lhz有限元分析及应用-课程试卷

合集下载

有限元分析试题

有限元分析试题

1. 数学:偏微分方程变换成代数方程进行求解2. 力学:连续体划分成小单元体,各单元节点间相连接并建立力平衡关系.3. 有限元模型:有限元模型是真实系统理想化的数学抽象.由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷.4. 有限元法:是以力学理论为基础,随着力学\数学和计算机科学相结合而发展起来的一种数值计算方法.5. 传统结构设计流程:设计----建模----测试---再设计.(1)作很大简化,计算精度差;(2)结构尺寸与重量偏大;(3)结构局部强度或刚度不足;(4)设计周期长,试制费用高6. 现代产品设计: Design(CAD)----VirtualTest(CAE)---Build---Test---Redesign。

有限元法是CAE 的核心部分7. 汽车结构有限元分析的内容:(1)零部件及整车的疲劳分析,估计产品的寿命,分析部件损坏的原因;(2)结构件、零部件的强度、刚度和稳定性分析(3)结构件模态分析、瞬态分析、谐响应分析和响应谱分析;(4)车身内的声学设计,车身结构模态与车身内声模态耦合;(5)汽车碰撞历程仿真和乘员安全保护分析(被动安全性);(6)结构件、零部件的优化设计(质量或体积为目标函数);(7)车身空气动力学计算,解决高速行驶中的升力、阻力和湍流问题8. 汽车结构有限元分析的流程:(1)制定方案;(2)建立结构模型;(3)划分有限元模型;(4)有限元模型检查;(5)加载和增加约束条件;(6)求解计算;(7)结果分析。

P99. 模态分析:固有频率和振型,从数学上讲,固有频率就是系统矩阵的特征值,振型就是该特征值所对应的特征向量。

10.谐响应分析:确定结构对已知幅值和频率的正弦载荷的响应。

11.瞬态动力学分析:确定结构对随时间变化载荷的响应。

12.单元:用于离散结构的杆、梁、三角形、四边形、四面体、六面体等。

节点:单元与单元之间的连接点。

具有一定自由度和存在相互物理作用。

有限元法考试题

有限元法考试题

有限元分析考试试题一、问答题1、简述平面应力问题与平面应变问题的区别,并写出平面应力问题和平面应变问题的平衡方程、几何方程及物理方程。

答:平面应力问题与平面应变问题的区别:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。

而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化。

平面应力问题的平衡方程:z 0 0 0z yz zx σττε===≠平面应力问题的几何方程:{}x y xy u x v y u v y x εεεε⎧⎫∂⎪⎪∂⎪⎪⎧⎫⎪⎪∂⎪⎪==⎨⎬⎨⎬∂⎪⎪⎪⎪⎩⎭⎪⎪∂∂+⎪⎪∂∂⎩⎭平面应力问题的物理方程:1011002(1)x x y y xy xy E εμσεμσεμτ⎧⎫⎧⎫-⎡⎤⎪⎪⎪⎪⎢⎥=-⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥+⎣⎦⎩⎭⎩⎭平面应变问题的平衡方程:0 0 0yz zx z z ττσε==≠=平面应变问题的几何方程:{}x y xy u x v y u v y x εεεε⎧⎫∂⎪⎪∂⎪⎪⎧⎫⎪⎪∂⎪⎪==⎨⎬⎨⎬∂⎪⎪⎪⎪⎩⎭⎪⎪∂∂+⎪⎪∂∂⎩⎭平面应变问题的物理方程:101(1)10(1)(12)112002(1)x x y y xy xy E μμσεμμσεμμμτεμμ⎡⎤⎢⎥-⎢⎥⎧⎫⎧⎫⎢⎥-⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥+--⎪⎪⎪⎪⎢⎥⎩⎭⎩⎭⎢⎥-⎢⎥-⎣⎦2、以三节点三角形单元为例,简述用虚功原理求解三角形单元刚度矩阵的具体步骤。

