机械振动5多自由度系统10-11有阻尼共19页

合集下载

多自由度系统振动

多自由度系统振动

= ……
φn(i )
(i ) xn
第 i 阶特征向量φ(i ) 中的一列元素,就是系统做第 i 阶主振动时 各个坐标上位移(或振幅)的相对比值
φ(i ) 描述了系统做第 i 阶主振动时具有的振动形态,称为第 i 阶
主振型,或第 i 阶模态 虽然各坐标上振幅的精确值并没有确定,但是所表现的系统振动 形态已确定 主振动仅取决于系统的 M 阵,K 阵等物理参数。
2 φ=0 或直接用 ( K − ω M )
令主振动:
⎡ x1 ⎤ ⎡φ1 ⎤ ⎢ x ⎥ = ⎢φ ⎥ sin(ωt + ϕ ) ⎢ 2⎥ ⎢ 2⎥ ⎢ ⎣ x3 ⎥ ⎦ ⎢ ⎣φ3 ⎥ ⎦
得:
2006年5月4日 《振动力学》
⎡3k − mω 2 ⎢ ⎢ −k ⎢ 0 ⎣
−k 2 k − mω 2 −1
⎤ ⎡φ1 ⎤ ⎡0⎤ ⎥⎢ ⎥ ⎢ ⎥ ⎥ ⎢φ2 ⎥ = ⎢0⎥ 3k − mω 2 ⎥ ⎣φ3 ⎥ ⎦ ⎢ ⎣0 ⎥ ⎦ ⎦⎢ 0 −k
24
多自由度系统振动 / 多自由度系统的自由振动
⎡3k − mω 2 ⎢ ⎢ −k ⎢ 0 ⎣ −k 2k − mω 2 −1 ⎤ ⎡φ1 ⎤ ⎡0⎤ ⎥ ⎥ ⎢ ⎥ − k ⎥⎢ ⎢φ2 ⎥ = ⎢0⎥ 3k − mω 2 ⎥ ⎣φ3 ⎥ ⎦ ⎢ ⎣0 ⎥ ⎦ ⎦⎢ 0
m 令α = ω2 k
⎡3 − α ⎢ −1 ⎢ ⎢ ⎣ 0
− 2 −α −1
0 ⎤ ⎡φ1 ⎤ ⎡0⎤ ⎢φ ⎥ = ⎢0⎥ −1 ⎥ ⎥⎢ 2 ⎥ ⎢ ⎥ 3 −α ⎥ ⎦⎢ ⎣φ3 ⎥ ⎦ ⎢ ⎣0 ⎥ ⎦
令特征矩阵的行列式=0
2 ( 3 − α )( α − 5α + 4) = 0 特征方程:

《多自由度系统振动》课件

《多自由度系统振动》课件
多自由度系统振动涉及到多个自由度的运动,其动力学行为 比单自由度系统更为复杂。掌握多自由度系统振动的基本原 理和方法,对于解决实际工程问题、提高设备性能和安全性 具有重要意义。
课程目的
理解多自由度系统振动的 特性,包括固有频率、模 态振型等。
掌握多自由度系统振动的 基本原理和数学模型。
学习多自由度系统振动的 分析方法,包括直接法、 模态法和传递矩阵法等。
控制算法则是实现控制策略的具体计算方法。常见的控制算法包 括PID控制、状态反馈控制、最优反馈控制等。这些算法可以根 据系统的特性和要求进行选择和优化。
05
多自由度系统振动应用
机械系统振动控制
机械系统中的多自由度振动问题广泛存在,如旋转机械、往复机械和柔性机械等 。控制这些振动可以提高机械系统的稳定性和可靠性,减少磨损和疲劳,延长使 用寿命。
多自由度系统振动
CONTENTS
• 引言 • 多自由度系统振动基础 • 多自由度系统振动特性 • 多自由度系统振动控制 • 多自由度系统振动应用 • 课程总结与展望
01
引言
课程背景
机械系统振动是工程领域中常见的问题,多自由度系统振动 更是其中的重要分支。随着科技的发展,多自由度系统在许 多领域如航空航天、交通运输、能源等都得到了广泛应用, 因此对多自由度系统振动的研究具有重要意义。
多自由度系统振动与多个学科领域密切相关,如结构力学、流体力学 和声学等,需要加强这些交叉学科领域的应用研究。
多自由度系统振动实验平台的搭建与验证
为了验证多自由度系统振动理论和方法的有效性,需要搭建更加先进 的实验平台,并开展更加系统的实验研究。
谢谢您的聆听
THANKS
被动控制技术
被动控制技术是通过改变系 统的刚度、阻尼和/或质量分 布来减小系统的振动。被动 控制技术不需要外部能源, 而是利用自然现象或物理效 应来减小系统的振动。

