相似形直角三角形中的成比例线段Word文档
2021年安徽省中考数学真题 (word版,含解析)

2021年安徽省初中毕业水平考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试券包括“试题卷”和“答题卷”两部分。
“试题卷"共4页,“答题卷"共6页。
3.请务必在“答题卷”上答题,在“试题卷"上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合要求的.1.﹣9的绝对值是( )A .9B .﹣9C .91D .91- 2.《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险,其中8990万用科学记数法表示为( )A. 6109.89⨯B. 71099.8⨯C. 81099.8⨯D. 910899.0⨯3.计算()32x x -⋅的结果是( ) A. 4x B. 6-x C. 5x D. 5-x4.几何体的三视图如图所示,这个几何体是( )A. B. C. D.5. 两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB 与DF 交于点M ,若BC ∥EF,则∠BMD 的大小为( )A.60°B.67.5°C.75°D.82.5°6.某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系,若22码鞋子的长度为16 cm ,44码鞋子的长度为27 cm 。
则38码鞋子的长度为( )A. 23 cmB. 24 cmC.25 cmD. 26 cm7.设c b a ,,为互不相等的实数,且c a b 5154+=,则下列结论正确的是( ) A. c b a >> B.a b c >> C.()c b b a -=-4 D. ()b a c a -=-58.如图,在菱形ABCD 中,AB=2,∠A=120°,过菱形ABCD 的对称中心O 分别作边AB,BC 的垂线,交各边于点E,F,G,H.则四边形EFGH 的周长为( )A.33+B.322+C.32+D.321+9.如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( )A .41B .31C .83D .9410.在△ABC 中△ACB=90°,分别过点B ,C 作△BAC 平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME.则下列结论错误..的是( ) A. CD=2MEB. ME△ABC. BD=CDD. ME=MD二、填空题(本大题共4小题,每小题5分,满分20分)12.埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,底面正方形的边长与侧面等腰三角形底边上的高的比值是15-,它介于整数n 和n+1之间,则n 的值是_______. 13.如图,圆O 的半径为1,△ABC 内接于圆O ,若△A=60°,△B=75°,则AB=_______.14. 设抛物线()a x a x y +++=12,其中a 为实数. (1)若抛物线经过点()m ,1-,则=m _______.(2)将抛物线()a x a x y +++=12向上平移2个单位,所得抛物线顶点的纵坐标的最大值是_______.三、(本大题2个小题,每小题8分,共16分)15.解不等式:x−13−1>0AB C(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).【问题解决】(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?五、(本大题2个小题,每小题10分,共20分)19.已知正比例函数y=kx(k≠0)与反比例函数y=6x的图像都经过点A(m,2).(1)求k,m的值;(2)在图中画出正比例函数y=kx的图像,并根据图像,写出正比例函数值大于反比例函数值时x的取值范围.20.如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,OM等于3,CD=12,求圆O的半径长;(2)点F在CD上,且CE=EF,求证:AF⊥BD.o21.为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kM·h)调查,按月用电量50~100,100~150,100~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如下:(1)求频数分布直方图中x的值;(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);(3)设各组居民月平均用电量如下表:根据上述信息,估计该市居民用户月用电量的平均数.22.已知抛物线y=ax2−2x+1(a≠0)的对称轴为直线x=1.(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且-1<x1<0,1<x1<2.比较y1和y2的大小,并说明理由;(3)设直线y=m(m>0)与抛物线y=ax2−2x+1交于A、B,与抛物线y=3(x−1)2交于C、D,求线段AB 与线段CD的长度之比.八、(本题满分14分)23.如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE∥CD,DE∥AB,CF∥AD交线段AE于点F,连接BF.(1)求证:△ABF≌△EAD;(2)如图2,若AB=9,CD=5,∠ECF=∠AED,求BE的长;的值.(3)如图3,若BF的延长线经过AD的中点M,求BEEC第23题图2021年安徽省初中学业水平考试数学试题注意事项:1. 你拿到的试卷满分为150分,考试时间为120分钟。