答:(1)设定位移函数;(2) 利用几何方程由位移函数求应变; (3)利用广义虎克定律求出单元应力方程; (4)由虚功原理求单元刚度矩阵。

二、计算题1、正方形板如图1所示,边长为a ,厚度为t ,弹性模量为E ,泊松比为0.15,节点1作用集中力F ,节点2、3、4固定,若采用图示坐标系统和单元节点结构,求各节点位移和应力。

有限元分析与应用大作业

有限元分析与应用大作业

有限元分析及应用大作业课程名称: 有限元分析及应用班级:姓名:试题2:图示薄板左边固定,右边受均布压力P=100Kn/m 作用,板厚度为0.3cm ;试采用如下方案,对其进行有限元分析,并对结果进行比较。

1) 三节点常应变单元;(2个和200个单元)2) 四节点矩形单元;(1个和50个单元)3) 八节点等参单元。

(1个和20个单元)图2-1 薄板结构及受力图一、建模由图2-1可知,此薄板长和宽分别为2m 和1.5m ,厚度仅为0.3cm ,本题所研究问题为平面应力问题。

经计算,平板右边受均匀载荷P=33.33MPa ,而左边被固定,所以要完全约束个方向的自由度,如图2-2所示。

取弹性模量E=2.1×11Pa ,泊松比μ=0.3。

图2-2 数学模型二、第一问三节点常应变单元(2个和200个单元)三节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M 。

采用2个单元的网格划分后的结果如图2-3,200个单元的网格划分图如图2-6所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-4、7所示,应力云图如图2-5、8所示。

P=33.33MPa图2-3 2个三角形单元的网格划分图图2-5 2个三角形单元的应力云图图2-7 200个三角形单元的位移云图三、第二问四节点矩形单元的计算四节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用1个单元的网格划分后的结果如图2-9,50个单元的网格划分图如图2-12所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-10、11所示,应力云图如图2-13、14所示。

图2-9 1个四边形单元的网格划分图图2-11 1个四边形单元的应力云图图2-12 50个四边形单元的网格划分图图2-13 50个四边形单元的位移云图图2-14 50个四边形单元的应力云图四、第三问八节点等参单元的计算四节点单元类型为PLANE82,设置好单元类型后,实常数设置板厚为0.3M。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。

下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。

答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。

答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。

答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。

假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。

结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。

分析载荷为2000 N,施加在结构的中心节点上。

有限元法理论及应用参考答案(推荐文档)

有限元法理论及应用参考答案(推荐文档)

有限元法理论及应用大作业1、试简要阐述有限元理论分析的基本步骤主要有哪些?答:有限元分析的主要步骤主要有:(1)结构的离散化,即单元的划分;(2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程;(3)等效节点载荷计算;(4)整体分析,建立整体刚度方程;(5)引入约束,求解整体平衡方程。

2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。

题2图答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。

有限元划分网格的基本原则:1.拓扑正确性原则。

即单元间是靠单元顶点、或单元边、或单元面连接2.几何保持原则。

即网络划分后,单元的集合为原结构近似3.特性一致原则。

即材料相同,厚度相同4.单元形状优良原则。

单元边、角相差尽可能小5.密度可控原则。

即在保证一定精度的前提下,网格尽可能的稀疏一些。

(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。

(c)中没有考虑对称性,单元边差很大。

3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?题3图答:(a )划分为杆单元, 8个节点,12个自由度。

(b )划分为平面梁单元,8个节点,15个自由度。

(c )平面四节点四边形单元,8个节点,13个自由度。

(d )平面三角形单元,29个节点,38个自由度。

4、什么是等参数单元?。

答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。

5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么?(1).⎪⎩⎪⎨⎧++=++=26543221),(),(y x y x v yx y x u αααααα (2). ⎪⎩⎪⎨⎧++=++=2652423221),(),(yxy x y x v yxy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。

[精选]有限元考试试题及答案——第一组资料

[精选]有限元考试试题及答案——第一组资料

有限元考试试题及答案一、简答题(5道,共计25 分)。

1. 有限单元位移法求解弹性力学问题的基本步骤有哪些?(5 分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5 分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3. 轴对称单元与平面单元有哪些区别?(5 分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4. 有限元空间问题有哪些特征?(5 分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3 个分量。

