集合间的基本运算

合集下载

第二讲 集合之间的基本关系及其运算

第二讲  集合之间的基本关系及其运算

第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。

3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。

知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。

{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。

集合间的基本运算教案

集合间的基本运算教案

集合间的基本运算教案一、教学目标1.理解集合间的基本运算概念,掌握集合间的基本运算方法。

2.学会运用集合间的基本运算解决实际问题。

3.培养学生对数学的兴趣和解决问题的能力。

二、教学重点和难点1.重点:集合间的基本运算方法、规则和技巧。

2.难点:如何运用集合间的基本运算解决实际问题。

三、教学过程1.课程导入:通过实例引入集合间的运算概念,如两个集合的并集、交集、补集等,并简要介绍这些运算的意义和用途。

2.知识点讲解:详细阐述集合间的基本运算方法,包括并集、交集、补集、差集等,讲解它们的定义、性质和计算方法。

通过实例分析,让学生更好地理解这些运算的应用。

3.解题思路:举例说明如何解决集合间的应用题。

通过分析问题、建立数学模型、执行计算和整合答案等步骤,让学生掌握解决集合间应用题的方法。

4.注意事项:提醒学生在学习过程中需要注意哪些问题,如准确理解集合间的基本运算概念、熟练掌握基本运算方法、正确运用解决实际问题等。

5.课堂练习:布置相关练习题,让学生现场计算并集体讨论,及时纠正错误和理解不到位的地方。

6.作业与评价方式:布置课后作业,要求学生在规定时间内完成,并提交电子版练习题。

根据学生的练习情况和作业完成质量,进行评价和反馈,针对存在的问题进行纠错和指导。

四、教学方法和手段1.示范+讲解:教师通过讲解、示范、引导等方式帮助学生理解集合间的基本运算方法。

在知识点讲解和解题思路部分,注重示范和举例说明,帮助学生掌握基本概念和方法。

2.实例分析:教师通过分析实例,让学生更好地理解集合间基本运算的应用。

通过选取具有代表性的例题,引导学生分析问题、建立数学模型并解决问题,培养学生的解题能力和应用能力。

3.课堂互动:在教学过程中,注重与学生互动,鼓励学生提问和发表自己的观点。

通过组织小组讨论和集体评价等方式,激发学生的学习兴趣和参与度。

五、辅助教学资源与工具1.多媒体课件:使用多媒体课件展示教学重点和难点,帮助学生更好地理解集合间的基本运算方法和技巧。

集合间的基本运算

集合间的基本运算

集合间的基本运算一、知识概述1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即=.性质:.全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S,U表示4、运算性质:(1);(2);(3);(4);(5);(6);.二、例题讲解例1、设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A B={9},求实数m的值.解:∵A B={9},∴2m-1=9或m2=9,解得m=5或m=3或m=-3.若m=5,则A={-4,9,25},B={9,0,-4}与A B={9}矛盾;若m=3,则B中元素m-5=1-m=-2,与B中元素互异矛盾;若m=-3,则A={-4,-7,9},B={9,-8,4}满足A B={9}.∴m=-3.例2、设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴3∈B,∴32+3c+15=0,∴c=-8,由方程x2-8x+15=0解得x=3或x=5.∴B={3,5}.由A(A B)={3,5}知,3∈A,5A(否则5∈A∩B,与A∩B={3}矛盾).故必有A={3},∴方程x2+ax+b=0有两相同的根3.由韦达定理得3+3=-a,33=b,即a=-6,b=9,c=-8.例3、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B={x|x>-2},求a、b的值.解:A={x|-2<x<-1或x>0},设B=[x1,x2],由A∩B=(0,2]知x2=2,且-1≤x1≤0,①由A∪B=(-2,+∞)知-2≤x1≤-1. ②由①②知x1=-1,x2=2,∴a=-(x1+x2)=-1,b=x1x2=-2.例4、已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0}.若A∩B,且A∩C=,求a的值.解:∵B={x|(x-3)(x-2)=0}={3,2},C={x|(x+4)(x-2)=0}={-4,2},又∵A∩B,∴A∩B≠.又∵A∩C=,∴可知-4A,2A,3∈A.∴由9-3a+a2-19=0,解得a=5或a=-2.①当a=5时,A={2,3},此时A∩C={2}≠,矛盾,∴a≠5;②当a=-2时,A={-5,3},此时A∩C=,A∩B={3}≠,符合条件.综上①②知a=-2.例5、已知全集U={不大于20的质数},M,N是U的两个子集,且满足M∩()={3,5},()∩N={7,19},()∩()={2,17},求M、N.解:用图示法表示集合U,M,N(如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3,5,11,13},N={7,11,13,19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①—;②—;③—;④—.一、选择题1、下列命题中,正确的是()A.若U=R,A U,;B.若U为全集,Φ表示空集,则Φ=Φ;C.若A={1,Φ,{2}},则{2}A;D.若A={1,2,3},B={x|x A},则A∈B.2、设数集且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是()A. B.C. D.3、设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x N},则M-(M-N)等于()A.N B.M∩NC.M∪N D.M4、已知全集,集合M和的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有()A.3个 B.2个C.1个 D.无穷个1、Φ=U,{2}∈A,{2}单独看是一个集合,但它又是A中的一个元素.2、集合M的“长度”为,集合N的“长度”为,而集合{x|0≤x≤1}的“长度”为1,故M∩N的“长度”最小值为3、M-N={x|x∈M且x N}是指图(1)中的阴影部分.同样M-(M-N)是指图(2)中的阴影部分.4、∵图形中的阴影部分表示的是集合,由解得集合,而N是正奇数的集合,∴,故选B.二、填空题5、已知集合A={x|x2-3x+2=0},集合B={x|ax-2=0}(其中a为实数),且A ∪B=A,则集合C={a|a使得A∪B=A}=_____________.5、{0,1,2}解析:A={1,2},由A∪B=A,得B A.∵1∈A,即得a=2;或2∈A,即得a=1;或B=Φ,此时a=0.∴C={0,1,2}.6、非空集合S{1,2,3,4,5},且若a∈S,则6-a∈S,这样的S共有___________个.6、6解析:S={1,5}或{2,4}或{3},或{1,3,5},或{2,4,3},或{1,5,2,4}.三、解答题7、设集合.(1)若,求实数a的值.(2)若,求实数a的值.7、解:(1)∵9,∴9 A.则a2=9或.解得a=±3或5.当时,(舍);当时,(符合);当时,(符合).综上知或.(2)由(1)知.8、已知全集U=R,<0,<或x>,若,求实数的取值范围8、解:依题设可知全集且≥0≤≤5,≤≤,由题设可知.分类如下:①若,则m+1>2m-1m<2.②若,则m+1≤2m-1,且,解得2≤m≤3.由①②可得:m≤3.∴实数m的取值范围为{m|m≤3}.9、已知全集U={|a-1|,(a-2)(a-1),4,6}.(1)若求实数a的值;(2)若求实数a的值.9、解:(1)∵且B U,∴|a-1|=0,且(a-2)(a-1)=1,或|a-1|=1,且(a-2)(a-1)=0;第一种情况显然不成立,在第二种情况中由|a-1|=1得a=0或a=2,∴a=2.(2)依题意知|a-1|=3,或(a-2)(a-1)=3,若|a-1|=3,则a=4,或a=-2;若(a-2)(a-1)=3,则经检验知a=4时,(4-2)(4-1)=6,与元素的互异性矛盾.∴a=-2或.10、设集合A ={|},B ={|,},若A B=B,求实数的值.10、解:先化简集合A=. 由A B=B,则B A,可知集合B可为,或为{0},或{-4},或.(i)若B=,则,解得<;(ii)若B,代入得=0=1或=,当=1时,B=A,符合题意;当=时,B={0}A,也符合题意.(iii)若-4B,代入得=7或=1,当=1时,已经讨论,符合题意;当=7时,B={-12,-4},不符合题意.综上可得,=1或≤.11、已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若A∩B≠,求实数m 的取值范围.11、解:设全集.若方程x2-4mx+2m+6=0的两根x1,x2均非负,则解得.∵{m|}关于U的补集是{m|m≤-1},∴实数m的取值范围是{m|m≤-1}.1、(全国I,1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合中的元素共有()A.3个B.4个C.5个D.6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2-2x>0},则等于()A.{x|0≤x≤2} B.{x|0<x<2}C.{x|x<0或x>2} D.{x|x≤0或x≥2}答案:A解析:∵x2-2x>0,∴x(x-2)>0,得x<0或x>2,∴A={x|x<0或x>2},.3、(山东,1)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.4答案:D解析:∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.集合中的交、并、补等运算,可以借助图形进行思考。

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。

1.1.3集合的基本运算

1.1.3集合的基本运算
三、集合运算的性质:
四、(A∩B)∩C可记作A∩B∩C; (A∪B)∪C可记作A∪B∪C
四、交集、并集的性质图示
*交集与并集的性质 1结合律:(A ∩ B) ∩ C = A ∩ (B ∩ C) = A ∩ B ∩ C
AA BB CC
AA BB CC
AB C
四、交集、并集的性质图示 *交集与并集的性质 2 结合律:( A U B) U C = A U ( B U C) = A U B U C
Venn图表示:
AB A
B
A
B
A∪B
A∪B
A∪B
并集例题
例1.设A={4,5,6,8},B={3,5,7,8}, 求AUB. 解:A B {4,5,6,8}{3,5,7,8} {3,4,5,6,7,8} 例2.设集合A={x|-1<x<2},B={x|1<x<3},
求AUB.
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
记作: A
即: A={x| x ∈ U 且x A}
说明:补集的概念必须要有全集的限制. Venn图表示:
U A
A
补集例题
例5.设U={x|x是小于9的正整数},A={1,2,3}, B={3,4,5,6},求 A, B.
解:根据题意可知: U={1,2,3,4,5,6,7,8},
所以: A={4,5,6,7,8}, B={1,2,7,8}.
AA BB CC
AB
AB
AB
实例引入
问题:
在下面的范围内求方程 x 2 x的2 解3集:0
(1)有理数范围;(2)实数范围. 并回答不同的范围对问题结果有什么影响? 解:(1)在有理数范围内只有一个解2,即:

