第二章生物统计基础知识2正态与抽样分布剖析

合集下载

生物统计学基础知识讲解

生物统计学基础知识讲解

生物统计学基础知识讲解生物统计学是一门将统计学原理和方法应用于生物学、医学、农学等领域的交叉学科。

它旨在通过收集、整理、分析和解释生物数据,帮助我们理解生命现象、解决生物问题以及做出科学决策。

一、什么是生物统计学生物统计学运用概率论和数理统计的原理和方法,来研究生物界中各种随机现象和数量规律。

简单来说,它就是帮助我们从看似杂乱无章的生物数据中找出有用的信息和规律。

比如,在医学研究中,通过对大量患者的治疗数据进行分析,确定某种药物的疗效和副作用;在农业领域,研究不同施肥量对作物产量的影响;在生态学中,分析物种的分布和数量变化等等。

二、生物统计学的基本概念1、总体与样本总体是我们所研究对象的全体,而样本则是从总体中抽取的一部分用于观察和分析的个体。

例如,要研究某个地区成年人的身高情况,该地区所有成年人的身高构成总体,而随机抽取的一定数量成年人的身高数据则是样本。

2、变量与数据变量是在研究中可以变化的因素,如身高、体重、血压等。

而数据则是对变量的观测值。

数据可以分为定量数据(如身高、体重等可以用数值表示的)和定性数据(如性别、血型等分类数据)。

3、频率与概率频率是指某一事件在多次重复试验中出现的次数与试验总次数的比值。

概率则是指某一事件在特定条件下发生的可能性大小。

当试验次数足够多时,频率会趋近于概率。

4、误差误差是指观测值与真实值之间的差异。

误差分为随机误差和系统误差。

随机误差是不可避免的,由多种偶然因素引起;而系统误差则是由于测量方法或仪器等原因导致的有规律的偏差。

三、数据的收集1、抽样方法常见的抽样方法有简单随机抽样、分层抽样、整群抽样等。

简单随机抽样是从总体中随机抽取个体,每个个体被抽取的概率相等。

分层抽样是先将总体按照某些特征分成不同层次,然后在各层中进行随机抽样。

整群抽样则是将总体划分为若干群,随机抽取部分群进行观察。

2、数据的质量收集的数据应具有准确性、完整性和可靠性。

准确性是指数据能准确反映实际情况;完整性是指数据应包含所需的所有信息;可靠性是指数据在不同条件下重复测量时能保持一致。

理论分布和抽样分布

理论分布和抽样分布

所构成,其中事件A包含有m个基本事件,
则事件A的概率为m/n,即
P(A)=m/n
这样定义的概率称为古典概率。
13
2.1 概率的统计学意义
例如,在有两个孩子的家庭中,孩子性别
的组成有四种类型。即:男男、男女、女
男、女女。它们是四个基本事件,而且是
互不相容且等可能的,那么两个男孩的事
件A1为四个基本事件(n)中的一个(m) , A1的概率
27
第二章 理论分布和抽样分布
将Y的一切可能y1值 y2 , ,…,以及取得这些 值的概率p( y1) 、p( y2 ) …,排列起来, 就构成了 离散型随机变量的概率分布(probabiit distribution)。
表2-2 离散型随机变量的概率分布表。
Y
y1
y2

P(yi) p( y1 ) p( y2 )
本章在介绍概率论中最基本的两个概念——事件、概 率的基础上,重点介绍生物科学研究中常用的几种随 机变量的概率分布:间断性变数总体的理论分布:二 项分布、泊松分布;连续性变数总体的理论分布,即 正态分布; 从这两类理论分布中抽出的样本统计数的
分布,即抽样分布和t分布。
2
2.1 概率的统计学意义
一、事 件 1. 必然现象与随机现象 在自然界与生产实践和科学试验中,人们会观察到各种
这里的0.05或0.01称为小概率标准,生物 试验研究中通常使用这两个小概率标准。
21
2.3 理论分布
事件的概率表示了一次试验某一个结果发 生的可能性大小。若要全面了解试验,则 必须知道试验的全部可能结果及各种可能 结果发生的概率,即必须知道随机试验的 概率分布(probability distribution)。为 了深入研究随机试验 ,我们先引入随机变 量(random variable)的概念。