(3)基本方程比平面问题多。

3 个平衡方程,6 个几何方程,6 个物理方程。

5. 简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2 )通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3 )将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3 道, 共计30 分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10 分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

有限元考试试题

有限元考试试题

有限元考试试题有限元考试试题在工程学领域中,有限元分析是一种常用的数值计算方法,用于解决结构力学、热传导、流体力学等问题。

有限元方法的应用广泛,因此在相关领域中的考试中,有限元试题是非常重要的一部分。

本文将探讨一些有限元考试试题,以帮助读者更好地理解和应用这一方法。

1. 问题描述:一根长度为L的杆件,两端固定,如何确定杆件上各个位置的位移?解答:这是一个典型的弹性力学问题,可以通过有限元方法进行求解。

首先,将杆件分割成若干个小单元,每个小单元内部的位移近似为线性。

然后,根据杆件的边界条件,建立相应的刚度矩阵和载荷向量。

最后,通过求解线性方程组,得到杆件上各个位置的位移。

2. 问题描述:如何确定一个结构的应力分布情况?解答:有限元分析可以用来计算结构的应力分布情况。

首先,将结构分割成若干个小单元,每个小单元内部的应力近似为线性。

然后,根据结构的边界条件和加载情况,建立相应的刚度矩阵和载荷向量。

最后,通过求解线性方程组,得到结构上各个位置的应力分布情况。

3. 问题描述:如何确定一个结构的固有频率?解答:固有频率是指结构在没有外界激励下自由振动的频率。

有限元分析可以用来计算结构的固有频率。

首先,将结构分割成若干个小单元,每个小单元内部的位移近似为线性。

然后,根据结构的边界条件,建立相应的刚度矩阵和质量矩阵。

最后,通过求解特征值问题,得到结构的固有频率和相应的振型。

4. 问题描述:如何考虑非线性材料的影响?解答:有限元分析可以考虑非线性材料的影响。

在材料的应力-应变关系中,通常存在非线性现象,如材料的屈服、硬化、蠕变等。

为了考虑这些非线性现象,可以采用增量形式的有限元分析方法。

在每个增量步骤中,根据当前应力状态和材料的非线性特性,更新刚度矩阵和载荷向量。

通过迭代求解,可以得到结构的非线性响应。

5. 问题描述:如何考虑流体结构耦合问题?解答:有限元分析可以考虑流体结构耦合问题。

在流体结构耦合问题中,结构的变形会影响流体的流动,而流体的流动又会对结构施加载荷。

有限元试卷和答案

有限元试卷和答案
3 a 1
a
图1
1、解: 设图 1 所示的各点坐标为 点 1( a, 0) ,点 2(a,a) ,点 3(0,0) 于是,可得单元的面积为 (1) 形函数矩阵 N 为
1 (0 + ax − ay ) a2 1 N1 = 2 (0 + 0gx + ay ) a 1 N1 = 2 (a 2 − ax + 0gy ) a N1 =
判断正误 (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (×)9. 线性应力分析也可以得到极大的变形 (√)10. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (1)用加权余量法求解微分方程,其权函数 V 和场函数 u 的选择没有任何限 制。 ( × ) (2)四结点四边形等参单元的位移插值函数是坐标 x、y 的一次函数。 (√ ) (3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值 相等。 续。 (√ ) (× ) (× ) (6)等参单元中 Jacobi 行列式的值不能等于零。 (√) (7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。 (× ) (4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数 C1 连 (5)有限元位移法求得的应力结果通常比应变结果精度低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元分析与应用试题
1.有限元求解问题的主要思路是什么?并做简要介绍。

