(电路分析)一阶电路的零输入响应

合集下载

一阶电路的响应测试实验报告

一阶电路的响应测试实验报告

一阶电路的响应测试实验报告一、实验目的本次实验的主要目的是深入理解一阶电路的响应特性,包括零输入响应、零状态响应和全响应,并通过实际测量和数据分析来验证相关理论知识。

二、实验原理一阶电路是指只含有一个储能元件(电感或电容)的线性电路。

在一阶电路中,根据电路的初始状态和外加激励的不同,可以产生不同的响应。

零输入响应是指在没有外加激励的情况下,仅由电路的初始储能所引起的响应。

对于由电阻和电容组成的一阶 RC 电路,当电容初始电压为\(U_0\),放电过程中电容电压\(u_C(t)\)随时间的变化规律为\(u_C(t) = U_0 e^{\frac{t}{RC}}\)。

零状态响应是指在电路初始储能为零的情况下,仅由外加激励所引起的响应。

对于一阶 RC 电路,在充电过程中,电容电压\(u_C(t)\)随时间的变化规律为\(u_C(t) = U(1 e^{\frac{t}{RC}})\),其中\(U\)为外加电源的电压。

全响应则是电路的初始储能和外加激励共同作用所产生的响应,可以看作零输入响应和零状态响应的叠加。

三、实验设备与器材1、示波器2、信号发生器3、电阻、电容4、实验面包板5、导线若干四、实验步骤1、按照实验电路图在面包板上搭建一阶 RC 电路,选择合适的电阻值\(R\)和电容值\(C\)。

2、首先进行零输入响应测试。

给电容充电至一定电压\(U_0\),然后断开电源,用示波器观察并记录电容电压\(u_C(t)\)随时间的变化曲线。

3、接着进行零状态响应测试。

将电容放电至零初始状态,然后接通电源,用示波器观察并记录电容电压\(u_C(t)\)随时间的上升曲线。

4、最后进行全响应测试。

给电容充电至某一初始电压,然后接通电源,观察并记录电容电压\(u_C(t)\)的变化曲线。

五、实验数据记录与处理1、零输入响应记录的电容电压下降曲线显示,在初始时刻电容电压为\(U_0 = 5V\),经过一段时间后,电压逐渐下降。

一阶电路的零输入响应

一阶电路的零输入响应

dt
50 1 e1500t 0.05 1500 e1500t
50 25e1500tV
第17页/共26页
§10.4 一阶电路的全响应 一、全响应的分解
全响应:电路中输入激励和储能元件的储能共同产生的响应。
R
+
+ uR – i
–US
C
uC 0 U0
电路方程
ui US
+u US-U0 C
一、RC电路的零输入响应
12 i
uC i
特征根
p
1
+ U0

R0
+ C uC

+ R uR

U0
U0
R
uC
i
0
RC
t
uC Ae RC t 0
确定积分常数
t
uC 0 U0
uC 0 U0
电路方程
uR uC 0
电压与电流的关系
u R iR
电路方程
RC
duC dt
uC
0
t>0
通解
uC Aept
二、全响应的分解
1.全响应可分解为稳态分量和瞬态分量。
t
uC = uC′+ uC″ = US + (U0 - US)e
τ
稳态分量 瞬态分量
强制分量 自由分量
2.全响应可分解为零输入响应和零状态响应。
t
t
uc = uc1 + uc2 = U0e τ + US(1-e τ )
零输入响应 零状态响应
uC US
+ uR –
uR uC i
+
R+i