word画图技术,数学工具的使用方法详解——专题五第三讲 绘制与三角形有关的图形

第三讲 绘制与三角形有关的图形第四讲 一、绘制三角形1.点击数学工具栏中“平面几何”→“三角形”→“斜三角形”(如图所示),绘制斜三角形BCD .或在“绘图”工具栏中点击“自选图形”→“基本形状”→“等腰三角形”(如图所示),绘制等腰三角形,选中等腰三角形,按黄色的菱形向右拖动,得到斜三角形BCD .2.显示比例改为500%,在“绘图”工具栏中点击“自选图形”→“线条”→“任意多边形”,在B 点单击,在线段BC 上方适当位置再单击,在C 点双击,绘制折线B →A →C .3.添加标注再选取全部对象组合.二、绘制三角形的高、中线与角平分线1.绘制三角形的高(1)绘制斜三角形ABC .(2)绘制高线AD .(3)绘制折线作直角标志.(注意利用上档键) (4)添加标注再选取全部对象组合.2.绘制三角形的中线(1)利用数学工具栏画一个斜三角形ABC ,线条的线型设为0.75镑(利用自选图形的斜三角形不能取消组合).(2)单击选中斜三角形,单击数学工具栏上的“分解”按钮.(3)单击选中其中一条边,单击数学工具栏上的“平面几何”→“中心”按钮,绘制边的中点.AB C D E A B C D(如果边的位置发生变化,请移到原位置).(4)显示比例改为500%,点击“绘图”工具栏上的“直线”,绘制中线.(5)分解有中点的边,删掉中点.(6)添加标注再选取全部对象组合.3.绘制三角形的角平分线(1)绘制一条水平的线段BC(2)单击选中线段BC,按住控制键(ctrl)复制两条线段,把其中一条逆时针旋转25°,另一条逆时针旋转50°,平移使它们都过点B.(3)显示比例改为500%,绘制第三边AC,使点A在旋转50°的边上,分别缩小这两条旋转得到的线段,使旋转50°的线段另一个端点刚好与点A重合,旋转25°的线段另一个端点刚好落在边AC上.(4)添加标注再选取全部对象组合.三、绘制全等三角形1.绘制一个三角形,单击选中三角形,复制三角形2.显示比例改为500%,利用平移、旋转、翻转进行绘制3.添加标注再选取全部对象组合.作业:请画下列试题中的图形1.(课本习题)如图,CD=CA,∠1=∠2,EC=BC,求证DE=AB.2.△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E、F.求证EB=FC.AB CEAB CFABDEFAB C。
(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)

锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt△ABC 中,∠C=900, ∠A、∠B、∠C 的对边分别为a、b、c,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数【特别提醒:1、sinA、∠cosA、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】例1.如图所示,在Rt△ABC 中,∠C=90°.①sin A =(②cos A =()=,对对)=,对对第 1 题图sin B =(cos B =()=;对对)=;对对③tan A =( )=,∠A对对对例2. 锐角三角函数求值:tan B =∠B对对对=.( )在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=,sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.例3.已知:如图,Rt△TNM 中,∠TMN=90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.典型例题:类型一:直角三角形求值5 1. 已知 Rt △ABC 中, ∠C = 90︒, tan A = 3, BC = 12, 4求AC 、AB 和 cos B .2. 已知:如图,⊙O 的半径 OA =16cm ,OC ⊥AB 于 C 点, sin ∠AOC = 3⋅4求:AB 及 OC 的长.3. 已知:⊙O 中,OC ⊥AB 于 C 点,AB =16cm , sin ∠AOC = 3⋅5(1) 求⊙O 的半径 OA 的长及弦心距 OC ; (2) 求 cos ∠AOC 及 tan ∠AOC .4. 已知∠A 是锐角, sin A = 8 17,求cos A , tan A 的值对应训练:(西城北)3.在 Rt △ABC 中,∠ C =90°,若 BC =1,AB = ,则 tan A 的值为A.55B. 2 55C.12D .2(房ft )5.在△ABC 中,∠C =90°,sin A= 3,那么 tan A 的值等于().5A. 3 5B. 4 5C. 3 4D.4 3类型二. 利用角度转化求值:1. 已知:如图,Rt △ABC 中,∠C =90°.D 是 AC 边上一点,DE ⊥AB 于 E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .32.如图,直径为10的⊙A 经过点C(0对5) 和点O(0对0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为()1 3A.B.2 2C.3D.45 5yCAO D xB图 8图图3.(2009·孝感中考)如图,角的顶点为O,它的一边在x 轴的正半轴上,另一边OA 上有一点P(3,4),则sin=.4.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm,DE⊥AB,sin A =,则这个菱形5 的面积= cm2.5.(2009·齐齐哈尔中考)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的3半径为2,AC = 2 ,则sin B 的值是()2 3 3 4A.B.C.D.3 24 3F2 3 6. 