● 将连续系统分割成有限个分区或单元(离散化) 离散化
将直杆划分成n 个有限段,有限段之间通过一个铰接点连接。

两段之间的连接点称为节点,每个有限段称为单元。

第i 个单元的长度为L i ,包含第i ,i+1个节点。

● 用标准方法对每个单元提出一个近似解(单元分析) 单元分析
用单元节点位移表示单元内部位移-第i 个单元中的位移用所包含的结点位移来表示。

线性插值所得到的
第i 结点的位移
第i 结点的坐标
第i 个单元的 应变
)
()(1i i
i i i x x L u u u x u --+=+i
u i
x i
i
i i L u u dx du -==
+1εi
i i i i L u u E E )(1-=
=+εσ
应力
内力
将所有单元按标准方法组合成一个与原有系统近似的系统(整体分析)
首先把外载荷集中到节点上:
把第i 单元和第i+1单元重量的一半,集中到第i+1结点上 建立结点的力平衡方程:对于第i+1结点,由力的平衡方程可得 (i=1,n-1)
i
i i i i L u u EA A N )
(1-=
=+σ2
)
(11+++=
-i i i i L L q N N )
(2
)()(11121++++++=---i i i i i i i i L L q
L u u EA L u u EA

对于第n+1个结点,第n 个单元的内力与第n+1个结点上的外载荷平衡,
再加上约束条件
因此可以得到n+1个方程构成的方程组,可解出n+1个结点的位移。

有限元方法的基本思想和原理是“简单”而“朴素”的,在发展初期,许多学术权威对该方法的学术价值有所鄙视,国际著名刊物Journal of Applied Mechanics 许多年来拒绝刊登有关有限元方法的文章,其理由是没有新的科学实质。

现在完全不同了,由于有限元方法在科学研究和工程分析中的地位,
1
+=
i i
i L L λ22
1)11(2)1(i i
i i i i i L EA q u u u λλλ+=-++-++1()2
n n n
n n n EA u u qL N A L σ+-==
=
EA
qL u u n n n 221=
+-+0
1=u
有关有限元方法的研究已经成为数值计算的主流。

涉及有限元方法的杂志有几十种之多。

2.常用大型通用有限元软件和专用有限元软件有哪些,专用有限元软件分别应用于哪些领域?
常用大型通用有限元软件:
ADINA、 ABAQUS、 ANSYS、 MSC/Marc、 MSC/Nastran
一些专用有限元软件
LS_DYNA、 PAM-CRASH、 MSC/Dytran (碰撞)、 Autoform、 DYNAFORM、、PAM-STAMP(冲压)、DEFORM(体积成形)、 SysWeld(焊接)、 MOLDFLOW(注塑)、 ProCast (铸造)、AdvantEdge (切削) 、 SimFact(体积成形) LS_DYNA 它以Lagrange算法为主,兼有ALE和Euler算法;以显式求解为主,兼有隐式求解功能;以结构分析为主,兼有热分析、流体-结构耦合功能;以非线性动力分析为主,兼有静力分析功能(如动力分析前的预应力计算和薄板冲压成型后的回弹计算)
PAM-CRASH 大位移、大旋转、三维碰撞等精确模拟,能够简单的处理异常复杂的边界约束。

在汽车、铁路机车、船舶、航空航天等行业应用广泛。

MSC/Dytran 爆炸与冲击、水下/空中弹体发射过程、金属弹塑性大变形成形、安全防护分析等碰撞领域。

Autoform 薄板冲压成型仿真领域,如冲压件、管胀件及弯管件的成型工艺性分析、工件设计、模面设计等。

Dynaform被用于模拟钣金成形工艺,软件可应用于不同的领域,汽车、航空航天、家电、厨房卫生等行业。

可以预测成形过程中板料的裂纹、起皱、减薄、划痕、回弹、成形刚度、表面质量,评估板料的成形性能,从而为板成形工艺及模具设计提供帮助。

3.写出三维问题的应力平衡微分方程和小应变几何方程的分量表达式。

应力平衡微分方程
小应变几何方程的分量表达式
4.简述最小势能原理和虚位移原理的基本思想。

最小势能原理是弹性体在外力作用下保持平衡,在满足位移边界条件的所有可能位移中,真实位移使系统的总势能取最小值。

虚位移原理的基本思想是外力作用下处于平衡状态的弹性体,产生约束许可的微小虚位移(并同时在弹性体内产生虚应变),外力在虚位移上所作的虚功等于弹性体内各点的应力在相应的虚应变上所作的虚功
5.简述有限元方法的求解过程。