一阶电路的零输入响应

一阶电路的零输入响应

L
diL dt
RiL
0

diL dt
R L
iL
0
uR RiL
对应的特征方程为
一阶线性常系数齐次微分方程
p R 0 L
pR 1
L
则微分方程的通解为
i(t)
Ae pt
R
Ae L
t
1
Ae
t
(A为待定常数)
将t=0时的电感电流初始值代入,则有
图示电路换路后电感将经电阻释放储存的能量。
随着时间的延续,电感电流逐渐下降,电阻两端的电压也 逐渐减小,最后电路中的电压和电流均趋近于零,过渡过程结 束,电路进入新的稳态。电流流经电阻将电感储存的能量变成 热能耗散。
开关S断开后,根据KVL和各元件的伏安关系可得
uL uR 0
uL
L
diL dt
意义: (1)τ值的大小表征了一阶电路过渡过程进展的快 慢。 τ值越大, uC和i衰减越慢,过渡过程越长。 这是因为电容量C越小,电容储存的初始能量越少, 维持的时间就短;而R越小,i 越大,电阻耗能越 快。适当的选择R和C,改变电路的时间常数,可 控制放电速度。
(2) τ值还是零输入响应下降为初始值的36.8%所 需时间。并且零输入响应每经过一个τ值的时间后都 衰减为原有值的36.8%。
解:10kV是高压三相电路的线电压, 星形连接时电容器两端 电压为相电压,则电容电压的初始值为:
uc
(0
)
uc
(0
)
10000 3
5770V
时间常数为: RC 100106 40106 4000s
电容电压为:
t
uc (t) uc (0 )e
1t

电路原理5.3.3一阶电路的动态响应 - 一阶电路的动态响应2

电路原理5.3.3一阶电路的动态响应 - 一阶电路的动态响应2

解的构成:
dt
y = y' + y''
对应的齐次方程的通解
非齐次方程的特解
方法一:从数学方程形式求解
(1)先求对应齐次方程的通解y’’
dy + py = 0 dt
-t
y'' = Ae
动态电路的时域分析
(2)求非齐次方程的特解y’——待定系数法
a.形如
dy dt
+
py
=
K
(K为常数——直流)
则设 y' = (常数),代入非齐次方程,求得y’。
b.形如
dy + py = Kt dt
则设 y' = t + ,代入非齐次方程,求得y’。
c.形如 dy + py = Ksint (交流)
dt
则设 y' = sint + cost ,代入非齐次方程,求得y’。
(或者 y' = Am sin(t + ) )
动态电路的时域分析
方法二:从电路的角度分析 y = y' + y''
i2 (t )
=
-
R1
+
R R2
+
R3
i(t)
=
-2e-t A
动态电路的时域分析
二、一阶电路的零状态响应 1、零状态响应:电路在储能元件零初始条件下(电容电压
值uC和电感电流值iL为零),而由外施激励引 起的电路响应。
2、RC电路的零状态响应
S(t = 0) R iC(t)
+ US
2
1
+
uR C

一阶电路零状态响应公式

一阶电路零状态响应公式

一阶电路零状态响应公式在电路理论中,一阶电路是指由一个电感或一个电容和一个电阻组成的电路。

它是电路理论中最基本的电路之一,也是我们学习电路的起点。

在分析一阶电路时,我们经常需要计算电路的零状态响应,即在初始时刻电路中没有任何电流或电压的情况下,当输入信号突然改变时电路的响应。

一阶电路的零状态响应公式可以通过求解电路的微分方程得到。

对于一个由电感、电阻和输入电压源组成的串联电路,我们可以根据基尔霍夫电压定律和欧姆定律建立如下的微分方程:L di/dt + Ri = Vin其中,L是电感的感值,单位是亨利;R是电阻的阻值,单位是欧姆;Vin是输入电压源的电压,单位是伏特;i是电路中的电流,单位是安培;t是时间,单位是秒。

为了求解这个微分方程,我们可以使用分离变量法。

首先,将方程两边除以L,得到:di/dt + (R/L)i = Vin/L接下来,我们可以将这个微分方程进行变换,使得左边只有i的导数,右边只有t和Vin。

具体的变换方法是将方程两边乘以e^(Rt/L),得到:e^(Rt/L)di/dt + (R/L)e^(Rt/L)i = (Vin/L)e^(Rt/L)这样,左边的第一项可以通过链式法则转化为:d(e^(Rt/L)i)/dt右边的第一项可以通过乘法法则转化为:(Vin/L)e^(Rt/L)现在,我们可以将方程重新写成:d(e^(Rt/L)i)/dt = (Vin/L)e^(Rt/L)接下来,我们对方程两边进行积分,得到:∫d(e^(Rt/L)i) = ∫(Vin/L)e^(Rt/L)dt对于左边的积分,我们可以使用积分的基本性质,得到:e^(Rt/L)i = ∫(Vin/L)e^(Rt/L)dt + C其中,C是积分常数。