如图 4,沿 AE 折叠矩形纸片 ABCD ,使点 D 落在 BC 边的点 F 处.已知 AB = 8 , BC = 10 ,AB=8,则 tan ∠EFC 的值为 ( )ADE 3 4 34 BCA.B.C.D.43557. 如图 6,在等腰直角三角形∆ABC 中, ∠C = 90︒ , AC = 6 , D 为 AC 上一点,若tan ∠DBA = 15,则 AD 的长为()A.B . 2C.1 D . 28. 如图 6,在 Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线 AD = 1633求 ∠B 的度数及边 BC 、AB 的长.ACDB图 6类型三. 化斜三角形为直角三角形例 1 (2012•安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 ,求 AB 的长.例 2.已知:如图,△ABC 中,AC =12cm ,AB =16cm , sin A = 1⋅3(1)求 AB 边上的高 CD ; (2)求△ABC 的面积 S ; (3)求 tan B .23 33例3.已知:如图,在△ABC 中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC 的值.对应训练1.(2012•重庆)如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB=9,BC=6,△ABC 的面积等于9,求sin B.3.ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是A.2 cm2B.4 cm2C.6 cm2D.12 cm2类型四:利用网格构造直角三角形例1 (2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()1 5A.B.2 5C.1010D.2 55对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A = .CA B2.如图,A、B、C 三点在正方形网络线的交点处,若将∆ABC 绕着点A 逆时针旋转得到∆AC' B',则tan B' 的值为1 1 1A. B. C.4 3 2D. 13.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A.52B.51C. D. 22特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(昌平)1).计算:2 cos 30︒+ 2 sin 45︒- tan 60︒.(朝阳)2)计算:tan 60︒+ sin2 45︒- 2 cos 30︒.(2009·黄石中考)计算:3-1+(2π-1)0-3tan30°-tan45°3AO B33(石景ft)4.计算:⎛+ 2 cos 60︒+ sin 45︒-⎝⎫0tan 30︒⎪.2 ⎭tan 45︒+ sin 30︒ (通县)5.计算:;1- cos 60︒例2.求适合下列条件的锐角.(1)cos=12 (2)tan=3(3) s in 2=22(4) 6 cos(- 16 ) = 3(5)已知为锐角,且tan(+300)=,求tan的值(6)在∆ABC 中,若cos A -+(sin B -2)2= 0 ,∠A,∠B 都是锐角,求∠C 的度数.2例3. 三角函数的增减性1.已知∠A 为锐角,且sin A < 1,那么∠A 的取值范围是2A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2.已知A 为锐角,且cos A < sin 300,则()A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE⊥AB 于E,BE=16cm,sin A =12⋅ 13123123求此菱形的周长.2. 已知:如图,Rt △ABC 中,∠C =90°, AC = BC=于 D 点,求:(1) ∠BAD ;(2) sin ∠BAD 、cos ∠BAD 和 tan ∠BAD .,作∠DAC =30°,AD 交 CB3. 已知:如图△ABC 中,D 为 BC 中点,且∠BAD =90°, tan ∠B =CAD 、tan ∠CAD .1 ,求:sin ∠CAD 、cos ∠34. 如图,在 Rt △ABC 中,∠C=90°, sin B = 3,点 D 在 BC 边上,DC= AC = 6,求 tan ∠BAD5的值.ABDC5.(本小题5 分)如图,△ABC 中,∠A=30°, tan B =2C, AC = 4 .求 AB 的长.AB解直角三角形:3 333 1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在 Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系: . ②两锐角之间的关系: .③边与角之间的关系:sin A = cos B =; cos A = sin B = ; tan A =1 =tan B1;tan A= tan B =.④直角三角形中成比例的线段(如图所示). 在 Rt △ABC 中,∠C =90°,CD ⊥AB 于 D . CD 2= ;AC 2= ; BC 2= ;AC ·BC = .类型一例 1.在 Rt △ABC 中,∠C =90°.(1)已知:a =35, c = 35 ,求∠A 、∠B ,b ;(2)已知: a = 2 , b = 2 ,求∠A 、∠B ,c ;(3)已知: sin A =2 , c = 6 ,求 a 、b ;3(4)已知: tan B = 3, b = 9, 2求 a 、c ;(5)已知:∠A =60°,△ABC 的面积 S = 12 3, 求 a 、b 、c 及∠B .2例2.