[教学]人教版高中数学必修一说课稿对数的运算说课稿
《对数与对数运算》说课稿1(人教A版必修1)

2.2 对数函数 “对数”一节主要介绍对数的概念、对数式与指数式的相互转化、对数的运算法则和性质以及换底公式.对数概念的理解是本节教学的重点和难点.在式子a N =b 中,知道底数a 和指数N 求幂值b ,是上节内容中的指数问题,知道底数a 和幂值b 求指数N ,就是本节研究的对数问题.教学中要抓住指数和对数的关系这一关键,同时结合实际问题引入,有利于培养学生应用数学解决实际问题的意识.其次对于对数的性质及零和负数没有对数的理解也可以通过指数式来证明、验证.对数作为一种运算,除了认识运算符号“log ”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数与指数在概念上相通,因此对数法则的推导可以借助指数运算法则来完成,推导过程又加深了对指数式和对数式的关系的认识,自然应成为本节的重点,应特别予以关注.换底公式是我们进行对数式的化简与求值过程中一个很重要的角色,教学中首先应明确它的推导过程以及公式存在的合理性,同时也应该认清这一公式的结构特征,为灵活运用公式打下坚实的基础.有了学习指数函数的图象和性质的学习经历,以及对数知识的知识准备,对数函数概念的引入、对数函数图象和性质的研究便水到渠成.对数函数的概念是通过一个关于细胞分裂次数的确定的实际问题引入的,既说明对数函数的概念来自实践,又便于学生接受.在教学中,学生往往容易忽略对数函数的定义域,因此,在进行定义教学时,要结合指数式强调说明对数函数的定义域,加强对对数函数定义域为(0,+∞)的理解.在理解对数函数概念的基础上掌握对数函数的图象和性质,是本节的教学重点,而理解底数a 的值对于函数值变化的影响(即对对数函数单调性的影响)是教学的一个难点,教学时要充分利用图象,数形结合,帮助学生理解.为了便于学生理解对数函数的性质,教学时可以先要学生在同一坐标系内画出函数y =log 2x 和y =log 21x 的图象,通过两个具体的例子,引导学生共同分析它们的性质.有条件的学校也可以利用《几何画板》软件,定义变量a ,作出函数y =log a x 的图象,通过改变a 的值,在动态变化的过程中让学生认识对数函数的图象和性质.研究了对数函数的图象和性质之后,可以将对数函数的图象和性质与指数函数的图象和性质进行比较,以便加深学生对对数函数的概念、图象和性质的理解,同时也可以为反函数的概念的引出作一些准备.2.2.1 对数与对数运算(1)从容说课本课是对数学习的第一课时,首先从人口问题中引出对数的概念,让学生感受到对数的现实背景,使学生认识引进对数的必要性,激发学生学习的兴趣.本课主要学习对数的概念、指对数式的相互转化,同时,让学生了解常用对数以及自然对数的概念和记法,并尝试推导两个对数恒等式.本课的教学重点是理解对数式和指数式之间的关系以及对数式和指数式的相互转化.本课的教学难点是对数概念的理解以及对数符号的理解.对于对数概念的学习,要紧紧抓住它与指数概念之间的联系与区别.结合指数式理解对数式的底数a 和真数N 的限制条件,对于对数的性质及零和负数没有对数的理解也可以通过指数式来证明、验证,同时还可借助计算器或计算机计算真数为负数的情况,计算器或计算机会提示出错信息,以加深学生对“负数和零没有对数”的理解.对数首先作为一种运算,是由a b =N 引出的,在这个式子中已知一个数a 和它的指数求幂的运算就是指数运算,而已知一个数和它的幂值求指数就是对数运算(已知指数和幂值求这个数的运算就是开方运算),从方程角度来看,这个式子中有三个量,知二求一,恰好可以构成以上三种运算,这样引入对数运算是很自然,也是很重要的,这就完成了对a b=N的全面认识.此外,对数作为一种运算,除了认识运算符号“log”以外,更重要的是把握其运算法则.由于对数与指数在概念上相通,因此对数运算法则的推导可以借助指数运算法则来完成,在推导过程中可加深对指数式和对数式之间的关系的认识.对于对数运算符号的认识与理解是同学们认识对数的一个障碍,教学中可以将“log”与其他符号如“+”“”等符号进行比较,指出“log”和“+”“”等符号一样都表示一种运算,不过对数运算的符号写在有关数的前面而已.一开始学生会不习惯,在认识上感到有些困难,教学中可以多次组织学生使用这一运算符号,帮助学生突破这一障碍.三维目标一、知识与技能1.理解对数的概念.2.理解指数式和对数式之间的关系,能熟练地进行对数式和指数式的互化.3.了解自然对数和常用对数的概念以及对数恒等式.二、过程与方法1.通过探究对数的概念以及对数式和指数式之间的关系,明确数学概念的严谨性和科学性,感受化归的数学思想,使学生能用相互转化的观点辩证地看问题.2.