第八讲 集合的基本运算(精讲)(解析版)

第八讲   集合的基本运算(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第八讲集合的基本运算(精讲)(解析版)【知识点透析】一、交集1、文字语言:对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”2、符号语言:A ∩B ={x |x ∈A 且x ∈B }3、图形语言:阴影部分为A ∩B4、性质:A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A5、解题思路:单个数字交集找相同,不等式的交集画数轴,不同集合高度画不同。

二、并集1、文字语言:对于两个给定的集合A ,B ,由两个集合的所有的元素组成的集合,叫做A 与B 的并集,记作A ∪B ,读作“A 并B ”2、符号语言:A ∪B ={x |x ∈A 或x ∈B }3、符号语言:阴影部分为A ∪B4、性质:A ∪B =B ∪A ,A ∪A =A ,A ∪∅=∅∪A =A ,如果A ⊆B ,则A ∪B =B .5、解题思路:两个集合所有元素集中在一起,但是重复元素只写一次,要满足集合中的互异性三、补集1、全集:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U .2、补集(1)文字语言:如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作A C U .(2)符号语言:}|{A x U x x A C U ∉∈=且(3)符号语言:(4)性质:A ∪∁U A =U ;A ∩∁U A =∅;∁U (∁U A )=A .【注意】并不是所有的全集都是用字母U 表示,也不是都是R,要看题目的。