理论力学 第十章振动

理论力学 第十章振动

k2
k1
δ st
r F1
k eq = k1 + k 2
δ st r
r mg
keq k1 + k 2 = m m
m
r F2
mg = k eqδ st
keq称为等效弹簧刚性系数 并联系统的固有频率为
mg k2
ωn =
当两个弹簧并联时,其等效弹簧刚度等于两个弹簧刚度的和。 这一结论也可以推广到多个弹簧并联的情形。
O
δ st
x
r F r P
则解为:
x = A sin(ω nt + θ )
表明:无阻尼自由振动是简谐振动。 其运动图线为:
x
A
x
x0
θ ωn
O
t
t+T
x
2.无阻尼自由振动的特点 无阻尼自由振动的特点
(1)固有频率 )
无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时t, 无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时 ,其 运动规律x(t)总可以写为: 运动规律 ( )总可以写为: x(t)= x(t+T) () ( ) T为常数,称为周期,单位符号为s。 为常数, 周期, 符号为 为常数 称为周期 单位符号 。 这种振动经过时间T后又重复原来的运动 后又重复原来的运动。 这种振动经过时间 后又重复原来的运动。 考虑无阻尼自由振动微分方程 考虑无阻尼自由振动微分方程
r F r P
x
两个根为: r1 = +iω n 方程解表示为:
r2 = −iω n
x = C1 cos ω nt + C2 sin ω nt
x = C1 cos ω nt + C2 sin ω nt

多自由度系统振动

多自由度系统振动
系统在各个坐标上都是按相同频率及初相位作简谐振动。
(2)半正定系统
可能出现形如 的同步运动。
也可能出现形如 的同步运动
主振动
首先讨论正定系统的主振动:
M 正定,K 正定
主振动:
正定系统:

当 不是重特征根时,可以通过 B 的伴随矩阵 求得相应的主振型 。
根据逆矩阵定义 :
两边左乘 :
当 时 :

的任一非零列都是第 i 阶主振动
主振动的伴随矩阵求法:
伴随矩阵:矩阵A中的元素都用它们在行列式A中的代数余子式替换后得到的矩阵再转置,这个矩阵叫A的伴随矩阵。 A与A的伴随矩阵左乘、右乘结果都是主对角线上的元素全为A的行列式的对角阵。
画图: 横坐标表示静平衡位置,纵坐标表示主振型中各元素的值。
第一阶主振动:
m
2m
两个质量以w1为振动频率,同时经过各自的平衡位置,方向相同,而且每一时刻的位移量都相同。
同向运动
画图: 横坐标表示静平衡位置,纵坐标表示主振型中各元素的值
m
2m
第二阶主振动:
两个质量以w2为振动频率,同时经过各自的平衡位置,方向相反,每一时刻第一个质量的位移都第二个质量的位移的两倍。
设最后一个方程不独立,把它划去,并且把含有 的某个元素(例如 )的项全部移到等号右端.
当 不是特征多项式的重根时,上式 n 个方程中有且只有一个是不独立的 。 设最后一个方程不独立,把它划去,并且把含有 的某个元素(例如 )的项全部移到等号右端 。 若这个方程组左端的系数行列式不为零,则可解出用 表示的 否则应把含 的另一个元素的项移到等号右端,再解方程组。 多自由度系统振动 / 多自由度系统的自由振动/模态 n -1个方程 非奇次方程组

机械振动基础 第四章 多自由度系统

机械振动基础  第四章  多自由度系统

{x} {u} coswt
其中,{u}和w是待求的振型和固有频率。

{x} {u} coswt
} [ K ]{x} 0 [M ]{ x
2
代入方程
2 ( w [M ]{u} [ K ]{u}) coswt 0 得到
(w [M ] [ K ]){u} 0
kij w 2 mij 0
1 T } [ M ]{x } ET {x 2 1 T } [C ]{x } D {x 2 1 T U {x} [ K ]{x} 2
2D 2 ET cij mij i x j x i x j x
2U kij xi x j
2) 求偏导
2 ET 2 ET mij m ji xi x j x j xi 2D 2D cij c ji xi x j x j xi 2U 2U kij k ji xi x j x j xi
设有可逆线性变换[u],使得
{x} [u ]{y}
因而有
} [u]{y }, { } [u]{ } {x x y
称{x}为旧坐标系,{y}为新坐标系。
系统的动能、势能和能量耗散函数与坐标系选择无关, 也就是说,它们是坐标变换下的不变量, 因此有:
1 T 1 })T [ M ]([u ]{y }) ET {x} [ M ]{x} ([u ]{y 2 2 1 1 }T [u ]T [ M ][u ]{y } { y }T [ M 1 ]{y } {y 2 2
} [C ]{x } [ K ]{x} {F (t )} [M ]{ x
本章内容:
1) 多自由度系统振动的基本理论,多自由度系统的固有 频率和振型的理论;