通过计算器或计算机的演示,使学生加深对“N>0”的理解,培养学生数学地分析问题的意识.3.通过探究、思考、反思、完善,培养学生理性思维能力.三、情感态度与价值观1.通过具体实例引出对数的概念,使学生感受到数学源于实际生活,激发学生的学习兴趣.2.在教学过程中,通过学生的相互交流,来加深对数概念理解,增强学生数学交流能力,培养学生倾听、接受别人意见的优良品质.3.通过指导学生阅读“对数的发展史”不断了解数学、走进数学,增强学生的数学素养.教学重点1.对数式和指数式之间的关系.2.对数的概念以及对数式和指数式的相互转化.教学难点对数概念的理解以及对数符号的理解.教具准备多媒体课件、投影仪、计算器或计算机、打印好的作业.教学过程一、创设情景,引入新课(多媒体投影我国人口增长情况分析图,并显示如下材料)截止到1999年底,我国人口约13亿.如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少?(精确到亿)师:设今后人口年平均增长率为1%,经过x年后,我国人口数为y亿,则y=13×1.01x.我们能从这个关系式中算出任意一个年头x的人口总数.反之,如果问“哪一年的人口数可达到18亿,20亿,30亿……”该如何解决?(生思考,师组织学生讨论得出)由y =1.01x 的图象可求出当y =1318、1320、1330时,相应的x 的值,实际上就是从1.01x =1318,1.01x =1320,1.01x =1330……中分别求出x . 师:根据指数的有关知识,在关系式1.01x =1318中,要我们求解的量在什么位置? 生:在等式左边的指数位置上.师:那么,要求x 的值,也就是让我们求指数式中的哪一个量?生:求指数x .师:这样,就出现了与前面学习指数时不同的一类问题——已知指数式的底数和幂值,求指数式的指数,这就是我们本节课所要研究的对数问题.(引入新课,书写课题——对数)二、讲解新课(一)介绍对数的概念合作探究:若1.01x =1318,则x 称作是以1.01为底的1318的对数.你能否据此给出一个一般性的结论?(生合作探究,师适时归纳总结,引出对数的定义并板书)一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.合作探究:根据对数的概念写出几个对数式,同桌之间互相检查写法是否正确.师:你如何理解“log ”和log a N ?(生探讨,得出如下结论)知识拓展:符号“log ”与“+,”等符号一样表示一种运算,log a N 是一个整体,表示以a 为底N 的对数,不表示log 、a 、N 三者的乘积.读作以a 为底N 的对数,注意a 应写在右下方.(二)概念理解合作探究:对数和指数幂之间有何关系?说明:括号内属填空、选择的题目.合作探究:是不是所有的实数都有对数呢?在对数式log a N =b 中,真数N 可以取哪些值?为什么?(生讨论,结合指数式加以解释)∵在指数式中幂N =a b >0,∴在对数式中,真数N >0.(师借助计算器或计算机进行示范)可以发现真数为负数时,计算器会提示出错信息. 师:条件N >0说明了什么?生:负数与零没有对数.合作探究:根据对数的定义以及对数式和指数式的关系,试求log a 1和log a a (a >0,且a ≠1)的值.(生根据对数式和指数式之间的关系,得出如下结论)∵对任意a >0且a ≠1,都有a 0=1,∴log a 1=0.同样,∵对任意a >0且a ≠1,都有a 1=a ,∴log a a =1.合作探究:a N a log =N 、log a a b =b 是否成立?(师生共同讨论,给出如下解释)(1)设a N a log =x ,则log a N =log a x ,所以x =N ,即a N a log =N .(2)∵a b =a b ,∴log a a b =b (对数恒等式).师:对数运算在研究科学和了解自然中起了巨大的作用,其中有两类对数贡献最大,它们就是自然对数和常用对数.(师指导学生阅读课本第57页常用对数和自然对数的概念和记法,然后板书)(三)常用对数通常将以10为底的对数称为常用对数,如log 102、log 1012等,并把对数log 10N 简记为lg N ,如lg2、lg12等.(四)自然对数在科学技术中,常常使用以e (e=2.71828…是一个无理数)为底的对数,这种对数称为自然对数.正数N 的自然对数log e N 一般简记为ln N ,如ln2、ln15等.