四、利用交并补求参数范围的解题思路1、根据并集求参数范围:=⇒⊆ A B B A B ,若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 2、根据交集求参数范围:=⇒⊆ A B A A B 若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 【知识点精讲】题型一并集、交集、补集的运算【例题1】(2022·浙江·杭十四中高一期中)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4,5S T ==,则S T ⋃=()A .{}3,5B .{}2,4C .{}1,2,3,4,5D .{}1,2,3,4,5,6【答案】C【分析】根据并集的定义直接求解即可.【详解】因为{}{}1,3,5,2,3,4,5S T ==,所以S T ⋃={}1,2,3,4,5,故选:C【例题2】(2021春•山西大同期中)设集合{|1}A x x =<,{|22}B x x =-<<,则(A B = )A .{|21}x x -<<B .{|2}x x <C .{|22}x x -<<D .{|1}x x <【答案】B【解析】{|1}A x x =< ,{|22}B x x =-<<,{|2}A B x x ∴=< .故选B.【例题3】.(2022·江苏·高二期末)已知集合{}1,2A =,{}21,2B a a =-+,若{}1A B ⋂=,则实数a 的值为()A .0B .1C .2D .3【答案】C【解析】因为{}1A B ⋂=,所以11a -=或221a +=,解得:2a =.故选:C.【例题4】.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))已知集合{}21A x x =-<≤,{}0B x x a =<≤,若{|23}A B x x =-<≤ ,A B = ()【例题5】.(2021·北京昌平区·高二期末)已知全集,集合,{3,4}B =,则()U A B = ð___________.【答案】.{}3,4,5【解析】解:{0U = ,1,2,3,4,5},{0A =,1,2,3},{3B =,4},{4U A ∴=ð,5},(){3U A B ⋃=ð,4,5}.故答案为:{3,4,5}.【例题6】.(2022·四川南充高一课时检测)已知全集{}16A x x =≤≤,集合{}15B x x =<<,则A B =ð().A .{}5x x ≥B .{1x x ≤或}5x ≥C .{1x x =或}56x <≤D .{1x x =或}56x ≤≤【例题7】.41.(2021·陕西商洛市·镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)若4m =,求A B ;(2)若A B =∅ ,求实数m 的取值范围.【答案】.(1){}27x x -≤≤;(2){2m m <或}4m >.【解析】(1)当4m =时,{}57B x x =≤≤,故{}27A B x x ⋃=-≤≤;(2)当121m m +>-时,即当2m <时,B =∅,则A B =∅ ;当121m m +≤-时,即当2m ≥时,B ≠∅,因为A B =∅ ,则212m -<-或15m +>,解得12m <-或4m >,此时有4m >.综上所述,实数m 的取值范围是{2m m <或}4m >.【变式1】.(2022·河北邢台高二期末)若集合{}|24M x x =-<≤,{}|46N x x =≤≤,则A .M N⊆B .{}4M N = C .M N⊇D .{}26|M N x x =-<< 【答案】B【分析】利用集合的交并运算求M N ⋂、M N ⋃,注意,M N 是否存在包含关系,即可得答案.【详解】因为{}|24M x x =-<≤,{}|46N x x =≤≤,所以{}4M N = ,{}|26M N x x =-<≤ ,,M N 相互没有包含关系.故选:B【变式2】.(2022·江苏常州高三开学考试)设集合{}11A x x =-<<,{}220B x x x =-≤,则A B ⋃=()A .(]1,2-B .()1,2-C .[)0,1D .(]0,1【变式3】(2022·青海·海东市第一中学模拟预测(文))已知集合{}1,1,2M =-,{}2N x x x =∈=R ,则M N ⋃=()A .{}1B .{}1,0-C .{}1,0,1,2-D .{}1,0,2-【答案】C【解析】{}{}20,1N x x x =∈==R ,{}1,0,1,2M N ∴=- .故选:C.【变式4】.(2022·浙江·三模)已知集合{}{}25,36P x x Q x x =≤<=≤<,则P Q = ()A .{}25x x ≤<B .{}26x x ≤<C .{}35x x ≤<D .{}36x x ≤<【答案】C【解析】由题意知:P Q = {}35x x ≤<.故选:C.题型二并集、交集、补集综合运算及性质的应用【例题8】.(2022·河南洛阳高一课时检测)已知全集U ,集合{}1,3,5,7,9A =,{}2,4,6,8U C A =,{}1,4,6,8,9U C B =,则集合B =()A .{}1,5,7B .{}3,5,7,9C .{}2,3,5,7,9D .{}2,3,5,7【答案】D【分析】根据集合补集的运算法则进行求解.【详解】 集合{}=1,3,5,79A ,,{}2468U C A =,,,{}=1,2,3,4,5,6,7,8,9U ∴又{}=1,4,6,8,9U C B {}=2,3,5,7B 故选:D【例题9】.(2022·重庆·西南大学附中模拟预测)已知集合{}|10A x ax =-=,{}*|14B x x =∈≤<N ,且A B B ⋃=,则实数a 的所有值构成的集合是()A .11,2⎧⎫⎨⎬B .11,23⎧⎫⎨⎬C .111,,23⎧⎫⎨⎬D .110,1,,23⎧⎫⎨⎬【例题10】.(湖北省“宜荆荆恩”2022-2023学年高三上学期起点考试)已知集合(,1][2,)A =-∞⋃+∞,{|11}B x a x a =-<<+,若A B =R ,则实数a 的取值范围为()A .(1,2)B .[1,2)C .(1,2]D .[1,2]【答案】D【分析】依题意可得1112a a -≤⎧⎨+≥⎩,解得即可.【详解】解:因为(,1][2,)A =-∞⋃+∞,{|11}B x a x a =-<<+且A B =R ,所以1112a a -≤⎧⎨+≥⎩,解得12a ≤≤,即[]1,2a ∈;故选:D【例题11】.(2022·云南昆明一中高一检测)已知A ,B 都是非空集合,(){}&A B x x A B =∈⋃且()x A B ∉ .若{}02A x x =<<,{}0B x x =≥,则&A B =()A .{}0x x ≥B .{}02x x <<C .{0x x =或}2x <-D .{0x x =或}2x ≥【例题12】.(2021·江苏高一专题练习)已知集合{}42A x x =-<<,{}110B x m x m m =--<<->,.(1)若A B B ⋃=,求实数m 的取值范围;(2)若A B ⋂≠∅,求实数m 的取值范围.【答案】(1)3m ≥;(2)0m >.【解析】:(1)因为A B B ⋃=,所以A B ⊆,014312m m m m >⎧⎪∴--≤-⇒≥⎨⎪-≥⎩;(2)若A B = ∅,则014m m >⎧⎨-≤-⎩或012m m >⎧⎨--≥⎩,不等式组无解,所以A B ⋂≠∅时,所以0.m >【变式1】(2022·辽宁沈阳高一课前预习)集合{}2320A x x x =-+=,{}2220B x x ax =-+=,若A B A ⋃=,求实数a 的取值范围.【答案】.{}44a a -<≤由题意,知{}1,2A =,因为A B A ⋃=,所以B A ⊆.(1)若1B ∈,则1是方程2220x ax -+=的根,所以4a =.当4a =时,{}1B A =⊆,符合题意.