最后,我们可以解出i的表达式:i = (1/L)e^(-Rt/L)∫(Vin/L)e^(Rt/L)dt + Ce^(-Rt/L)这就是一阶电路的零状态响应公式。

通过这个公式,我们可以计算出在初始时刻电路中没有任何电流或电压的情况下,当输入信号突然改变时电路的响应。

一阶电路的零输入响应零状态响应

一阶电路的零输入响应零状态响应

2 0
WR
i2Rdt
0
0(I0eL/tR)2Rdt

I02R
0

e
2t
L/Rdt
I02R(L2/ReR2tC)| 0

1 2
LI 0 2
上页 下页
例1 t=0时 , 打开开关K,求uv。 电压表量程:50V
K(t=0) R=10
10V
+
uV

V RV 10k
有一过渡期
0
t1新的稳定状态 t
过渡状态
上页
下页
(t →)
i
K 未动作前,电路处于稳定状态
K
R+
US
uL L

iU S R, uL0
K US
i
R+
uL L

K 断开瞬间
i0, uL
注意工程实际中的过电压过电流现象
上页 下页
换路
支路接入或断开 电路结构、状态发生变化
电路参数变化
过渡过程产生的原因
(1) 由0-电路求 uC(0-)或iL(0-)
例1 求 iC(0+)
10k
+
10V -
10k 40k
+ uC(0-) -电
+
i
40k iC
+ uC
- 10V k

uC(0)8V
(2) 由换路定律
容 开 路
+ 10V

i 10k iC (0+)
0+等效电路
uC(0)uC(0)8V
+
8V
(3) 由0+等效电路求 iC(0+)

一阶电路的零输入响应和零状态响应

一阶电路的零输入响应和零状态响应

0
US R
0.368 Us R
ic

t
+ US -
t0

t
R
ic C + uc -
由上可以看出:
1) 不跃变的uc(t)的零状态响应是从
+ US -
t0
零值按指数规律上升趋于稳态值,该稳态值可由
电路观察看出。在上面的电路中, uc 的稳态值
为 2)
uc () US , 所以电容电压的零状态响应
2 0.8
4
+ u 0.01 F 2i1 + -
i1(A)
t(s)
二、RL电路的零状态响应
t=0 IS iL b a
R
iL + L uL -
+ L uL -
IS R
t 0, iL (0) =0
以 iL 为变量的微分方程:
L diL iL I s R dt iL ( 0 ) 0
utuchc?usriccuc0?ttutcp?式中uch是齐次解形式由特征根确定即?trctstchkekeketu?????0?tucpt是特解其形式与外加激励相同对于直流激励ucp应为常数故令qtucp?将它代入微分方程得scpuqtu??t??scuketu??式中待定常数k由uc0确定在上式中令t00???scuktusuk???tsccerudtducti???以及t0063u063ususucric0?te1sutcut?????ic0ttrusrus368
st
因特征方程为
1 RCS 1 0 则 S RC t uc (t) Ke RC
在上式中令 t=0,得K= uC(0) =U0

一阶电路的零输入响应基础知识讲解

一阶电路的零输入响应基础知识讲解

R
现象 :电压表坏了
10V
L
例2 t=0时 , 开关K由1→2,求电感电压和电流及开关两
端电压u12。 解
iL(0 ) iL(0 )
K(t=0) 2
+1
24V
– 4
2 iL 3 4 u+L 6H

6
24 6 2A 4 2 3 // 6 3 6
R 3 (2 4) // 6 6
L 6 1s
t>0
iL() 10A
iL (t ) 10(1 e100t )A
10A
+
2H uL Req
iL –
uL(t ) 10 Reqe100t 2000e V 100t
例2 t=0时 ,开关K打开,求t>0后iL、uL的及电流源的端
电压。
5 10

这是一个RL电路零状态响 应问题,先化简电路,有:
K(t=0)
10V
+
uV

V RV 10k
iL
解 R=10 L=4H
iL (0+) = iL(0-) = 1 A
iL e t/ t 0
L 4 4104 s
RV 10k
R RV 10000
uV RV iL 10000e2500t t 0
iL
uV (0+)=- 10000V 造成 V 损坏。

iL –
u 5I S 10iL uL 20 10e V 10t
储能大 放电电流小
放电时间长
t
t
uc U0e
0
U0 U0 e -1 U0 0.368 U0
2
3
U0 e -2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一阶电路的零输入响应
第 3 节一阶电路的零输入响应
零输入响应:电路无外加激励,仅由动态元件的初始储能作用所产生的响应,称为零输入响应( zero-input response )。