生物统计.ppt

生物统计.ppt
方根称为几何平均数。相邻数值的增长成比例关系,可 用几何平均数表示他们的集中趋势
M g x ,x ,x x
...
1 2 3

N
N
x
i 1
N
i
集中趋势的指标
调和平均数:设x ,x ,x …x 都为正数(或全为负 数)调和平均数的倒数等于这些变数倒数的算数 平均数。
1 2 3 n
1 1 1 1 ( ... ) xn M h n x1 x 2
2
t分布的三个要点
分子是标准正态随机变量
分母是自由度为n的卡方随机变量
新随机变量服从 自由度为n的t分 布
分子分母相互独立,且满足构造公式
t分布的图像
基本性质:
(1) f(t)关于t=0(纵轴)对称。
(2) f(t)的极限为X~N(0,1)的密度函数
(3)F-分布
X / n1 X ~ (n1 ), Y ~ (n2 ), X , Y 独立,称r.v. F Y / n2
“ a”。
3.单侧检验(one-sided test )与双侧检验(twosided test) 选择做单侧检验或双侧检验,应根据问题的要 求而定。假若问题只要求判断μ是否等于μ0 ,而不 是大于μ0 或小于μ0 时,应做双侧检验。如果事先可 以判断μ不可能大于μ0 ,或μ不可能小于μ0 时,则 可做单侧检验。因单侧检验的辨别力更强些,所以在 可能情况下尽量做单侧检验。
不可能小于μ0 ,则HA:μ>μ0 。若考查的目 的只是判断μ是否等于μ0 ,并不关心究竟是 μ >μ0 还是μ<μ0 ,或者并不知道μ不可能大 于 μ0 或 是 μ 不 可 能 小 于 μ0 , 这 时 的 HA : μ≠μ0 。
2.

统计学 抽样分布和理论分布

统计学  抽样分布和理论分布

抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。

样本分布:样本中所有个体关于某个变量大的取值所形成的分布。

抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。

即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。

样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。

那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。

由样本平均数x 所构成的总体称为样本平均数的抽样总体。

它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。

统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μσ2x = σ2 /n 由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2σ)分布。

但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。

于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。

样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx e x f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。