(2)若2B ∈,则2是方程2220x ax -+=的根,所以5a =.当5a =时,{}2125202,2B x x x ⎧⎫=-+==⎨⎬⎩⎭,此时不满足B A ⊆,所以5a =不符合题意.(3)若B =∅,则2160a ∆=-<,解得44a -<<,此时B A ⊆.综上所述,a 的取值范围为{}44a a -<≤.【变式2】.(2023·浙江高二开学考试)已知R a ∈,设集合{}22210A x x ax a =-+-<,{}2B x x =>,(1)当2a =时,求集合A .(2)若R A B ⊆ð,求实数a 的取值范围.【答案】(1){}13A x x =<<;(2)32a ≤.【解析】(1)当2a =时,有2430x x -+<,解得13x <<,故{}13A x x =<<.(2)∵{}2B x x =>,∴{}2R B x x =≤ð,不等式22210x ax a -+-<可以表示成()()1210x x a ---<⎡⎤⎣⎦,当1a <时,{}211A x a x =-<<,此时R A B ⊆ð成立,当1a =时,A =∅,R A B ⊆ð成立,当1a >时,{}121A x x a =<<-,若此时R A B ⊆ð成立,则212a -≤,解得32a ≤,故312a <≤.综上所述,32a ≤.【变式3】.(2022·四川乐山市高一单元测试)已知集合{}211A x a x a =-<<+,{}01B x x =≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中任选一个作为已知条件,求A B ;(2)若R A B A ⋂=ð,求实数a 的取值范围.【答案】(1)答案见解析(2)(][),11,-∞-⋃+∞【分析】(1)代入a 的值求出集合A ,再求并集可得答案;(2)求出B R ð,根据A B A ⋂=R ð可得A B ⊆R ð,分A =∅、A ≠∅讨论可得答案.(1)选择条件①:因为1a =-,所以()3,0A =-,又[]0,1B =,所以(]3,1A B ⋃=-;选择条件②:因为0a =,所以()1,1A =-,又[]0,1B =,所以(]1,1A B ⋃=-;选择条件③:因为1a =,所以()1,2A =,又[]0,1B =,所以[)0,2A B ⋃=;(2)因为[]0,1B =,所以()(),01,B =-∞⋃+∞R ð,因为A B A ⋂=R ð,所以A B ⊆R ð,当A =∅时,满足R A B ⊆ð,此时211a a -≥+,即2a ≥,当A ≠∅时,则2 10a a <⎧⎨+≤⎩或2211a a <⎧⎨-≥⎩,解得1a ≤-或12a ≤<,综上,a 的取值范围为(][),11,-∞-⋃+∞.题型三Venn 图的应用【例题13】.(2021·贵州省思南中学高三月考(理))已知全集U =R ,集合{}23,A y y x x R ==+∈,{}24B x x =-<<,则图中阴影部分表示的集合为()A .[]2,3-B .()2,3-C .(]2,3-D .[)2,3-【答案】.B【解析】233y x =+≥,所以[)3,A =+∞,图象表示集合为()U A B ⋂ð,()U ,3A =-∞ð,()()U 2,3A B ⋂=-ð.故选:B【例题14】.(2021·全国高三其他模拟)已知全集U x y ⎧=∈=⎨⎩Z ,集合{}13M x x =∈-<Z ,{}4,2,0,1,5N =--,则下列Venn 图中阴影部分表示的集合为()A .{}0,1B .{}3,1,4-C .{}1,2,3-D .{}1,0,2,3-【答案】.C【解析】{}{}50,565,4,3,2,1,0,1,2,3,4,560x U x x x x ⎧+⎧⎫⎪=∈=∈-≤<=-----⎨⎨⎬->⎩⎭⎪⎩ZZ ,集合{}{}{}313241,0,1,2,3M x x x x =∈-<-<=∈-<<=-Z Z .因为集合{}4,2,0,1,5N =--,所以{}5,3,1,2,3,4U N =---ð,所以Venn 图中阴影部分表示的集合为(){}1,2,3U M N ⋂=-ð,故选:C.【例题15】.(2021·山东济南·高一期中)国庆期间,高一某班35名学生去电影院观看了《长津湖》、《我和我的父辈》这两部电影中的一部或两部.其中有23人观看了《长津湖》,有20人观看了《我和我的父辈》则同时观看了这两部电影的人数为()A .8B .10C .12D .15【答案】A【分析】根据集合的运算可得答案.【详解】解:由已知得同时观看了这两部电影的人数为2320358+-=.故选:A.【变式】.(2021·广东·广州外国语学校高一检测)某公司共有50人,此次组织参加社会公益活动,其中参加A 项公益活动的有28人,参加B 项公益活动的有33人,且A ,B 两项公益活动都不参加的人数比都参加的人数的三分之一多1人,则只参加A 项不参加B 项的有()【例12】.(2021·全国高一单元测试)已知对于集合A 、B ,定义{|}A B x x A x B -=∈∉,且,()()A B A B B A ⊕=-⋃-.设集合{123456}M =,,,,,,集合{}45678910N =,,,,,,,则M N ⊕中元素个数为()A .4B .5C .6D .7【答案】.D【解析】∵{123456}M =,,,,,,{}45678910N =,,,,,,,∴{}{|}123M N x x M x N -=∈∉=,且,,,{}{|}78910N M x x N x M -=∈∉=,且,,,,∴{}{}{}()()1237891012378910M N M N N M ⊕=-⋃-=⋃=,,,,,,,,,,,,其中有7个元素,故选D.(2021·湖北·葛洲坝中学高一期中)已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合11|,13A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,{}2|1,12B y y x x ==--≤≤,则B A -=()A .{}11x x -≤≤B .{}11x x -≤<C .{}01x x ≤≤D .{}01x x ≤<【变式1】(2022·山西太原高三专题检测)设{}1,2,3,4,I =,A 与B 是I 的子集,若{}1,3A B = ,则称(,)A B 为一个“理想配集”.那么符合此条件的“理想配集”(规定(,)A B 与(,)B A 是两个不同的“理想配集”的个数是()A .16B .9C .8D .4【答案】B【解析】由题意,对子集A 分类讨论:当集合{}1,3A =,集合B 可以是{1,2,3,4},{1,3,4},{1,2,3},{1,3},共4中结果;当集合{}1,2,3A =,集合B 可以是{1,3,4},{1,3},共2种结果;当集合{}1,3,4A =,集合B 可以是{1,2,3},{1,3},共2种结果;当集合{}1,2,3,4A =,集合B 可以是{1,3},共1种结果,根据计数原理,可得共有42219+++=种结果.故选:B.【变式2】.(2023·四川成都高三专题模拟)对于两个正整数m ,n ,定义某种运算“⊙”如下,当m ,n 都为正偶数或正奇数时,m ⊙n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ⊙n =mn ,则在此定义下,集合M ={(p ,q )|p ⊙q =10,*N p ∈,q ∈*N }中元素的个数是_____.【答案】13【解析】∵当m ,n 都为正偶数或正奇数时,m ⊙n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ⊙n =mn ,∴集合M ={(p ,q )|p ⊙q =10,*N p ∈,q ∈*N }={(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(1,10),(2,5),(5,2),(10,1)},共13个元素,故答案为:13。