(五)例题讲解师:我们已经对对数的概念有了一定的理解,你能快速地完成下面练习吗? (投影显示如下例题)【例1】 将下列指数式化为对数式,对数式化为指数式:(1)54=625;(2)2-6=641;(3)(31)m =5.73;(4)log 2116=-4;(5)lg0.01=-2; (6)ln10=2.303.方法引导:进行指数式和对数式的相互转化,关键是要抓住对数与指数幂之间的关系,以及每个量在对应式子中扮演的角色.(生口答,师板书)解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m ;(4)(21)-4=16;(5)10-2=0.01;(6)e 2.303=10.【例2】 求下列各式中的x 的值:(1)log 64x =-32;(2)log x 8=6;(3)lg100=x ;(4)-lne 2=x . (师生共同讨论,师板书) 解:(1)因为log 64x =-32,所以x =6432-=(43)32-=4-2=161; (2)因为log x 8=6,所以x 6=8,x =861=(23)61=221=2;(3)因为lg100=x ,所以10x =100,10x =102,于是x =2;(4)因为-lne 2=x ,所以lne 2=-x ,e 2=e -x ,于是x =-2.方法小结:在解决对数式求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质求出结果.(六)目标检测课本P 74练习第1,2,3,4题.(生完成,师组织学生进行课堂评价)解答:1.(1)log 28=3;(2)log 232=5;(3)log 221=-1;(4)log 2731=-31. 2.(1)32=9;(2)53=125;(3)2-2=41;(4)3-4=811. 3.(1)设x =log 525,则5x =25=52,所以x =2; (2)设x =log 2161,则2x =161=2-4,所以x =-4; (3)设x =lg1000,则10x =1000=103,所以x =3;(4)设x =lg0.001,则10x =0.001=10-3,所以x =-3.4.(1)1;(2)0;(3)2;(4)2;(5)3;(6)5.三、课堂小结师:请同学们回顾一下本节课的教学过程,你觉得哪些知识你已经掌握?哪些东西你还没有掌握?(生总结,并互相交流讨论,师投影显示本课重点知识)1.对数的定义及其记法;2.对数式和指数式的关系;3.自然对数和常用对数的概念.四、布置作业课本P 86习题2.2A 组第1、2题.板书设计 2.2.1 对数与对数运算(1)1.对数的定义2.对数式和指数式的关系3.自然对数和常用对数的概念一、例题解析及学生练习例1例2二、课堂小结与布置作业。
高中数学 《对数函数》说课稿 新人教A版必修1

对数函数〔第一课时〕一、教材分析1、教材的地位与作用函数是高中数学的核心,对数函数是重要的基本初等函数之一,它是学生已学过指数函数及对数与常用对数基础上引入的,这为过渡到本节的学习起到辅垫作用;“对数函数〞这节教材是在没有学习反函数的基础上研究指数函数和对数函数的自变量与因变量之间的关系。
学习本节使学生的知识体系更加完整、系统,同时又是指数函数知识的拓展和延伸,它是解决有关自然科学领域中实际问题的重要工具。
2、教学目标的确定及依据通过对教材的研究和结合学生的实际情况等方面的要求,本节的知识目标:理解对数函数的概念,掌握对数函数的图象和性质,在掌握性质的基础上学会初步应用。
能力目标是:通过对数函数的学习,培养学生数形结合,分类讨论的数学思想;注重培养学生分析、类比、归纳的能力。
情态及价值观目标:用联系的观点分析问题,认识事物之间的转化,在某某和谐的教学气氛中,培养合作意识,感受学习乐趣,动脑思考的良好个性品质。
3、教学重点、难点重点:对数函数的概念,图象和性质难点:①指数函数与对数函数的内在关系②通过的指数函数图象和性质再类比对数函数的图象和性质。
二、教法分析数学是一门培养和发展人的思维的重要学科,因此,在教学中不仅要使学生“知其然〞而且要使学生“知其所以然〞。
1、教法——发现法发现法的教学方法,表达了认知心理学的应用。
在教学过程中,首先创设一个问题的情境,引导学生积极思考,容易激发其兴趣,唤起其有意注意,兴趣可调动学习积极性。
由学生熟悉的指数函数知识逐步过渡到对数函数知识的认识,其次,借助老师和学习伙伴的帮助,发挥其主动性来对知识的“发现〞和接受(即在学习过程中帮助学生很好地掌握对数函数的概念,图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解)2、学法启发式与独立自主学习,合作交流学习相结合提出富有启发性的问题激发他们的独立自主探索,与合作交流。
