年高考试题数学(理科)概率一、选择题:1.(2020年高考浙江卷理科9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率(A)15(B)25(C)35(D )45【答案】B【解析】由古典概型的概率公式得522155222233232222=+-=AAAAAAAP.2. (2020年高考辽宁卷理科5)从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=(A)18(B)14(C)25(D)123. (2020年高考全国新课标卷理科4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)13(B)12(C)23(D)34解析:因为甲乙两位同学参加同一个小组有3种方法,两位同学个参加一个小组共有933=⨯种方法;所以,甲乙两位同学参加同一个小组的概率为3193=点评:本题考查排列组合、概率的概念及其运算和分析问题、解决问题的能力。
【解析】D.由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率.43212121=⨯+=P所以选D.5.(2020年高考湖北卷理科7)如图,用K、A1、A2三类不同的元件连成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A.0.960B.0.864C.0.720D.0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C⨯⨯⨯-+⨯⨯=,所以选B. 6.(2020年高考陕西卷理科10)甲乙两人一起去“2020西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A)136(B)19(C)536(D)16【答案】D【解析】:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C CpC C C C C C C C==,故选D7. (2020年高考四川卷理科12)在集合{}1,2,3,4,5中任取一个偶数a和一个奇数b构成以原点为起点的向量a=(a,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n,其中面积不超过...4的平行四边形的个数为m,则mn=( )(A)415(B)13(C)25(D)23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153mn==.8.(2020年高考福建卷理科4)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C .12D .23【答案】C 二、填空题:1.(2020年高考浙江卷理科15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率为p ,且三个公司是否让其面试是相互独立的。
概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)

其中恰有 2只做过测试的取法有{a,b, A},{a,b,B},{a,c, A},{a,c,B}, {b,c, A},{b,c,B},共 6种, 所以恰有 2只做过测试的概率为 6 3,故选 B.
10 5
【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用 列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度
1 【答案】 9 【解析】根据题意可得基本事件数总为66 36个.
5
点数和为 5的基本事件有1,4,4,1,2,3,3,2共
4个.
∴出现向上的点数和为
5的概率为
P
4 36
1求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.
12.【2020年高考天津】从一批零件中抽取 80个,测量其直径(单位:mm),将所得数据分为 9组:
则n 61,符合题意;若815 610n,则n 80.9,不合题意.故选 C.
7.【2019年高考全国Ⅱ卷文数】生物实验室有 5只兔子,其中只有 3只测量过某项指标,若从这 5只兔子
中随机取出 3只,则恰有 2只测量过该指标的概率为
2 A. 3
3 B. 5
3
2 C. 5
【答案】B
1 D. 5
【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式
即可求解.
【解析】设其中做过测试的 3只兔子为a,b,c,剩余的 2只为 A,B, 则从这 5只中任取 3只的所有取法有{a,b,c},{a,b, A},{a,b,B},{a,c, A},{a,c,B},{a, A,B},{b,c, A},
{b,c,B},{b, A,B},{c, A,B},共 10种.
2020高考数学分类汇编--概率统计

2020年普通高等学校招生全国统一考试一卷理科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+ D .ln y a b x =+19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束. 经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 5.D6.B7.C 8.C19.解:(1)甲连胜四场的概率为116. (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684 ---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为11117 8168816+++=.2020年普通高等学校招生全国统一考试理科数学3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()20,,2,1,⋯=iyxii ,其中ix和i y分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160iix,∑==2011200i iy,()∑==-201280i ix x,()∑==-20129000i iyy,()()080201∑==--i i iy y x x.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()20,,2,1,⋯=i y x i i 的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.2020年普通高等学校招生全国统一考试理科数学3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()=1e t K I t --+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193)≈A .60B .63C .66D .6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关? 附:K3.B4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试文科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+17.(12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:乙分厂产品等级的频数分布表(1(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 5.D 17.解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A 级品的概率的估计值为400.4100=; 乙分厂加工出来的一件产品为A 级品的概率的估计值为280.28100=. (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为65402520520752015100⨯+⨯-⨯-⨯=.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为70283017034702110100⨯+⨯+⨯-⨯=.比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.2020年普通高等学校招生全国统一考试文科数学4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名 B .18名C .24名D .32名18. (12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i ) (i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=))niix y x y --∑((=1.414.4.B18.解:(1)由己知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200= 12 000. (2)样本(,)i i x y (1,2,,20)i =的相关系数20))0.943i ix yrx y--===≈∑((.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.2020年普通高等学校招生全国统一考试文科数学3.