高中数学必修一:集合间的基本运算(交集与并集、补集)

高中数学必修一:集合间的基本运算(交集与并集、补集)

6 6 14
A
B
画出Venn图右图 , 可知没有参加过比赛的同学有
45 12 20 6 19. 答 这个班共有 19名同学没有参加过比赛 .
例3.(1)已知集合A={1,2,3,4},B={x|x=n2, n∈A},则A∩B=( ) A.{1,4} B.{2,3} C.{9,16} D.{1,2} (2)设集合M={x|x2+2x=0,x∈R},N={x|x2- 2x=0,x∈R},则M∪N=( ) A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}
4.已知集合A={(x,y)|y=x+3},B={(x,y)|y =3x-1},则A∩B=________.
y=x+3 解析:由 y=3x-1 x=2 得 y= 5

y=x+3 ∴A∩B=x,y| y=3x-1 x=2 ={(2,5)}. =x,y| y=5
解析: M∪N={-1,0,1,2}.
2.设A={4,5,6,8}, B={3,5,7,8},求A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8}
={3,4,5,6,7,8}
3.设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B.
解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
Venn图表示:
A
A∪B
B
A
A∪B
B
性质:
A B B A, A A B, B A B .
思考: A∪B=B可能成立吗?
A
A∪B
B
若A
B,则
A∪B=B

集合间的基本运算

集合间的基本运算

集合间的基本运算一、知识概述1交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A, B的交集记作 A ' B (读作‘ A 交B'),即卩 A 1 B= {x|x 已A,且B} 2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A, B的并集.记作:A」B (读作’A并B'),即卩A」B ={x|x三A,或B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即…=1 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作。