一、 RC 电路的零输入响应
图 5.3-1 ( a )电路, t=0 时开关 S 由位置 1 拨到位置 2 ,讨论换路后时的电容电压、电容电流等响应的变化规律。

电路换路之前开关 S 处于位置 1 ,直流电压源 Us 对电容 C 充电,电路已处于稳定状态,换路前的等效电路如图
5.3-1 ( b )所示。

时刻,电容电压等于直流电压源的电压 Us ,即
时刻,电容与电压源断开,与电阻 R 形成新的回路,这时的等效电路如图 5.3-1 ( c )所示。

由换路定则得换路后电容电压的初始值
电容电流的初始值为
图 5.3-1 ( c )电路,由 KVL ,可得
用积分变量分离法进行求解,得
式中,
为 RC 电路的时间常数( time constant ),当 R 的单位为Ω, C 的单位为 F 时,τ的单位是秒( s )。

时间常数:时间常数是反映一阶电路过渡过程进展快慢的一个重要的参数,其大小仅取决于电路的结构和参数。

τ越大,响应衰减的速度就越慢;τ越小,响应衰减的速度就越快。

用表示电路换路后的响应,用表示该响应的初始值,则 RC 一阶电路的零输入响应可表示为
RC 电路零输入响应的规律
RC 电路换路后,各处的零输入响应都是从初始值开始,按指数规律衰减。

衰减得快慢由时间常数τ决定。

二、 RL 电路的零输入响应
图 5.3-3 ( a )是 RL 动态电路。

电路换路之前开关 S 处于位置 1 , t=0 时开关 S 由位置 1 拨到位置 2 。

下面讨论换路后时的电感电流、电感电压等响应的变化规律。

时刻,电路换路之前开关 S 处于位置 1 ,直流电流源 Is 对电感 L 充电,电路已处于稳定状态,换路前的等效电路如图 5.3-3 ( b )所示。

t=0 时,开关 S 拨到位置 2 ,时,电感与电流源断开,而与电阻 R 形成新的回路,这时的等效电路如图5.3-3 ( c )所示。

由换路定则得换路后电感电流的初始值为
电感电压的初始值为
对于图 5.3-3 ( c )电路,由 KVL 可得
采用积分变量分离法进行求解,得
式中,称为 RL 电路的时间常数,当 R 的单位为Ω, L 的单位为 H 时,τ的单位为秒( s )。

总结
电容、电感动态元件在电路中充电和放电的过程,实际上是动态元件与电路的能量交换过程,动态元件本身并不耗能。

图 5.3-1 电路中,电路换路之前电容处于充电状态,电容从电压源吸收能量并储存起来,电路换路之后,电容又开始放电,释放的能量被电阻 R 所消耗,零输入响应就是一个放电的过程。

三、一阶电路零输入响应的计算
计算步骤
1 、画出时刻的等效电路。

这时电路已达到稳态,在直流激励作用时,将电容当作开路,将电感当作短路,求出或,并根据换路定则,求得电路的初始状态。

若需要计算电路中其它响应,再根据初始状态计算这些响应的初始值。

2 、求电路的时间常数τ。

对于 RC 电路,,对于 RL 电路,。

其中, R 为从电容 C 或电感L 两端看进去的戴维南等效电阻。

3 、求出零输入响应
例 5.3-1 图 5.3-5 ( a )所示电路中,开关原来处于位置 1 ,且电路已处于稳态, t=0 时刻开关 S 拨到位置2 ,求时的,和。

解: 1. 求初始值,和
作出电路换路前时刻的等效电路,如图 5.3-5 ( b )所示,这时电路处于稳态,电容相当于开路,并由换路定则得
时刻的等效电路如图 5.3-5 ( c )所示,两个 100 K Ω的电阻并联,所以
2 .求时间常数τ
图 5.3-5 ( c )电路中无外加激励,只有电容的初始电压通过两个电阻放电,因此,产生的响应为零输入响应。

这时,从电容两端看进去的戴维南等效电阻是两个 100 K Ω的电阻并联,所以R=100K ∥ 100K=50K Ω
则时间常数为
3 .电路换路后时的响应为。

相关文档
最新文档