已知:如图,△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.例3.已知:如图,Rt△ABC 中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD 的长.例4.已知:如图,△ABC 中,∠A=30°,∠B=135°,AC=10cm.求AB 及BC 的长.类型二:解直角三角形的实际应用仰角与俯角:例1.(2012•福州)如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100 米,点A、D、B 在同一直线上,则AB 两点的距离是()A.200 米B.200 米C.220 米D.100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45 °.点D 到地面的垂直距离DE 3 2m ,求点 B 到地面的垂直距离BC.例3(昌平)19.如图,一风力发电装置竖立在小ft顶上,小ft的高BD=30m.从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA=60°,测得ft顶B 的仰角∠DCB=30°,求风力发电装置的高AB 的长.ADB E例4 .如图,小聪用一块有一个锐角为30 的直角三角板测量树C高,已知小聪和树都与地面垂直,且相距3AB 为1.7 米,求这棵树的高度.米,小聪身高例5.已知:如图,河旁有一座小ft,从ft顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m.现需从ft顶A 到河对岸点C 拉一条笔直的缆绳AC,求ft的高度及缆绳AC 的长(答案可带根号).例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20 米,到达点C,再次测得点A 的仰角为60°,则物体AB 的高度为()C.20 米D.米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC)为30 米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8 秒,∠BAC=75°.(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到1 米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,≈1.732,60 千米/小时≈16.7 米/秒)3A.10 米B.10 米33 3 3类型四. 坡度与坡角例.(2012•广安)如图,某水库堤坝横断面迎水坡 AB 的坡比是 1: ,堤坝高 BC=50m ,则应水坡面 AB 的长度是( ) A .100mB .100 mC .150mD .50 m类型五. 方位角1. 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测得灯塔 M 在北偏西 45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少?(精确到 0.1 海里,1.732 )2.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012 年 5 月 18 日,某国 3 艘炮艇追袭 5 条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政 310” 船人船未歇立即追往北纬 11 度 22 分、东经 110 度 45 分附近海域护渔,保护 100 多名中国 渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图 1)324解决问题如图 2,已知“中国渔政 310”船(A )接到陆地指挥中心(B )命令时,渔船(C )位于陆地指挥中心正南方向,位于“中国渔政 310”船西南方向,“中国渔政 310”船位于陆地指挥中心南偏东 60°方向,AB=海里,“中国渔政 310”船最大航速 20 海里/时.根据以上信息,请你求出“中国渔政 310”船赶往出事地点需要多少时间.综合题:三角函数与四边形:(西城二模)1.如图,四边形 ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,6tan ∠BDC= 3.(1) 求 BD 的长; (2) 求 AD 的长.(2011 东一)18.如图,在平行四边形 ABCD 中,过点 A 分别作 AE ⊥BC 于点 E ,AF ⊥CD 于点 F .(1) 求证: ∠BAE =∠DAF ;(2) 若 AE =4,AF =,s in ∠BAE = 53 ,求 CF 的长.5三角函数与圆:1. 如图,直径为 10 的⊙A 经过点C (0对5) 和点O (0对0) ,与 x 轴的正半轴交于点 D ,B 是 y轴右侧圆弧上一点,则 cos ∠OBC 的值为()1 3 A.B .22C .3D . 45 5yC AOD xB图 8图图5 DO4(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接 AC 与⊙O 交于点 D, (1) 求证:∠AOD=2∠CC4 (2) 若 AD=8,tanC= ,求⊙O 的半径。
(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
沪教版九年级数学思维导图

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载沪教版九年级数学思维导图地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第二十四章相似三角形(上册)思维导图1、中考分值15分左右,中考常见题型为填空题,综合题。