貝, 即[/ ={小胡且入¥ 2}性质:%/)二月“J©乓0二用全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S, U表示+4、运算性质:(1) I I 「I 'I ;(2)I — -「';(3)I . ;(4)T __「T 1 -;(5)、二一匚 _「丄一「* 二:.(6)「厂_「;:「:冷」'J':,二、例题讲解例1、设集合A={ —4, 2m- 1, m2} , B={9, m-5, 1 —m},又A B={9},求实数m的值.解:I A B={9},二2m—1=9或m2=9,解得m=5或m=3或m=—3.若m=5 贝U A={—4, 9, 25} , B={9, 0,—4}与A B={9}矛盾;若m=3则B中元素m—5=1—m=—2,与B中元素互异矛盾;若m=-3,则A={ —4,—7, 9} , B={9,—8, 4}满足 A B={9}.二m=- 3.例2、设A={x|x 2+ ax+ b=0}, B={x|x 2+ ex + 15=0},又A B={3, 5} , A A B={3}, 求实数a , b , e的值.解:v A A B={3},二3 € B,二32+ 3e+ 15=0,••• e= —8,由方程x2—8x+ 15=0 解得x=3 或x=5.••• B={3 , 5}.由A二(A」B)={3 , 5}知,3€ A, A (否则5€ A A B,与A G B={3}矛盾)故必有A={3},.••方程x2+ ax+ b=0有两相同的根3.由韦达定理得3+ 3=—a, 3 3=b,即a=—6, b=9, c=—8.例3、已知A={x|x 3+ 3x2+ 2x >0} , B={x|x 2+ ax+ b< 0},且A G B={x|0 v x< 2}, A U B={ x | x > —2},求a、b 的值.解:A={x| —2v x v—1 或x>0},设B= [x i, X2],由A G B= (0, 2]知X2= 2,且—1<xW 0,①由A U B= (—2 ,+x)知一2w X1w —1. ②由①②知X i =—1, X2 = 2,a=—( X1+ X2)=—1, b= X1X2= —2.例4、已知A={x|x 2—ax+ a2—19=0}, B={x|x 2—5x + 8=2}, C={x|x 2+ 2x —8=0}. 若E =A G B,且A G C=] , 求a 的值.解:—3)(x —2)=0}={3 , 2},•- B={x|(xC={x|(x + 4)(x —2)=0}={ —4 , 2},又••• E =AG B,又••• A G C==,•可知-4^A, 2^A, 3€ A.• •由9—3a+ a —19=0 ,解得a=5或a=—2.①当a=5 时,A={2, 3},此时A H C={2} ,矛盾,二a^ 5;②当a=—2时,A={—5, 3},此时A H C山,A H B={3}工它,符合条件.综上①②知a=—2.例5、已知全集U={不大于20的质数} ,M N是U的两个子集,且满足MA (•门)={3,5},(「r)H N={7,19},(」')H( •「)={2,17},求M N.解:用图示法表示集合U, M N (如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3, 5, 11, 13}, N={7, 11, 13, 19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①一q : ::②一-r 二:③―_ 5 ■':④一I一、选择题1下列命题中,正确的是()A. 若U=R 祐u,匸B. 若U为全集,①表示空集,则-①=①;C. 若A={1,①,{2}},则{2}二A;D. 若A={1,2,3},B={x|x 二A},则A€ B.3 IM= {工 |畝迄忑€ 血¥_}= (x l 也}『2、设数集 ' - …且MN都是集合{x|0 < x< 1}的子集,如果把b—a叫做集合{x|a <x< b}的“长度”,那么集合Mn N 的“长度”的最小值是()1 2A. - B .」丄5C. 1- D .一3、设M N是两个非空集合,定义M与N的差集为M—N={x|x € M且x己N},则M—(M—N)等于()A. N B . MA NC. MU N D . M 4、已知全集:=R,集合朴11"弔刀和严砂亠■“ L的关系的韦恩(Venn)图如下图所示,贝U阴影部分所示的集合的元素共有()B . 2个 D .无穷个1、 - ••匚 I -①=U, {2} € A, {2}单独看是一个集合,但它又是A 中的一个元素.3 £2、集合M 的“长度”为-,集合N 的“长度”为」,而集合—+ — — 1{x|0 <x < 1}的“长度”为1,故MAN 的“长度”最小值为4」3、M-N={x|x €“且x^N}是指图(1)中的阴影部分.同样M-( M- N )是指图(2)中的阴影部分.4、t 图形中的阴影部分表示的是集合 =;,由;解得集合‘"一—二一,而N 是正奇数的集合;-「,故选B.二、填空题 5、已知集合A={x|x 2— 3x + 2=0},集合B={x|ax — 2=0}(其中a 为实数),且A U B=A 则集合 C={a|a 使得 A U B=A}= ______________ . 5、{0, 1, 2}解析:A={1, 2},由 A U B=A 得 匪 A.••• 1€ A,即得 a=2;或 2€ A,即得 a=1 ;或 B=©,此时 a=0.••• C={0, 1, 2}.A. 3个C. 1个⑴6、非空集合S^{1 ,2,3,4,5},且若a€ S,则6-a€ S,这样的S共有________ 个.6、6解析:S={1, 5}或{2 , 4}或⑶,或{1 , 3, 5},或{2 , 4 , 3},或{1 , 5 , 2 , 4}.