二元一次方程(组)的微课

合集下载

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

距离问题
浓度问题
通过给定的两点坐标,利用二元一次 方程组求解两点之间的距离。
通过给定的溶液浓度和体积,利用二 元一次方程组求解溶液的配制比例和 浓度。
速度问题
通过给定的时间和速度,利用二元一 次方程组求解物体的运动轨迹和速度 。
THANKS
[ 感谢观看 ]
(完整版)二元一次方程 组优秀课件
汇报人:可编辑
2023-12-25
CONTENTS
目录
• 二元一次方程组的基本概念 • 二元一次方程组的解法 • 二元一次方程组的实际应用 • 二元一次方程组的变式与拓展
CHAPTER 01
二元一次方程组的基本概念
二元一次方程组的定义
定义
二元一次方程组是由两个或两个以上的方程组成,其中含有两个未知数,且每 个方程中未知数的次数都是一次。
代数问题
例如,在求解两个未知数的和、差、 积、商等问题时,需要使用二元一次 方程组来表示和求解。
物理中的二元一次方程组问题
运动问题
例如,在计算两个物体之间的相对速度和距离时,需要使用二元一次方程组来表示和求 解。
力的问题
例如,在计算两个物体之间的相互作用力和扭矩时,需要使用二元一次方程组来表示和 求解。
示例
x + y = 1, 2x - y = 3。
二元一次方程组的表示方法
代数表示法
使用代数符号表示二元一次方程 组,如x + y = 1, 2x - y = 3。
图形表示法
通过图形表示二元一次方程组的 解,如平面直角坐标系中的直线 。
二元一次方程组的解的概念
01
02
03
解的概念
满足二元一次方程组的未 知数的值称为解。

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题

七年级数学下册7.2二元一次方程组的解法资料教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件

七年级数学下册7.2二元一次方程组的解法资料教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件

5/12
代数式
分例析1:解方方程程组组中两66xx个方57yy程同171一.9,未知数x系数相等,
所以可直接由①—②或②—①消去未知数x.
解:①—②,得 12y=-36,
所以 y=-3
把y=-3代入②,得
6x-5×(-3)=17,
所以 x= 1 6x+15=17, 3.
所以
x=
1 3.
y=-3.
6/12
1.32xx
y y
91;1,2.3x8x
5y 5y
9, 20;
5x 2 y 12, 2x 5 y 25, 3.3x 2 y 6; 4.4x 3 y 15;
3x 5.9 x2Leabharlann 150yy41,52;6.
3 4
5
x x
3 4 5 6
y y
1, 2 7. 15
9/12
小结
3/12
数学利用
x 2,
所以
y
3.
能否经过消去未知数y, 得到关于x一元一次方程, 从而使问题得解呢?怎样
消去未知数y呢?
4/12
数学利用
解:①+②,得 4x=8, 所以 x=2 把x=2代入①,得y=3
所以
x 2,
y
3.
从上面解答过程来看,对一些二元一次方程组可 经过两个方程两边分别相加或相减,消去其中一个 未知数,得到一个一元一次方程,从而求出它解 这种解二元一次方程组方法叫做加减消元法,简 称加减法.
2/12
数学利用
1.用加减法解某一未知数系数绝对值相等二 元一次方程组同学们观察上面练习1中方程组 特点,不难发觉:方程组两个方程中,未知数x 系数相等,都是2所以可利用等式性质,把这 两个方程两边分别相减,就能够消去一个未知 数,得到一元一次方程,从而实现化“二元”为