以学生作为教学主体,教师作为教学主导,在讨论中以教师的点拔如“类比法〞使学生能够找到解决问题的方法,从而解决所提问题,通过加强合作交流,反馈练习法,激发他们手脑并用,引发和加强学生的有意注意。
对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)以下是网友分享的关于对数与对数运算说课稿的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一§2.2.1对数与对数运算说课稿大家好,我是。
,我今天的讲课内容是对数与对数的运算。
我将从以下5个方面来进行今天的说课,第一是教学内容分析,第二是学生的学情分析,第三是教学方法的策略,第四是教学过程的设计,第五的教学反思。
一、教学内容分析对数与对数的运算是人教版高中教材必修一第二章第二节第一课时的内容。
本节课是第一课时,主要讲的就是认识对数和对数的一些基本运算性质。
本节课的学习蕴含着转化化规的数学思想,类比与对比等基本数学方法。
在上节课,我们学习了指数函数以及指数函数的性质,是本节课学习对数与对数的运算的基础,而下节课,我们又将学习对数函数与对数函数的性质,这节课恰好为下节课的学习做了一个铺垫。
二、学生学情分析接下来我将从认知、能力、情感三个方面来进行学生的学情分析。
首先是认知,该阶段的高中生已经学习了指数及指数函数的性质,具备了学习对数的基础知识;在能力方面,高一的学生已经初步具备运用所学知识解决问题的能力,但是大多数同学还缺乏类比迁移的能力;而在情感方面,大多数学生有积极的学习态度,能主动参与研究,但是还有部分的学生还是需要老师来加以引导的。
三、教学方法的策略根据教材的要求以及本阶段学生的具体学习情况,我制定了一下的教学目标。
首先是知识与技能,理解对数与指数的关系,能进行指对数互化并可利用对数的简单性质求值;接着是过程与方法,通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力;最后是情感态度与价值观,通过对问题转化过程的引导,培养学生敢于质疑、勇于开拓的创新精神。
基于以上的分析,我制定了本节课的重难点。
本节课的教学重点是对数的定义,对数式与指数式的互化,对数的运算法则及其推导和应用;本节课的难点是对数概念的理解和对数运算法则的探究和证明;本节课我所采用的教学方法是探究式教学法,分为以下几个环节:教师创设问题情境,启发式地讲授,讲练结合,引导学生思考,最后鼓励学生自主探究学习。
必修一对数运算-说课稿

3、对数的概念一、教学内容分析本节课是新课标高中数学A 版必修①中第二章对数函数内容的第一课时,也就是对数函数的入门。
对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。
而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。
通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备。
同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
二、学生学习情况分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。
通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
三、设计思想学生是教学的主体,本节课要给学生提供各种参与机会。
为了调动学生学习的积极性,使学生化被动为主动。
本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。
在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。
2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
3、通过学生分组探究进行活动,掌握对数的重要性质。
通过做练习,使学生感受到理论与实践的统一。
人教版高中数学必修一说课稿对数的运算说课稿