三、解答题7、设集合卫={込加7-①,吕―^ —另1—^,9}(1)若■■-丄),求实数a的值.(2)若.''■,求实数a的值.7、解:(1):9 三’1 '',二9 A.则a2=9或.解得a=±3或5.当时,'' ■' ■ ' - '-(舍)当a =—3时,卫={9,一兀一4},£=〔一出4,9〕(符合)当a = 5时,乂={25,9, —= {0,—4,9〕(符合).综上知一 ?或“一-.(2)由(1)知•,一二8已知全集U= R,叮•二•….丄v 0・,_ = “ V呗亠」或x >5 —「一:,,若- J,求实数⑴的取值范围8解:依题设可知全集】=三且打丨■■-0 =0月=缶1一2三工W5),「月=仗冲+1=工w2喘_1},由题设分类如下:①若',贝U m^ 1>2mn 1= mV 2.②若加工0,则m^ i<2mn 1,且I®用一1« 5,解得2< 3.由①②可得:me 3.•••实数m的取值范围为{m|mc 3}.9、已知全集U={|a -1|,(a - 2)(a -1),4,6}.(1)若-八「•求实数a的值;(2)若:4 '求实数a的值.9、解:(1)t L •厂一;' 且多U,•••|a - 1|=0,且(a - 2)(a - 1)=1 ,或|a -1|=1 ,且(a - 2)(a -1)=0 ;第一种情况显然不成立,在第二种情况中由|a -1|=1得a=0或a=2, --a=2.(2)依题意知|a - 1|=3 ,或(a - 2)(a - 1)=3,若|a -1|=3 ,则a=4, 或a=-2;若(a —2)(a —1)=3,贝U -经检验知a=4时,(4 —2)(4 —1)=6,与元素的互异性矛盾.二a=- 2或亠 .10、设集合A ={::广「二1}, B 屮 | ...... - ,*},若A B=B求实数二的值.10、解:先化简集合A=J '.由A】B=B则F A,可知集合B可为二:,或为{0},或{- 4},或".(i) 若B』:,则贝:,解得立<-:;(ii) 若- - B,代入得-- =0=应=1 或:'=一-,当丸=1时,B=A符合题意;当:』=-1时,B={0}二A,也符合题意.(iii)若一4^B,代入得工上L = 口=7或“ =1,当:』=1时,已经讨论,符合题意;当屯=7时,B={- 12,—4},不符合题意.综上可得,^ =1或立€-1.11、已知集合A={x|x —4m灶2计6=0},B={x|x V 0},若A A B M,求实数m的取值范围.= ^ | A = (-4jK)3-4(2^ 4-5)^ 0} = (/w | 或朋11、解:设全集 ' 」m皂U,< 珂4- x- = 4^ 鼻0,若方程X2—4mx+ 2m^ 6=0的两根x’,x?均非负,贝卩山忑八载以―D胆沖一••• {m|- }关于U的补集是{m|m<—1},二实数m的取值范围是{m|m<—1}.1、(全国I,1)设集合A={4,5, 7,9},B={3,4,乙8, 9},全集U=A U B,则集合・⑺厂启)中的元素共有()A. 3个B. 4个C. 5个D. 6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2—2x>0},则干」等于()A. {x|0 < x< 2}B. {x|0<x<2}C. {x|x<0 或x>2} D . {x|x < 0 或x > 2}答案:A解析:■/ x2—2x>0,二x(x —2)>0,得x<0 或x>2,••• A={x|x<0 或x>2},[ 4 ;. ■ i•.3、(山东,1)集合A={0 , 2, a}, B={1 , a2}.若A U B={0, 1, 2, 4, 16},则a 的值为()A. 0B. 1C. 2D. 4答案:D解析:T A U B={0, 1, 2, a, a2},又A U B={0, 1, 2, 4, 16}, • {a , a2}={4 , 16} , • a=4 ,故选D.集合中的交、并、补等运算,可以借助图形进行思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解: A B {x | 1 x 2} {x | 1 x 3} x | 1 x 3
可以在数轴上表示例2中的并集,如下图:
思考:
考察下面的问题,集合C与集合A、B之间有什么关系吗?
(1) A={2,4,6,8,10}, B={3,5,8,12}, C={8}.
35 12 B
8
2 4 6 A 10
(2)A={x|x是我校2014年9月在校的男同学}, B={x|x是我校2014年9月入学的高一年级同学, C={x|x是我校2014年9月入学的高一年级男同学.
一般地,由属于集合A且属于集合B的所有元素组成 的集合,称为A与B的交集(intersection set).
记作:A∩B(读作:“A交B”)
即: A ∩ B ={x| x ∈ A 且x ∈ B}
用Venn图表示:
B
ABBiblioteka ABA∩B
A∩B
A∩B
思考: 集合A,B与集合A∩B的关系如何呢? A∩B与B∩A的关系如何?
思考:
1 集合A交A,A交空集分别等于什么? 2 集合A交B等于空集,则说明什么?
交集例题:
例2.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.
并集例题:
例1.设A={4,5,6,8},B={3,5,7,8}, 求AUB.
解:
A B {4,5,6,8} {3,5,7,8} {3,4,5,6,7,8}
并集例题:
例2.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.
思考:
• 1 对于两个集合A,B,两者之间一定具有包含 关系吗?试举例说明。 2 两个实数除了可以比较大小外,还可以进行 加法运算,类比实数的加法运算,两个集合是 否也可以“相加”呢?