《二元一次方程与一次函数》微课设计

《二元一次方程与一次函数》微课设计

《二元一次方程与一次函数》微课设计 《《二元一次方程与一次函数》微课设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助! 一、学生起点分析: 学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。 学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验. 二、 学习任务分析: 本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为: 1.初步理解二元一次方程和一次函数的关系; 2.掌握二元一次方程组和对应的两条直线之间的关系; 3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法. 教学重点 二元一次方程和一次函数的关系; 教学难点 数形结合和数学转化的思想意识. 四、教法学法 1.教法学法 启发引导与自主探索相结合. 2.课前准备 教具:多媒体课件、三角板. 学具:铅笔、直尺、练习本、坐标纸. 五、教学过程 本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立“方程与函数图像”的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置. 第一环节: 设置问题情境,启发引导 内容:1.方程x+y=5的解有多少个?;;是这个方程的解吗? 2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗? 3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗? 4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗? 由此得到本节课的第一个知识点:二元一次方程和一次函数图像的关系. 以二元一次方程的解为坐标的点都在相应的函数图像上; 一次函数图像上的点的坐标都适合相应的二元一次方程. 一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线. 目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=相互转化,启发引导学生总结二元一次方程与一次函数的对应关系. 效果:以“问题串”的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识. 前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节. 第二环节 自主探索方程组的解与图像之间的关系 探究方程与函数的相互转化 内容:1.解方程组 2.上述方程移项变形转化为两个一次函数y=和,在同一直角坐标系内分别作出这两个函数的图像(教材123页图5-1). 3.方程组的解和这两个函数的图像的交点坐标有什么关系? 由此得到本节课的第2个知识点:二元一次方程的解和相应的两条直线的关系1. (1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标. (2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解. (3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种. 注意总结:一般地,从图形的角度看,解一个二元一次方程组就相当于确定相应两条直线交点的坐标.利用一次函数图像可以粗略估计两直线交点坐标也可以找到二元一次方程组的近似解.要得到准确解,一般还是用代入消元法和加减消元法解方程组. 目的:通过自主探索,使学生初步体会“数”(二元一次方程)与“形”(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础. 效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力. 第三环节 二元一次方程组的解与函数图像之间的关系特殊情况 想一想 内容:在同一直角坐标系内, 一次函数y = x + 1 和 y = x - 2 的图象(教材124页图5-2)有怎样的位置关系?方程组解的情况如何?你发现了什么? 二元一次方程的解和相应的两条直线的关系2. (1)观察发现直线平行无交点; (2)小组研究计算发现方程组无解; (3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立; (4)归纳小结:两平行直线的相等;方程组中两方程未知数的系数对应成比例方程组无解。 目的:进一步揭示“数”与“形”转化关系.通过想一想,将两直线的另一种位置关系:平行与方程组无解相结合,这是对第二环节的有益补充。体现了从一般到特殊的的思想方法,有利于培养学生全面考虑问题的习惯. 效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与的关系。 第四环节 反馈练习 内容: 1.已知一次函数 y = 3x - 1 与 y = 2x 图象的交点是(1,2),求方程组 的解. 2.有一组数同时适合方程 x + y = 2 和 x + y = 5 吗?一次函数与的图象之间有什么关系? 3.求两条直线与和轴所围成的三角形面积. 第4题 4.如图,两条直线与的交点坐标可以看作哪个方程组的解? 目的:4个练习,意在及时检测学生对本节知识的掌握情况. 效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性. 第五环节 课堂小结 内容:以“问题串”的形式,要求学生自主总结有关知识、方法: 1.二元一次方程和一次函数的图像的关系; 以二元一次方程的解为坐标的点都在相应的函数图像上; 一次函数图像上的点的坐标都适合相应的二元一次方程. 2.方程组和对应的两条直线的关系: 方程组的解是对应的两条直线的交点坐标; 两条直线的交点坐标是对应的方程组的解; 3.解二元一次方程组的方法有3种: (1)代入消元法; (2)加减消元法; (3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解. 目的:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用. 效果:充分展示知识的发生、发展及应用过程.对同学的回答,教师给予点评,对回答得好的学生教师给予表扬、鼓励. 第六环节 作业布置 习题5.7 六、教学反思 本节课在学生学习了二元一次方程组和一次函数及其图像的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要注意将图像与函数解析式之间的对应问题阐述清楚,让同学们从根本上认识、理解和运用“数”与“形”之间的密切关系.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,增加了反馈练习中的4个问题,并且在练习和拓展题目训练中进一步利用交点求三角形面积. 《二元一次方程与一次函数》微课设计这篇文章共9029字。 相关文章 《三年语文上册《4 古诗三首》生字拼音组词》:1、三年语文上册《4 古诗三首》生字拼音组词 我会写寒hán(严寒、寒冷、寒来暑往) 径jìng(径直、途径、大相径庭) 斜xié(斜线、斜坡、目不斜视) 霜shuāng(霜冻、风霜、霜期) 赠zèng(赠言、赠送、 《《傅雷家书》知识要点》:1、《傅雷家书》知识要点 简介: 《傅雷家书》是傅雷夫妇写给儿子的书信集,摘编了傅雷先生1954年至1966年的186封书信,最长的一封信长达7000多字。字里行间,充满了父亲对儿子的挚爱、期望,以及对国家和世界的高尚情感

七年级数学下册7.1二元一次方程组和它的解教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件

七年级数学下册7.1二元一次方程组和它的解教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件
胜场数+负场数=总场数; 胜积分+负积分=总积分.
2/11
二元一次方程:上面我们所列两个方程都含有两 个未知数,未知数次数和含有未知数项次数都是 一次像这么方程叫做二元一次方程.
把这两个方程合在一起,写成
2
x x
y y
22 40