【考纲要求】(1)掌握比例的性质,了解黄金分割的意义。
(2)理解两条线段的比和比例线段的概念。
(3)掌握平行线分线段成比例定理;掌握三角形一边的平行线的判定方法。
(4)理解相似三角形的概念,掌握判定两个三角形相似的基本方法(5)掌握两个相似三角形的周长比、面积比以及对应的角平分线比、对应的中线比、对应的高的比的性质。
(6)会用相似三角形的判定和性质解决简单的几何问题和实际问题。
(7)知道三角形的中心及其性质。
2、重点和难点重点是平行线分线段成比例定理、相似三角形的判定和性质难点是运用平行线分线段成比例定理,相似三角形的判定和性质解决有关的问题。
3、相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。
相似三角形是初中数学中的重点也是难点,中考24题(压轴)中常结合函数四边形等知识点考察。
建议课时6次。
第二十五章锐角三角比(上册)思维导图1、中考分值12~16分,常考题型填空题和综合题(21或22题)【考纲要求】(1)理解锐角三角比的概念。
(2)会求特殊锐角(30°、45°、60°)的三角比的值。
(3)会用计算器求锐角的三角比的值;能根据锐角三角比的值,利用计算器求锐角的大小。
(4)会解直角三角形。
(5)理解仰角、俯角、坡度、坡角等概念,并能解决有关的实际问题。
八年级数学暑假专题 图形的相似 北师大版

初二数学暑假专题 图形的相似北师大版【本讲教育信息】一.教学内容:暑假专题——图形的相似二.教学目标:1.了解线段的比、成比例线段、黄金分割.2.了解相似多边形的性质,掌握两个三角形相似的条件.3.了解图形的位似,能够利用作位似图形等方法将一个图形放大或缩小,利用图形的相似解决一些实际问题.三.知识要点分析: 1.线段的比(1)比例的性质:①a b =c d ⇔ad =bc ;②a b =c d ⇒b a =d c ;③a b =c d ⇒a ±b b =c ±d d ;④a b =cd=e f =…=mn (b +d +f +…+n ≠0)⇒a +c +e +…+m b +d +f +…+n =a b. (2)点C 把线段AB 分成AC 和BC 两条线段.如果AC AB =BCAC ,那么称线段AB 被点C黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 2.相似三角形的判定、性质(1)相似三角形的对应角相等,对应边成比例.(2)两个三角形相似的条件:①两角对应相等的两个三角形相似;②三边对应成比例的两个三角形相似;③两边对应成比例且夹角相等的两个三角形相似. 3.相似多边形的性质(1)相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. (2)相似多边形的周长比等于相似比,面积比等于相似比的平方.4.位似图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点.位似图形上任意一对对应点到位似中心的距离之比等于位似比. 5.本讲内容结构如下:线段的比黄金分割形状相同的图形相似多边形的概念相似三角形及其判定条件的探索相似的综合应用,测量旗杆的高度相似多边形的性质图形的放大与缩小【典型例题】知识点1:线段的比例1.已知a 2=b 3=c 4=d5≠0,求a +b +c +d b +c的值.题意分析:本例考查比例的性质,从已知和所求来看不能直接利用比例的性质解题. 思路分析:根据已知比例式的特点,设一个参数表示出a 、b 、c 、d ,再代入所求代数式求解.或利用比例的性质把已知和所求变形,以寻求中间比. 解:∵a 2=b 3=c 4=d5≠0,∴a +b +c +d 2+3+4+5=a 2,b +c 3+4=b 3=a 2, ∴a +b +c +d 14=b +c 7,∴a +b +c +d b +c=147=2.解题后的思考:本例是等比性质与反比性质的综合运用.例2.已知线段AB =6,C 为AB 的黄金分割点,求AC -BC 的值.题意分析:黄金分割点把已知线段分成的较长线段与原线段的比是黄金比.思路分析:由黄金比和AB 的长度可求出AC 、BC 的长度,再求差即可.但应注意点C 的位置有两个.解:(1)若AC >BC ,如图所示:AB C∵点C 是线段AB 的黄金分割点,∴AC =5-12·AB =5-12×6=35-3,BC =AB -AC =6-(35-3)=9-35. ∴AC -BC =(35-3)-(9-35)=65-12. (2)若AC <BC ,如图所示:ABC则BC =5-12·AB =35-3. ∴AC =AB -BC =6-(35-3)=9-35, ∴AC -BC =(9-35)-(35-3)=12-65. 综上所述,AC -BC 的值为65-12或12-65.解题后的思考:本例极容易忽视一条线段上有两个黄金分割点,即AC 不一定是较长线段,应分情况计算.注意,本例两种情况下的结果可分析出是互为相反数,因此可先计算其中一种的结果,另一种取其相反数即可.小结:解决比例问题除了要熟练掌握比例的性质,还有一种重要方法,那就是引入比值k 的方法.利用这种方法可以很方便地推导出比例的性质、解决比例式求值问题.知识点2:相似图形例3.如图所示,△ABC ∽△DBA ,∠BAC =80°,∠C =70°,AB =5cm ,AC =3cm ,BC =6cm ,求∠BDA 、∠BAD 、∠DAC 、BD 、AD 、DC .BCD题意分析:本题根据相似三角形的性质求相似三角形的对应角的度数和对应边的长度. 思路分析:把已知的角、线段和所求的角、线段分类,化归到相应的相似三角形中,其中∠DAC 和DC 不能转化为相似三角形的角和边,应利用求差的方法来解.