机械振动5多自由度系统10-11有阻尼

机械振动5多自由度系统10-11有阻尼
2018年9月20日 《振动力学》 12
原坐标的系统稳态响应:
q(t ) u(i ) ηi (t )
i 1
n
u(i ) ai 0 2 H ij ( j ) [aij cos( jt ij ) bij sin( jt ij )] i 1 i 2 j 1
并令:cPi 2 ii
则n 自由度系统运动方程变为:
i 2 ii η i i2ηi Ni (t ), i 1 ~ n η
这一方法有很大的实用价值 ,一般适用于振型比例阻尼 ζ i 不 大于0.2的弱阻尼系统。
若系统阻尼较大,不能用振型矩阵超出本课程范围。
其中, i u
(i )T
Cu (i )
2i (i )T N i (t ) u F (t ) (i 1,2, , n)
9
(i 1,2,, n)
下面对几种激励分别讨论 2018年9月20日
《振动力学》
1. 有阻尼系统对简谐激励的响应
假设激励为 F (t ) F sin t 0 将运动方程写成复数形式:
《振动力学》
i2
H i ( ) ei (t i ) , (i 1 ~ n)
1
10
正弦激励下正则坐标的稳态响应:
N 0i i (t i ) ηi (t ) Im 2 H i ( ) e i N 0i sin(t i ) i2 (1 i2 ) 2 (2 i i ) 2
有: uT Muη uT Cuη uT Kuη uT F (t )
即:
C pη Λη N (t ) η
其中:
C p uT Cu
模态阻尼矩阵

机械振动5多自由度系统10-11有阻尼

机械振动5多自由度系统10-11有阻尼

c c c C P u T Cu c c c c c c
非对角矩阵
5
若 C P非对角,则前面在无阻尼系统中介绍的主坐标方法或 正则坐标方法都不再适用,振动分析将变得十分复杂。
为了能沿用无阻尼系统中的分析方法,工程中常采用下列 近似处理方法 。
有: uT Muη uT Cuη uT Kuη uT F (t )
即:
C pη Λη N (t ) η
其中:
C p uT Cu
模态阻尼矩阵
虽然模态质量矩阵与模态刚度矩阵是对角阵,但模态阻尼矩 阵一般非对角阵,因而正则坐标η 下的强迫振动方程仍然存 在耦合。 2016年1月11日
《振动力学》
i2
H i ( ) ei (t i ) , (i 1 ~ n)
1
10
正弦激励下正则坐标的稳态响应:
N 0i i (t i ) ηi (t ) Im 2 H i ( ) e i N 0i sin(t i ) i2 (1 i2 ) 2 (2 i i ) 2
c
c
c
1 2 1 q 1 2 1 q1 F1 1 0 q m c k sin t 2 1 2 q 2 1 2 q2 F2 0 1 q
i 2 ii η i i2ηi N0i eit , (i 1 ~ n) η
式中, N 0i u ( i ) F0
T
(i 1,2,, n)
则正则坐标的稳态响应:
ηi (t )
式中, H i ( )
N 0i
, arctan2 i i , , i i (1 i2 ) 2 (2 i i ) 2 1 i2 i 频率比 相位角 正则坐标的放大因子 2016 年1月11日

多自由度系统振动(第11讲,11月05日)

多自由度系统振动(第11讲,11月05日)
2 φ 或直接用 ( K M ) 0
令主振动:
x1 1 x sin(t ) 2 2 x3 3
得:
3k m 2 k 0
k 2k m 2 1
1 0 k 2 0 2 3k m 3 0 0
1 ci m pi
多自由度系统振动 / 多自由度系统的自由振动
正则模态的正交性条件:
(i )T Mφ( j ) φ N ij N (i )T ( φ N KφN j ) iji2
主模态的正交性条件:
( i ) T Mφ( j ) ij m pi φ (i )T φ Kφ( j ) ij k pi
3 (3 )(2 ) 1 1
1 1, 2 3, 3 4
选上式右端矩阵的第一列,分别代入 1、 2、3 的值
得: (1)
1 1 1 2, ( 2 ) 0 , ( 3) 1 1 1 1
X Rn
记为 B
M、K R nn
特征矩阵 应的主振型 (i )
或 B ( )
i2不是重特征根时,可以通过 B 的伴随矩阵 adjB求得相 当
根据逆矩阵定义 : 两边左乘 B B :
B 1 1 adjB B
B I BadjB
当 i 时 : B(i )adjB(i ) 0
模态关于刚度的正交性
(i )T
φ
Mφ(i ) m pi 第 i 阶模态主质量
φ
(i )T
Kφ(i ) k pi
第 i 阶模态主刚度
φ(i ) 第 i 阶主模态
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档