就组成了一个二元一次方程组.
3/11
探究:满足方程x+y=22值有哪些?填入下表
11/11
3.方程3x-y=1有_____对解. 无数
8/11
4.已知二元一次方程组
5x+4y=5 ① 3x+2y=9 ②
以下说法正
确是( )A
A.同时适合方程①和②x、y值是方程组解
B.适合方程①x、y值是方程组解
C.适合方程②x、y值是方程组解
D.同时适合①、②x、y值不一定是方程组解
9/11
5.一副三角板按如图1方式摆放,且∠1度数比 ∠2度数小50°,若设∠1=x°,∠2=y°,请写出关 于x、y方程组.
【答案】A
将代
x=2 y=1
入kx+3y=.含有__两__个_未知数,而且未知数项指数是___,1 像这么方程叫做二元一次方程,请举一例: _____2_x_+_5_y_=.10
2.使二元一次方程组两个方程左右两边都 _相__等___未知数值,叫做二元一次方程组解.
x
0
1
2
3…
y 22 21 20 19 …
二元一次方程解:像x=0,y=22; x=1, y=21……这么,使得x+y=22两边值相等值都是 二元一次方程x+y=22解.
二元一次方程组解:二元一次方程组两个方程 公共解,叫做二元一次方程组解.

加减消元法解二元一次方程组微课课件

加减消元法解二元一次方程组微课课件
3x 5y 3x 4 y 18 9 y 18 消掉了一个未知数X y 2
将y=-2代入①,得 3x 5 2 5
x5
3x 7 y 9 例2:解方程组: 4x 7 y 5
用什么方法可以消去一 个未知数?消去哪一个比
较方便?
分析:可以发现两个方程中y 的系数互为相反数
若把两个方程的左边与左边相 加,右边与右边相加,就可以消 去未知数y
布置作业
❖ 96页第一题 ❖ 数学资源与评价
Hale Waihona Puke 分析: 3x 5y 3x 4y = 5 23
①左边
②左边 = ①右边 ②右边
左边与左边相减所得到的式子和右边与右边相 减所得到的式子有什么关系?
解方程组:
3x 5y 5 3x 4 y 23
① ②
分析: ①左边
②左边 = ①右边 ②右边
3x 5y 3x 4y = 5 23
1:总结:当两个二元一次方程中 同一个未知数的系数相反或相等 时,把两个方程的两边分别相加 或相减,就能消去这个未知数, 得到一个一元一次方程。这种方 法叫做加减消元法,简称加减法 。
同减异加
你能把我们今天内容小结一下吗?
本节课我们知道了用加减消元法 解二元一次方程组的基本思路仍是 “消元”。
主要步骤是:变形——加减—— 求解——代入——写解
8.2消元——解二元一次方程组(2)
例1:解方程组
还有其他的方法吗?
3x 5y 5 ①
3x 4y 23

5-5y
把①变形得:x= 3
代入②,不就消去x了

把①变形得: 3x=5-5y
可以直接代入②呀!
解方程组:
3x 5y 5 3x 4 y 23
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初 中 数 学
主讲教师:张爱萍
初中数学 | 二元一次方程(组)的解
学习导入:

使一元一次方程左右两边相等的未知数的值叫这个一元一
次方程的解。
初中数学 | 二元一次方程(5
6 4
7 … 3 …


x 3 y 7
使二元一次方程左右相等(成立)的一对未知数的值叫这个二 元一次方程的解。 一个二元一次方程有无数对解。
1 x2 x x 1 x 1 D 3 C B A 1 y y 1 y 1 y 2 2
渲染视频
初中数学 | 二元一次方程(组)的解
例2
x 3 y 2 x 3 解:把 代入到方程,得 y 2
总结与反思:

使二元一次方程左右相等(成立)的一对未知数的值叫这个二 元一次方程的解。
一个二元一次方程有无数对解。
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方
程组的解。
谢谢!
初 中 数 学
x 6 y 4
初中数学 | 二元一次方程(组)的解
概念引入:
x 6 x +y 10 是方程组 的解。 2 x y 16 y 4
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方
程组的解。
初中数学 | 二元一次方程(组)的解
例1
3x 2 y 5 方程组 的解是( B ) 5 x 4 y 1
初中数学 | 二元一次方程(组)的解
例3
2 x ay 6 bx 6 y 1
x 1 y 2
x 1 y 2
2 1 (2) a 6 1 b 6 (2) 1
初中数学 | 二元一次方程(组)的解
相关文档
最新文档