解:∵△ABC ∽△DBA ,∴∠BDA =∠BAC =80°,∠BAD =∠C =70°. ∴∠DAC =∠BAC -∠BAD =80°-70°=10°.∵△ABC ∽△DBA ,∴AB DB =BC BA =ACDA.即5BD =65=3AD ,解得BD =256,AD =52, ∴DC =BC -BD =6-256=116.解题后的思考:解决相似三角形的性质问题时,注意对应位置上的字母必须对应,这样才能保证其中的角、线段的对应关系.例4.如图所示,在矩形ABCD 中,E 在AD 上,EF ⊥BE ,交CD 于F ,连接BF ,则图中与△ABE 一定相似的三角形是( )A .△EFBB .△DEFC .△CFBD .△EFB 与△DEFAB CDEF题意分析:要判定两个三角形是否相似,只需看这两个三角形是否具备相似条件,另外还要注意矩形的四个角都是直角这一隐含条件.思路分析:由题中给的已知条件可知,∠EAB =∠FDE =90°,∠DEF +∠EFD =∠DEF +∠BEA =90°,故∠EFD =∠BEA ,所以△ABE 与△DEF 相似,选项A 、C 中均没有△DEF ,故可排除,而我们又无法找到△EFB 与△ABE 相似所具备的条件,因此选项B 是正确的.解:B解题后的思考:一般情况下,在判断两个三角形是否相似时,若不知道两个三角形各边长度关系时,应考虑两角是否对应相等.小结:判断两三角形相似的方法有三种,其中“两角对应相等,两三角形相似”最简单,也最常用.知识点3:相似图形的应用例5.有一块三角形形状的铁板,如图所示,其中,AB =90cm ,AC =60cm ,BC =45cm ,现要在AB 、AC 上确定两点D 、E ,然后沿DE 将上面部分剪去,使剩下的四边形部分BDEC 为梯形,且DE =15cm ,如何确定点D 和点E 的位置?B CDE题意分析:欲确定点D 、E 的位置,只要求出AD 、AE 的长即可.思路分析:由已知条件,较易推出△ADE ∽△ABC ,利用其对应边成比例,即可求出AD 、AE 的长.解:由四边形BDEC 为梯形,得DE ∥BC ,所以∠ADE =∠B ,∠AED =∠C ,△ADE ∽△ABC .所以DE BC =AD AB =AE AC ,即1545=AD 90=AE 60.因此AD =30(cm ),AE =20(cm ).即点D 应距顶点A30cm ,点E 应距顶点A20cm .解题后的思考:本题利用相似三角形的性质求出AD 、AE 的长,进而确定点D 和点E 的位置.题中要求“使剩下的四边形部分BDEC 为梯形”,如果将这一要求去掉,又该如何剪呢?例6.如图,电影胶片上每一个图片的规格为cm ×cm ,放映银幕的规格为2m ×2m ,若放映机的光源S 距胶片20cm 时,问银幕应在离镜头多远的地方才能使放映的图像刚好布满整个银幕?S题意分析:如图所示,可以看作一个正四棱锥.光源S 到胶片的距离正好是点S 到胶片中心的距离,光源S 到银幕的距离正好是点S 到银幕中心的距离.思路分析:设胶片和银幕两个正方形的中心(对角线交点)分别为O 2、O 1.则SO 1SO 2=SD 1SD 2=A 1D 1A 2D 2. B 1C 1D 1SA 1O 1O 2B 2A 2C 2D 2解:设银幕距镜头xcm ,根据题意,得2m =200cm . x 20=200,解得x =80007. 80007cm =807m . 答:银幕距镜头807m 时,放映的图像刚好布满整个银幕.解题后的思考:解决此类问题首先应建立数学模型,把实物立体图形转化为平面几何图形,从而构造出相似三角形.小结:图形相似与现实世界有着密切的联系,常见的应用问题有两类:一是阳光下测量物体的高度.二是从某一点观测物体.总结:学习本讲应注意两点:一是利用比例的性质、相似图形的性质解决一些计算类的题目;二是在判断三角形相似或说明角相等、线段之间的关系时逐步加强逻辑推理的力度,认识和把握更为复杂的图形,提高研究“空间与图形”的水平.【预习导学案】(暑假专题——证明)一.预习前知1.什么是定义、命题、定理、公理、推论、证明?2.平行线的性质有哪些?如何判定两直线平行?3.三角形内角和定理及其推论是什么?二.预习导学1.下列语句中不是命题的是()A.相等的角不是对顶角B.两直线平行,内错角相等C.两点之间线段最短D.过点O作线段MN的垂线2.地理老师在黑板上画了一幅世界五大洲的图形,并给每个洲都写上了代号,然后,他请5个同学每人认出2个洲来,5个同学的回答是:甲:3号是欧洲,2号是美洲乙:4号是亚洲,2号是大洋洲丙:1号是亚洲,5号是非洲丁:4号是非洲,3号是大洋洲戊:2号是欧洲,5号是美洲地理老师说:“你们每个人都认对了一半。
小升初数学几何五大模型-纯wordA4幅面小边距适合打印编辑-
小学奥数几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b;4、在一组平行线之间的等积变形,如图③AB//CD则S△ACD=S△BCD;反之, S△ACD=S△BCD,则直线AB//CD。
例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF 的面积。
(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC:S△ADE=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。
例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。
(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。
、任意四边形中的比例关系(“蝴蝶定理”):例、如图,四边形ABCD的对角线AC、BD 交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2、DO=3,求CO的长度是DO长度的几倍。