相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。

2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。

统计学考研复习指导常考分布与抽样理论梳理

统计学考研复习指导常考分布与抽样理论梳理

统计学考研复习指导常考分布与抽样理论梳理统计学是考研复习中的一门重要科目,而分布与抽样理论是统计学中的基础知识之一。

掌握分布与抽样理论对于考研复习非常重要,因此本文将对常考的分布与抽样理论进行梳理。

以下是各个分布与抽样理论的详细内容。

1. 正态分布正态分布是统计学中最常用的概率分布之一,也被称为高斯分布。

它具有许多特性,例如其形状对称、均值、方差决定了整个分布的特征等。

正态分布在统计学中的应用广泛,例如用于描述实际数据的分布情况、进行假设检验等。

2. t分布t分布是用于小样本情况下的概率分布。

在实际应用中,由于通常无法获得大样本数据,因此需要使用t分布进行统计推断。

t分布与正态分布有一定的关联,其形状与自由度有关。

在考研复习中,需要了解t分布的特性、应用以及与正态分布的关系。

3. 卡方分布卡方分布是用于分析分类数据的概率分布,常用于检验两个变量之间的独立性。

卡方分布的形状与自由度有关,自由度越大,分布越接近正态分布。

在考研复习中,需要掌握卡方分布的性质、应用以及与正态分布的关系。

4. F分布F分布是用于分析方差比较的概率分布,常用于方差分析等统计方法。

F分布的形状与两个自由度参数有关,具有右偏分布且不对称的特点。

在考研复习中,需要了解F分布的特性、应用以及与正态分布、卡方分布的关系。

5. 抽样与抽样分布抽样是指从总体中选取样本的过程,而抽样分布是指统计量在不同样本中的分布情况。

了解抽样与抽样分布非常重要,因为统计推断是建立在样本上的,而不是在总体上。

在考研复习中,需要掌握不同抽样方法的特点、抽样分布的基本概念以及与统计推断的应用。

总结:通过对常考的分布与抽样理论进行梳理,我们可以更好地理解统计学考研复习中的重要内容。

掌握分布与抽样理论,对于进行统计分析、假设检验以及进行统计推断非常重要。

在考研复习过程中,建议系统学习各个分布的特性、应用以及与其他分布的关系,同时理解抽样与抽样分布的基本概念和应用方法。

生物统计学课件-3正态分布和抽样分布

生物统计学课件-3正态分布和抽样分布

近似性
当样本量足够大时,样本 统计量近似服从正态分布。
抽样分布在生物学中的应用
01
实验设计
在生物学实验中,常常需要从总体中随机抽取一定数量的样本进行实验,
以评估实验结果的可重复性和可靠性。抽样分布理论为实验设计提供了
理论基础。
02
数据处理和分析
在生物学数据分析和统计推断中,常常需要利用样本统计量来估计总体
生物统计学课件-3正态分布 和抽样分布
目录
• 正态分布 • 抽样分布 • 正态分布与抽样分布的关系 • 实例分析
01
正态分布
正态分布的定义
正态分布是一种连续概率分布,其概率密度函数呈钟形,对称轴为均值所在直线。
在正态分布中,数据点在均值附近最为集中,向两侧逐渐减少,形成钟形曲线。
正态分布是自然界和人类社会中最为常见的分布形态之一,许多随机变量都服从或 近似服从正态分布。
02
抽样分布
抽样分布的定义
01
02
03
抽样分布
描述样本统计量(如样本 均值、样本方差等)的概 率分布。
样本统计量
从总体中随机抽取的样本 所计算出的各种统计指标, 如样本均值、样本方差等。
总体
研究对象全体个体的集合。
抽样分布的性质
独立性
样本统计量之间相互独立。
随机性
样本统计量的取值具有随 机性。
中心极限定理
在大量独立随机抽样的前提下,不论总体分布如何,样本均值的分布趋近于正态分布。
样本均值的方差与总体方差的关系
样本均值的方差随着样本量的增加而趋近于总体方差的1/n,其中n为样本量。
正态分布与抽样分布的区别
定义不同
正态分布是对总体特征的描述,而抽样分布是对样本统计 量的描述。

生物统计学(第2讲)

生物统计学(第2讲)

抽样分布的引入
为了解决前面提出的第一个问题, 我们可以从一个已知的总体中,独立 随机地抽取含量为n的样本,研究所 得样本的各种统计量的概率分布,即 所谓的抽样分布。
举例说明
例 在只有10个数构成的总体中,抽取含量为 5的样本。试求各统计量的抽样分布。
解:由题意可得,样本的取法共有C105 = 252种, 因此样本统计量平均数、方差和标准差可分别
正态分布示图1
正态分布示图2
固定,只改变的值
正态分布示图3
固定 ,只改变的值
标准正态分布曲线
标准正态分布的特性(P53)
标准正态分布的重要关系式(P54)
正态分布表的查法(P53-54, P254)
正态分布的查表计算(P54-55)
1、直接查表法:随机变量X服从标准正态分布
2、间接计算法:若随机变量X服从正态分布,则必须进 行标准化,使其变成标准正态分布,再查表计算。
标准正态分布的双侧100%点
t分布的双侧100%点
2分布的双侧100%点
F分布的双侧100%点


1、 查表确定下列参数: (1)P{2(8)< } = 0.975; (2)P{t(5)> } = 0.25;
(3)P{F(3,6)> } = 0.05
2、查表求下列各值(上侧100百分位
取得252个值。列出上述各统计量的频率分布
表,即可得到各统计量的分布规律,或者说即 可得到这些统计量的“抽样分布”。
正态分布的定义
如果随机变量X的概率密度函数为
- < x < +; - < < + >0为常数, 则称X服从参数为, 的正 态分布, 记作X~N(, 2).

生物统计学复习资料

生物统计学复习资料

生物统计学复习资料一、名词解释准确性(accuracy):在试验中某一指标的观测值与真实值的接近程度,也称准确度。

(反映观测值偏离目标值的程度)精确性(precision):在相同试验条件下,对同一指标重复测量时所得观测值之间的接近程度,也称精确度。

(反映观测值之间的变异程度)准确性和精确性合称正确性。

随机误差(random error):由无法控制的偶然因素导致的误差。

(随机误差影响精确性,扩大样本容量或增加试验重复次数有助于减少但无法消除随机误差)系统误差(systematic error):由测量工具不精准、试验方法不完善、操作人员水平差异等因素导致的误差。

(既影响准确性又影响精确性,可消除)总体(population):研究对象的全体成员(有限总体、无限总体)个体(individual):构成总体的各个成员样本(sample):从总体中抽取的部分个体所组成的集合。