(1)平面问题的有限元方法的求解过程
1.几何离散:三角形单元或四边形单元
三角形单元——平面问题中最简单的单元
2.单元特征分析
1.构造位移函数
2.单元应变能
3.单元外力功(单元等效
节点力)
3.单元集成:系统的总势能
4.变分处理:系统的平衡方程(组)
5.应用位移边界条件求出节点位移
6.由节点位移求出单元的应变、应力
(2)三维问题的有限元求解过程
离散时采用体单元:四面体或六面体
求解步骤和平面问题完全一样
单元分析的时候将二维扩充到三维
(3)轴对称问题的有限元求解过程
研究轴对称问题时通常采用圆柱坐标系(r,θ,z),以z轴为对称轴
由于对称性: 4个应力分量,4个应变分量,2个位移分量
6.整体刚度矩阵的主要特点有哪些?并简要说明解释
对称由单元刚度矩阵的对称性所决定
奇异由单元刚度矩阵的奇异性所决定
稀疏整体刚度矩阵的多数元素为零,非零元素的个数只占较小的部分。

非零元素带状分布整体刚度矩阵的非零元素分布在以对角线为中心的带形区域内
7.分别写出三节点三角形单元和四节点四边形单元的单元位移函数。

三节点三角形单元位移函数 →
→ N —单元形状函数矩阵
q e
—单元节点位移矩
四节点四边形单元的单元位移函数
10
2
3
41
(1)(1)
41(1)(1)
4
1(1)(1)
41(1)(1)
4
x x y y N a
b
x x y y N
a b
x x y y N
a
b
x x y y N a
b --⎧
=
--
⎪⎪--⎪=+
-
⎪⎨--⎪=+
+
⎪⎪
--⎪=-
+

111122223333111122223333
1[()()()]21[()()()]
2u a b x c y u a b x c y u a b x c y u A v a b x c y v a b x c y v a b x c y v A
⎧=++++++++⎪⎪⎨
⎪=++++++++⎪⎩111
2321
2
32330000
u v N N N u u N N N v v u v ⎧⎫
⎪⎪⎪⎪⎪⎪⎡⎤⎧⎫⎪⎪
=⎨⎬⎨⎬⎢⎥⎩⎭⎣⎦⎪⎪
⎪⎪⎪⎪⎪⎪⎩⎭
(,)(,)e x y x y =u N q )
(21
y c x b a A
N i i i i ++=
矩形单元的重心坐标
推论
8.结构单元有哪些?
两大类杆件单元和板壳单元,其中杆件单元包括轴力杆单元,弯曲梁单元和一般杆件单元。

板壳单元包括板单元(基于Kirchhoff 理论的板单元和基于Mindlin 理论的板单元),壳单元(平板壳元,曲面壳元)。

00,x y -
1
2341
2
34000 0(,)0
0 N
N N N x y N N N N ⎡⎤=⎢⎥⎣⎦
N 1
2341
2
34 0 0
00 0(,)[]0 00
0 x N N N N x y N N N N y y x ⎡⎤
∂⎢
⎥∂⎢⎥
⎢⎥⎡⎤∂=∂=⎢⎥⎢⎥∂⎣

⎢⎥⎢⎥
∂∂⎢⎥∂∂⎣⎦
B N (,)T
e
e
e
S S tdxdy x y dxdy
==⎰⎰K B DB F T T
e e p
e S
l tdxdy tdl
=+⎰⎰P N b N p
9.有限元分析的三个阶段是什么?简述有限元建模的一般步骤。

三个阶段:前处理,计算及后处理
一般步骤:问题分析、几何模型的建立、单元类型的选择、单元特性的定义、网格划分、模型检查、边界条件定义、在已有有限元模型的基础上进行计算、结果比较
10.简述提高有限元分析精度的常用方法。

细分单元,缩小网格尺寸,有限元建模过程的选择等。

相关文档
最新文档