(word完整版)小学数学思维导图(全)
角的定义 角的分类 角的计算和比较几何初步直线、射线、找段定义两条言线相交相交线/对顶角.两言线垂言及其性质内错角几何初步和三角形旳线两条直线被第三条育线所截 平行线的性质和判定 平行公理段椎论同位角 同旁内角三角形三角形相关定义和栅念騒分类三角形分类按边分类说角角形 言角三角形 钝角三角形 等边三角形 等棲三角形 普诵三角形三角形的性质三角形三边关系 三角形的內夕卜角关系镇嵌exM-w^z 人武甲方MW ■«t ・〔外冒•边人gm ■边人徽)以・1隽u 毎沏人ir^n ・(RU 每选人0・2)甲万s*o SfflA®- (92人・ X )・4 &人 Cr 二I •稠=0F 芻ZHBF ・1 匕阿--…_ _ 一 tnWJ IRW 总及wre-炬敵連度*ftlflAR女车(軽•♦牟长和)度m(虧丽•事饮祀)/M •岸工耐阿•■力一先庐早第天生日IEBB 布魏 «715 注:水olog.sjn8L r :r r n 〔;门/?0!」『」。
/上!线射线*(51)同一平面内两条门线位诧关系田成图形的所有线]、段.曲线的总K J相似三角形的性质相似三角彤的对应角相等相似三角形的対应边成比例相似三角彤的对应高线的比等于相似比相似三角形的対应中线的比等于相似比相似三角彤的対应角平分线的比等于相似比相似相似三角形定义比例相似三角彤的周长比等于相似比相似三角彤的面枳比等于似比的平方相似三角形具有传递性形状相同、对应角相等、对应边成比例的图形两个比值相等的式子形状相同对应角相等对磁側例面枳比倉坊应边比值的平方周长比等于对应边之比相{以三角彤的定义相似三角形的定义.表示方法、相似比表示方法相似比普通三角形相似三角形的判定吉角三角形两边对应成比例夹角相等三边对应成比例两角对应相等貝备普通三角形的判定方法 F 言角边与斜边对应成比例ilMJft ia・> nj«qfl^^WKL • W %岁"诅・空輛?小・只0力匕・知_1 •方(WLt«*);何2 0) ttl* 4z 2D)全等三角形的判富角平分线的性/贵具备昔通三角形的河定方法 斜辺和 Y 直角辺(HL ) 边边边(SSS) 边角边(SAS) 角边角(ASA) 角角辺(AAS)角平分找上任盘一点到角两边的距离相等 直角三角形普逋三角形尺规作圈全等三角形找夹ft(SAS) 已知两边 拢直角(HL)拢第央(SSS) 边为角的邻辺 已m —角 全等三角形的性质找己如角的另T&SAS) 戏己知边的稠(AAS ) 找夹己知边的角(ASA ) 边为角的对边.找任越角(AAS )—如朋狭边(ASA)已溯角找锂逊AAS)对应边瞬 对应角相筹 对应中线、高和角平分线相等 面积相等百分!除以一 于乘以目例散里点苗程分配轉的应用豳分数 呼数睁以分故 分嫂混合计算 十磁昨ms 、am (a««i ■ •空回型列」衣〔分《陳<1嗷运.厂蘇l^wBsry'、.运引血"•毕!1k VSfiML定义圆的认识在T平面内,线段0甩尧固定端点O 旋转一周・另一端点确形成的图形溺性旋转不变性外接圆内切圆点在圆上点在圆外点在圆内相切相交相离相切与圆的位萱关系相交相离三角畛卜接圆和内切圍与点的位置关系圆的位置与直线的位逼关泵外切内切外离内含面积的计算圆柱体、圆锥体与圜相关的计算正多边形与圆的相关计算直线与圆的计算圆与圆的计算國周角定理与圆相关的定]圆心角垂径定理H8. KK. ttA"斗驚砂匸鸟阻”岁■两出■空L 平吞81■足 ««iM. GW. WA 甲於・ SA «无■小航亀iD.苓■・不野边■・.«• «•unn »ni» vnaifiv卄:不・环小1R三角启•形■识ttWtWF方・・距・»«Kvt用字0«^n公卩性正方律 长力“■柱上北下I •左si 右东»n平*, ftfl. ttX, ■小出11折10百分■”・MS比SEttFI. fitt«比■尺交矗" 掃・ftin BWBBttHt 比 «#K养比 fiwaiR-nas?第毎I总・aw小学数学公AMRtt.iHRB9KM««. «RUMB2 1. 5、9 4々5、S/12SBW 的畋”京曲.■分 ■賛分E!s ・vt <«3t—K —it事》费号 代人林力*) _it-走bhy^ineLcyrrLcri/zhuriio/<IEI1.每份数X份数=总数总数于每份数=份数总数2份数=每份数总数十总份数=平均数2、1倍数x倍数=几倍数几倍数"倍数=倍数几倍数十倍数=1倍数3、速度次时间=路程路程?速度=时间路程£时间=速度4、单价x数量=总价总价2单价=数量总价三数量=单价5、工作效率x工作时间=工作总量工作总量壬工作效率=工作时间工作总量三工作时间=工作效率6、加数+加数=和和 ------- 个加数=另一个加数7、被减数一减数=差被减数一差=减数差+减数=被减数8、因数乂因数=积积丰一个因数=另一个因数9、被除数m除数=商被除数三商=除数商x除数=被除数2、正方体V :体积 a:棱长表面积二棱 长X 棱长X6 S 表 =axax6体积二棱长 X 棱长X 梭长V=axaxa5三角形 S 面积2底丄髙 面积二底X 高42s=ah-r2三角形高二面积x2弓底 三角形底二面积专高4、长方体V:体积s:面积工长b:宽h:高 ⑴表面积(长X 宽#长X 高•宽X 高)x2S=2(ab+ah+bh )(2)体积二长X 宽x 高 V=abh3、长方形C 周长S 面积a 边长周长二(长璃:)X2C 二 2(3+b ) 面积二长X 离:S=ab1 X 正方形C 周长 S 面积a 边长甬长 =边长 X4C=4a 面积二边长X 边长 S 二aXa严行四辱s 面积a 底h 高 回齐只二底X 咼 S —dhS 面枳C 周长lid 二直径匸半轻 (1)周长二直轻xn=2xnx¥S C=nd=2nr (2)081=半径X 半径xn形休関形计算平行梯吃7梯形 s 面积a 上底b下 底h 高面积==(上底十下 底)*高三2s=(a+b}x h?29圆柱体V :体积h:高s;底面积「:底面半径 c:底面周长(1) 侧面积=底面周高(2) 表面诂=侧面积4底面积X2⑶体积二底面积X高(4)体积=侧面 积E2X 半径形休形甘算平行 梯形锥体h:高 s;底面积 匚底面半径 体积夢面 积乂高丰3和差问题的公式(和+差)?2=大数(和一差)-2 =小数和倍问题和一(倍数一1)=小数 小数X 倍数=大数(或者和一小数=大数)差倍问题差+ (倍数一1)=小数 小数X 倍数=大数(或小数+差=大数)追及问题盈亏问题(盈+亏)-两次分配量之差=参加分配的份数(大盈一小盈)三两次分配量之差=参加分配的份数(大亏一小亏)三两次分配量之差=参加分配的份数相遇问题相遇路程=速度和X相遇时间相遇时间=相遇路程三速度和速度和=相遇路程士相遇时间追及问题追及距离=速度差X追及时间追及时间=追及距离三速度差速度差=追及距离?