普通高中课程标准实验教科书-[人教版]2.2.1 对数的运算说课稿教材分析:本节课是数学必修1第二章“基本初等函数”2.2.1对数与对数运算第二课时.课程标准要求理解对数的运算性质,能灵活运用对数运算性质进行对数运算.本节课是在学习了“对数的概念”后进行的,它是上节内容的延续与深入,同时也是研究学习后续知识对数函数与性质的必备基础知识.学习本节课,要体现本节内容的基础性、工具性、实用性.学情分析:对数是一个全新的概念,对数运算是一种类似于但又不同于实数的加减乘除、指数的运算的全新运算.要探究并发现其运算性质,学生是有相当难度的,但是通过上节的学习,学生能够利用对数定义进行简单对数计算,能够利用计算器进行常用对数计算,能够进行对数式与指数式的相互转化,学生还熟知指数的运算性质.有这些已有知识作为基础,教师再设计合理的导学案,是能让学生主动参与课堂的,并能自主完成探究、发现、证明、应用的全过程的.教学目标:知识与技能:理解对数运算性质及其推导过程,并能灵活运用运算性质进行对数运算.过程与方法:经历探究、发现、证明、应用对数运算性质的过程.情感态度与价值观:在对数运算性质的探究过程中,培养学生善于观察,勇于探索的自主学习习惯和科学的思维方法.教学重点:运算性质的探究、发现、证明及应用教学难点:运算性质的发现与证明教法学法:教法:教师通过设计导学案,由导学案引导学生探究、交流、发现新知识,再现知识的生成过程,教师将成为课堂自主学习模式的创设者,师生对话的聆听者,学生探究发现的引导者.学法:学生将采用独立探究与合作交流相结合的自主学习方式,学生将成为新知识的发现者,课堂的主宰者.教学过程:一.复习问题:1.对数是怎样定义的?2.对数与指数有怎样的相互转化关系?3.指数有哪些运算性质?设计意图:现代教育学心理学认为任何新知识的学习新发现的创造都得以现有认知水平和经验为基础,因此,设计旧知识的复习是非常有必要的,它为下一步学生自主探究发现铺平了道路.二.探究、发现对数运算性质(一)猜想问题:请从所学过的运算中,以一种为例,说明它有那些运算性质,类比这些性质你能猜想对数的一些运算性质吗?设计意图:培养学生自主发现问题提出问题的能力,并为下一步探究发现指明方向.(二)探究、发现自主完成下表,并从对数值间关系的角度,分析表中各列数据,你有哪些发现?这些发现中哪些是你已经得到的猜想,而其它猜想能否通过表中数据验证其正确性?设计意图:给学生自主探究创设情景,培养学生由特殊到一般的科学思维方法.按小组讨论各自得到的成果,分析得出小组的总结性可行性成果,并由小组代表向全班同学和老师展示成果,然后师生对话,分析得出对数可能的运算性质:如果0,1,0,0a a M N >≠>>且,那么有 1.log ()log log a a a M N M N ⋅=+ 2.log log log aa a MM N N=- 3.log log ()na a M n M n R =∈设计意图:培养学生分析、归纳、总结的能力,培养学生团队合作精神.三.证明对数运算性质根据课前对已学知识的复习,尝试证明对数的可能运算性质,并请学生板演展示自己的证明过程.设计意图:培养学生逻辑推理能力,勇于探索,敢于展示的精神.请同学们观察证明过程,若有问题请指出.然后师生对话,给出完整的证明. 证明:设log ,log a a M x N y ==,则,xya M a N == (1)x y x y M N a a a +⋅=⋅=,log ()log log a a a M N x y M N ∴⋅=+=+(2)x y x y M a a a N -=÷=,log log log a a a M x y M N N∴=-=- (3)()n x n nx M a a ==,log log n a a M nx n M ∴==设计意图:培养学生自主发现问题,解决问题的能力.四.应用对数运算性质 (一)例题请学生自主完成下面例题,并请学生学生板演解题过程. 例1用log a x ,log a y ,log a z 表示下列各式:(1)log a xy z ;(2)log a解:(1)log azxy= log a (xy )- log a z = log a x +log a y -log a z ;(2)log a32zyx= log a (x2y )-log a (3z )= log a x 2+log a y -log a 3z= 2log a x +21log a y -31log a z . 例2求下列各式的值:(1)752log (42)⨯;(2)解:(1)log 2(47×25)= log 247+ log 225= 7log 24+5 log 22 =7×2+5×1=19; (2)lg 5100 =51lg102=52lg10=25. 师生给出评价结果,探讨解题中出现的问题,探讨解题的关键点. 设计意图:培养学生题后反思的习惯 (二)巩固练习 课本75P 练习1,2,3五.小结六.作业课本82P 习题2.2 A 组3,4,5七.教学评价:长期的数学教学,常常缺少知识发生过程的教学,一切数学结论似乎不要学生去寻找,那是前人的事,是数学家的事.这里的教学设计让学生通过猜想、计算、观察等一系列数学活动去发现、证明数学结论,大致经历前人发现对数运算法则的过程.这里的教学设计让学生真正参与到课堂中来,教师不再是知识的灌输者,而是学生自主学习课堂环境的设计者,课堂完全交给学生,让学生在导学案的指引下,在教师的点拨下开展探究性学习活动.。