样本容量(sample size):样本包含的个体数量。

随机抽样(random sampling):采用随机方式从总体中获取样本的过程。

放回式抽样(sampling with replacement):从总体抽取一个个体,记录特征后放回总体,再抽取下一个个体。

非放回式抽样(sampling without replacement):从总体抽取一个个体,不放回总体就继续抽取下一个个体。

连续型数据(continuous data):与某种标准相比较获得的非整数数据。

(可以提高精确度,采用变量方法分析)离散型数据(discrete data):由记录不同类别个体数目而得到的整数数据。

(不能提高精确度,采用属性方法分析)极差(range,R):数据资料中最大值与最小值的差值。

组距(class interval, i):对频数资料分组时,每个组区间的高限和低限之差,即组区间极差。

样本特征数(sample characteristics):描述频率分布特征的数值总体特征数(population characteristics):描述概率分布特征的数值样本统计数(statistic):由样本数据计算而来的描述样本特征的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 求出极差:R=106-83=23 cm
(2) 确定组数(G)及组距 (B)
组数:G = 9
表2 100株小麦株高频数与频率分布表
(3)组确距定:组B限=23/9=2.56 cm组号 1 第 1 组:81.5 ~ 84.49 2
组限
81.5-84.49 84.5-87.49
中值数
83 86
频数
99.5 102.5 105.5
0.09 0.08 0.07 0.06 0.05 频 0.04 率 0.03 0.02 0.01 0
图2 100株小麦的频率分布
三、正态分布 Normal distribution
1. 概念 Definition
1)概念 正态分布随机变量的概率密度函数 为:
1
1( )2
(3) 确定组限 Group limit 组限就是每一组的上限(Upper limit)和下限(Lower
limit) 。
(4) 统计频数和频率 通常是采用制作频数(频率)分布表或频数(频率)分
布图的方法。
例1:有一小麦品种,随机采集100株,量其株高,试说明不同 株高的理论分布规律。
行号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2. 概率 Probability
定义 Definition:同一条件下,试验或观察次数 n 无限 增大,随机事件 A 发生的频率 a / n 必然稳定接近某一常数P, P就称为随机事件 A 的概率。
取值 Evaluation:一般情况下 P 的取值不可能准确获 得,以 n 充分大时事件 A 发生的频率α/ n 作为 P 的近似值。
行号
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
株高
98 99 93 101 94 93 94 89 92 98 103 86 95 85 96 96 95 96 97 91
行号
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
株高
90 104 103 102 106 106 83 106 105 99 99 93 102 101 94 96 97 105 89 96
行号
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
表1 100株小麦株高(cm)
株高
83 99 101 93 99 93 90 95 102 95 90 91 96 98 90 95 99 93 95 106
1. 频数与频率分布
频数
Number
频数分布
Number distribution
在一定条件下,总体或样本中某观察值 或某区间(Interval)的观察值所出现的 次数。
总体或样本中某观察值或某区间的观察 值出现的次数在整个区间的分布情况。
频率分布
Frequency distribution
总体或样本中某观察值或某区间的观察 值出现的频率整个区间的分布情况。
第二节 正态分布与抽样分布
一、频率与概率 Frequency and probability
1. 频率 Frequency
定义 Definition:在大量重复试验中,事件A已发生的 次数a占试验总次数的比率。
fn
( A)
a n
特 点 ( Characteristics ) : 一 个 事 件 的 频 率 不 是 常 数 , 但随重复试验或观察次数 n 增加,频率的波动会不断减小, 逐步趋于稳定,称为频率的稳定性。
P(x)
e 2
2
式中: x —— 正态分布中的随机变量; e —— 2.718,是自然对数的底数;
2. 统计方法 Presentation method of data
(1) 求出极差(R)
(2) 确定组数(G)及组距(B)
组数:n≥100时, G:8~15 n < 100时, G:不少于 6 组; n 很大时, G:不大于 30 组。
组距:B = R/G 对于连续变量,组距精度与观察值相同; 对于非连续变量,组距取整数。
性质 Property 1)0 ≤ P(A)≤ 1 2)P(A)= 1,表明该事件为必然事件; P(A)= 0,表明该事件为不可能事件; 0 < P(A)< 1,表明该事件为随机事件。
运算法则 Calculation rule
1)若事件 A 的概率为 P(A),那么其对立事件 B 的概率为: P(B)=1 - P(A)
2 4
频率 %
2 4
第 2 组:84.5 ~ 87.49 3 87.5-90.49 89
8
8
第 3 组:87.5 ~ 90.49 4
90.5-93.49
92
14
14
5
93.5-96.49
95
30
30
……
6
96.5-99.49
98
20
20
7 99.5-102.49 101
10
10
(4) 统计频数和频率
株高
94 102 95 93 97 88 91 94 104 98 97 100 92 99 88 98 98 95 94 104
行号
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
株高
100 96 94 94 91 96 96 85 96 93 101 86 97 95 97 99 95 96 104 96
2)若事件 A 和 B 是互斥的,其概率各为 P(A) 和 P(B), 那么两事件的和事件的概率为: P(A+B)= P(A)+ P(B)
3)若事件 A 和 B 是独立的,其概率各为P(A)和 P(B),
那么两事件同时出现的概率为: P(A·B)= P(A) ·P(B)
二ion
8 102.5-105.49 104
8
8
9 105.5-108.49 107
4
4
35 30 25
频 20 次 15
10 5 0
频数
小麦株高 (cm) 图1 100株小麦的频数分布
35 30 25 频 20 次 15 10
5 0
频数 正态分布曲线
81.5 84.5 87.5 90.5 93.5 96.5 小麦株高 (cm)
相关文档
最新文档