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为A.0.01B.0.1C.1D.104.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:0.23(53)()=1e tIKt--+,其中K为最大确诊病例数.当I(*t)=0.95K时,标志着已初步遏制疫情,则*t约为(ln19≈3)A.60B.63C.66D.6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,3.C4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试(北京卷)数 学(18)(本小题14分)某校为举办甲乙两项不同活动,分别设计了相应的活动方案:方案一、方案二、为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率:(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p,试比较0p与1p的大小.(结论不要求证明)2020年普通高等学校招生全国统一考试(江苏卷)4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲ .4.1 923.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .23.满分10分.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=,所以11112()1()3331n nn n p q -+++==,*n ∈N .③由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925n n n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .2020年普通高等学校招生全国统一考试(天津卷)数学4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A.10 B.18 C.20 D.3613.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.4.B13.16;232020年普通高等学校招生全国统一考试5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62%B .56%C .46%D .42%12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着i p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )19.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,5.C 12.AC19.解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=. (2)根据抽查数据,可得22⨯列联表:(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯. 由于7.484 6.635>,故有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关.2020年普通高等学校招生全国统一考试(浙江卷)数 学16.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______. 16.1,13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学选择题试题分类汇编——概率与统计 (2020陕西文数)4.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为sA 和sB,则
[B] (A)
A x >
B x ,sA >sB (B)
A x <
B x ,sA >sB (C)
A x >
B x ,sA <sB (D) A x <B x ,sA <sB
解析:本题考查样本分析中两个特征数的作用
A x <10<
B x ;A 的取值波动程度显然大于B ,所以sA >sB
(2020辽宁理数)(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是
否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为
(A )12 (B)512 (C)14 (D)16 【答案】B
【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题
【解析】记两个零件中恰好有一个一等品的事件为A ,则
P(A)=P(A 1)+ P(A 2)=
211335+=43412⨯⨯
(2020江西理数)11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。
方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。
国王用方法一、二能发现至少一枚劣币的概率分别为1p 和2p ,则
A. 1p =2p
B. 1p <2p
C. 1p >2p D 。
以上三种情况都有可能
【答案】B
【解析】考查不放回的抽球、重点考查二项分布的概率。
本题是北师大版新课标的课堂作业,作为旧大纲的最后一年高考,本题给出一个强烈的导向信号。
方法一:每箱的选中的概率为
110 ,总概率为0010101(0.1)(0.9)C -;同理,方法二:每箱的选中的概率为15,总事件的概率为0055141()()55
C -,作差得1p <2p 。
(2020安徽文数)(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四
个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是
(A )318 (A )418 (A )518 (A )618
10.C
【解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件。
两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于.
【方法技巧】对于几何中的概率问题,关键是正确作出几何图形,分类得出基本事件数,然后得所求事件保护的基本事件数,进而利用概率公式求概率.
(2020重庆文数)(5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为
(A )7 (B )15 (C )25 (D )35
解析:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为7157
15=
(2020山东文数)(6)在某项体育比赛中,七位裁判为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为
(A )92 , 2 (B) 92 , 2.8
(C) 93 , 2 (D) 93 , 2.8
答案:B
(2020北京文数)⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是
(A )
45 (B)35 (C )25 (D)15 答案:D
(2020广东理数)8.为了迎接2020年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。
如果要实现所有不同的闪烁,那么需要的时间至少是( )
A 、 1205秒 B.1200秒 C.1195秒 D.1190秒
8.C.每次闪烁时间5秒,共5×120=600s ,每两次闪烁之间的间隔为5s ,共5×(120-1)=595s .总共就有600+595=1195s .
(2020广东理数)7.已知随机变量X 服从正态分布N(3.1),且(24)P X ≤≤=0.6826,则p
(X>4)=()
A、0.1588
B、0.1587
C、0.1586 D0.1585
7.B.
1
(34)(24)
2
P X P X
≤≤=≤≤=0.3413,
(4)0.5(24)
P X P X
>=-≤≤=0.5-0.3413=0.1587.
(2020四川文数)(4)一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是(A)12,24,15,9 (B)9,12,12,7 (C)8,15,12,5 (D)8,16,10,6
解析:因为
401 80020
=
故各层中依次抽取的人数分别是160
8
20
=,
320
16
20
=,
200
10
20
=,
120
6
20
=
答案:D
(2020山东理数)(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有
(A)36种(B)42种(C)48种(D)54种
【答案】B
(2020山东理数)
(2020山东理数)
1. (2020湖北理数)4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是
A
5
12
B
1
2
C
7
12
D
3
4
(2020湖北理数)6.将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数一次为
A.26, 16, 8, B.25,17,8
C.25,16,9 D.24,17,9。