高一数学必修1《对数函数》说课稿

高一数学必修1《对数函数》说课稿一、教材的本质、地位与作用对数函数(第二课时)是____人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用.二、教学目标根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:学习目标:1、复习巩固对数函数的图像及性质2、运用对数函数的性质比较两个数的大小能力目标:1、培养学生运用图形解决问题的意识即数形结合能力2、学生运用已学知识,已有经验解决新问题的能力3、探索出方法,有条理阐述自己观点的能力德育目标:培养学生勤于思考、独立思考、合作交流等良好的个性品质三、教材的重点及难点对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。
所以确定本节课重点:运用对数函数图像性质比较两数的大小教学中将在以下2个环节中突出教学重点:1、利用学生预习后的心得交流,资源共享,互补不足2、通过适当的练习,加强对解题方法的掌握及原理的理解另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。
所以确定本节课难点:同真异底的对数比大小教学中会在以下3个方面突破教学难点:1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。
2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。
3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
对数说课稿

一、课题介绍本节课选自普通高中课程标准实验教科书人教社A版必修一第二章第二节的第一课时.二、教材分析1、本节在教材中的地位和作用对数是中学课程的主要内容之一,在高中数学中占有重要地位,是对指数知识的延伸和巩固,同时也是对数函数等相关内容的基础. 本节课是第一课时,主要任务就是熟悉对数,为后面对数函数的学习作铺垫,起到承前启后、铺路架桥的作用.2、教学目标鉴于本节在教材中有着这样的地位和作用,同时考虑到高一年级学生的认知水平,在教学大纲的指导下,我确立了以下三个方面的教学目标.知识目标:理解对数的概念,掌握对数式与指数式的互化,能求一些特殊对数的值.能力目标:培养学生应用数学的能力,提高学生抽象思维的能力.情感目标:认识事物的相互联系和相互转化,激发学生学习数学的热情.3、教学重点与难点根据上述三个教学目标,同时考虑到高一学生对概念的理解能力较弱.因而,我认为本节课的重点和难点为:重点:对数的定义以及对数式与指数式的互化.难点:对数概念的理解.(由于对数符号是直接引入的,有“规定”的性质,且比较抽象,不易使学生接受和理解,因此对数符号的认识及其定义的理解是教学中的难点).三、教法分析为了更好的培养学生的自学能力.在教法设计上,我采用启发式教学法.启发学生从指数运算的需求中,提出本节的研究对象——对数.从而由指数与对数的关系认识对数,并掌握指数式与对数式的互化.此外,我还将采用讲解法和练习法让学生熟悉指数式与对数式的相互转化,加深对于对数定义的理解,为下一节学习对数函数打下基础.四、学法分析在学法指导上,根据新课程理念.学生是学习的主体,教师只是学习的帮助者.因此,在本节课的教学中我主要引导同学们通过观察生活中的实例认识对数的研究的必要性.引导同学们通过对比指数和对数的各个量的变化关系,掌握指数和对数的互化.从而把传授知识和培养能力有机的结合起来.五、教学过程为了完成预定的教学目标,在充分优化教法和学法的基础之上.我精心设计了以下六个教学环节.1、课题引入这一环节是整个教学过程的关键,他直接影响到学生对本节课的学习态度和学习欲望.因此,为了使学生产生浓烈的求知欲望,我做了如下安排:提两个问题(1)庄子:一尺之棰,日取其半,万世不竭.①取5次,还有多长?②取4次还有181尺,日取其多少?③取多少次,还有0.125尺?(2)假设2002年我国国内生产总值为a亿元,如果每年平均增长8%,那么经过多少年国内生产总值是2002年时的2倍?对于第一个问题的前两个问,学生能用所学知识自己解决,而对于第三个问和第二题学生也能根据自己已有的方程知识列出这两个方程10.1252x ⎛⎫= ⎪⎝⎭,1.082x =,但是面对这两个”未曾谋面”的方程,应该怎样解出x 呢?