5
1 3 C
2 4

一般地,由所有属于集合A或属于集合B的 元素所组成的集合,称为集合A与B的并集.
• 记作:A∪B(读作:“A并B”)
• 即: A∪B ={x| x ∈ A ,或x ∈ B}
用Venn图表示:
A B
A
B
A
B
A∪B
A∪B
A∪B
思考:
集合A,B与集合A∪B的关系如何呢? A∪B与B∪A的关系如何?
思考:
1 集合A并A,A并空集分别等于什么? 2 集合A并B等于空集,则说明什么?
并集例题:
例1.设A={4,5,6,8},B={3,5,7,8}, 求AUB.
解: 平面内直线 l1 ,l2 可能有三种位置关系,即相交于一点,平行或重合.
(1)直线 l1 ,l2 相交于一点P可表示为
L1∩L2 ={点P}
(2)直线
(3)直线
l1 ,l2
l1 ,l2
平行可表示为
重合可表示为
L1∩L2 = L1∩L2 =L1=L2
1.求集合的并、交、是集合间的基本运算,运算结果 仍然还是集合. 2.区分交集与并集的关键是“且”与“或”,在处理有关交 集与并集的问题时,常常从这两个字眼出发去揭示、挖 掘题设条件. 3.注意结合Venn图或数轴进而用集合语言表达,增强数 形结合的思想方法.
例3 职校开运动会,设
A={x|x是 职校高一年级参加百米赛跑的同学}, B={ x|x 是职校高一年级参加跳高比赛的同学}, 求 A∩B
例4 设平面内直线 l1 上点的集合为 L1 ,直线 l2 上点的集合 为 L2 ,试用集合的运算表示 l1 、 l2 的位置关系.
交集例题:
例3 职校开运动会,设
A={x|x是 职校高一年级参加百米赛跑的同学}, B={ x|x是 职校高一年级参加跳高比赛的同学}, 求 A∩B
解: A∩B 就是 职校高一年级中那些既参加百米赛跑又参加跳 高比赛的同学组成的集合.所以, A∩B ={x|x是 职校高一年级 既参加百米赛跑又参加跳高比赛的同学}.
交集例题:
例4 设平面内直线 l1 上点的集合为 L1 ,直线 l2 上点的集合 为 L2 ,试用集合的运算表示 l1 、 l2 的位置关系.
相关文档
最新文档