自然引发学生的兴趣,教师也自然过度到今天要学习的内容—对数.2、展示新知那么什么是对数呢?由于对数符号是直接引入的,有“规定”的性质,且比较抽象,不易使学生接受和理解,因此对数符号的认识及其定义的理解是教学中的难点,为了突破这个难点,我将给出一些具体的实例,让学生对对数有个直观感知.首先向同学们介绍328=,这个式子中3就是今天我们所学要学的对数,并且我们说3就是以2为底8的对数.再以2100.01-=,01a =,5a N =为例,然后得出对数的定义.这样由数字逐渐过渡到代数式,避免了一开始就进入数学的符号化教学,使学生更容易理解.接着让同学们思考在定义中哪些问题是值得我们注意的,如对数的写法.还有a 的限制和真数的特点,为以后对数函数求定义域做准备.然后为了让同学们更熟悉定义,让同学们将10.1252x⎛⎫= ⎪⎝⎭,1.082x =写成对数的形式,加深对对数的定义理解与记忆,同时让他们自己解决了一开始列出的方程,也为下面对数和指数的相互转化做了准备.紧接着我将介绍两种特殊的对数,然后用以下的一个框图介绍本节课的重点—对数式和指数式的相互转化,让学生一目了然3、例题讲解心理学家认为:概念一旦形成必须及时加以巩固.接下来我将进行例题讲解例1 将下列指数式写成对数式,对数式写成指数式(1)45625= (2)1 5.733m ⎛⎫= ⎪⎝⎭(3)2log 645= (4)lg0.012=- 分析:根据对数的定义,则问题得以解决.例2 求下例各对数的值指数 对数值(1) 2ln e ; (2)4log 8 (3)2log 4a例2 将下列对数式写成指数式:(1)12log 164=- (2)2log 1287=(3)lg0.012=- (4)ln10 2.303=注:例2是建立在例1的基础上,因为以学生现有的知识水平只有通过将对数化为指数才能求出其值.这样就形成了一个有层次,分梯度的教学,使学生认识到指数转化为对数的好处,激发了学生的学习兴趣.4、反馈练习反馈练习这一环节体现了学生能否对本节课知识掌握和灵活运用情况,同时也加强了学生对新知识的巩固.这一阶段我主要让学生翻到课本练习,以口答的形式进行,这样就充分利用了课堂时间,同时也让我知道了学生对本节知识的掌握情况.5、总结提炼让学生自行总结,老师适当补充6、布置作业当然上完一节课必要的作业是必不可少的,按照循序渐进的原则,作业布置我分为两个层次:书上的基础题(目的在于让学生及时复习巩固知识);一道思考题(激发学生思维)六、板书设计板书设计的好坏直接关系到学生对本节课的兴趣,因此它起着举足轻重的作用.为了使整个版面层次分明,重点突出,我将黑板分为四版:第一版和第二版主要板书本节课所学习的主要提纲,这样让同学就一目了然的知道了本节课我们所学的哪些是重点,哪些是难点,第三版用于例题讲解和学生板演,第四版为副板,主要用于课题的导入.。
人教版高中数学必修1《对数函数(第二课时)》说课稿

高中数学必修1《对数函数(第二课时)》说课稿人教版高中数学必修1《对数函数(第二课时)》说课稿在教学工作者开展教学活动前,就有可能用到说课稿,说课稿有助于提高教师的语言表达能力。
说课稿应该怎么写才好呢?以下是小编帮大家整理的人教版高中数学必修1《对数函数(第二课时)》说课稿,欢迎大家分享。
一、教材的本质、地位与作用对数函数(第二课时)是xxxx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。
二、教学目标根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:学习目标:1、复习巩固对数函数的图像及性质2、运用对数函数的性质比较两个数的大小能力目标:1、培养学生运用图形解决问题的意识即数形结合能力2、学生运用已学知识,已有经验解决新问题的能力3、探索出方法,有条理阐述自己观点的能力德育目标:培养学生勤于思考、独立思考、合作交流等良好的个性品质三、教材的重点及难点对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。
所以确定本节课重点:运用对数函数图像性质比较两数的大小教学中将在以下2个环节中突出教学重点:1、利用学生预习后的心得交流,资源共享,互补不足2、通过适当的练习,加强对解题方法的掌握及原理的理解另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。
所以确定本节课难点:同真异底的对数比大小教学中会在以下3个方面突破教学难点:1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。