追及时间流水问题顺流速度=静水速度+水流速度 逆流速度=静水速度一水流速度静水速度=(恢流速度+逆流速度>22水流速度=(顺流速度一逆流速度叶2浓度问题溶质的重量+溶剂的重量=溶液的重量'溶质的重量士溶液的重量X100% =浓度 溶液的重量X 浓度=溶质的重量溶质的重量三浓度=溶液的重量利润与折扣问题利润=售出价一成本利润率=利润十成本X100% =(售岀价十成本一1)x100% 涨跌金额二本金x 涨跌百分比 折扣=实际售价三原售价x 100%(折扣< 1) 利息=本金x 利率x 时间税后利息=本金x 利率x 时间x ( 1 — 20%)体(容)积单位换算1立方米=1000立方分米1立另分米二100 0立分■厘米1立方分米=1升1立方厘米胡毫升1立方米=1000升重量单位换算1千克=1000克1千克习公斤人垦币单位换算1元=10角1角=10分1元=100分体(容)积单位换算1立方米h 000立方分米1立方分米二1000立方!1米1立方分米了升1立方厘米=1基升1立方米=1000升重量单位换算1吨=1000千克1千克=1000克1千克胡公斤人民币单位换算1元=10角1角=10分1元=100分。
(完整word版)三角形五心性质总汇
三角形的五心1.内心:三角形三条内角平分线的交点,也是三角形内切圆的圆心。
角平分线性质:到角两边距离相等. 内心性质:到三角形三边距离相等。
2.重心:三角形三条中线交点中线性质:将三角形面积等分成两部分.重心性质:分三角形的中线两段长比例为2:1(长:短)3.外心:三角形三边垂直平分线的交点,三角形外接圆圆心。
垂直平分线性质:到线段两端点距离相等。
外心性质:到三角形三个顶点距离相等。
4.旁心:三角形一个内角平分线与另外两个外角的平分线的交点。
旁心性质:三角形的四心(内心、重心、垂心、外心)只有一个, 但旁心有三个,旁心到三角形三边所在直线距离相等。
三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍.三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心.1、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径.锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =Sp .特别的,在直角三角形中,有 r =12(a +b -c ). 3、三角形的重心 三角形的三条中线交于一点,这点称为三角形的重心. 上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2.4、三角形的垂心 三角形的三条高交于一点,这点称为三角形的垂心.斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”. A B COABCDE F GAB CD E F I aIKHE F D A BCM5、三角形的旁心三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心).每个三角形都有三个旁切圆.重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。
九年级下期第27章相似三角形电子教材1(word版)
第27章图形的相似 (2)§27.1 相似的图形 (3)§27.2 相似图形的性质 (5)1.成比例线段 (5)2.相似图形的性质 (6)阅读材料 (10)§27.3 相似三角形 (11)1.相似三角形 (11)2.相似三角形的判定 (12)3.相似三角形的性质 (16)4.相似三角形的应用 (17)阅读材料 (20)§27.4 中位线 ................................................. 错误!未定义书签。
§27.5 画相似图形 (22)阅读材料 (23)§27.6 图形与坐标 (24)1.用坐标确定位置 (24)小结 (28)复习题 (28)第27章图形的相似你瞧,那些大大小小的图形是多么地相像!日常生活中,我们经常会看到这种相似的图形,那么它们有什么主要特征与关系呢?§27.1 相似的图形观察图27.1.1,你会发现右边的照片是由左边的照片放大得来的.尽管它们大小不同,但形状相同.图24.1.1图27.1.1图27.1.2是两张大小不同的世界地图,左边的图形可以看作是右边的图形缩小得来的.由于不同的需要,对某一地区,经常会制成各种大小的地图,但其形状(包括地图中所描绘的各个部分)肯定是相同的.图27.1.2日常生活中我们会碰到很多这种形状相同、大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为相似图形(similar figures).同一底片扩印出来的不同尺寸的照片也是相似图形.放电影时胶片上的图像和它映射到屏幕上的图像,都是彼此相似的.图27.1.3所示的是一些相似的图形.图27.1.3观察图27.1.4中的三组图形,看起来每组中的两个图形都具有一些相像的成分,其实形状是不相同的,这样的图形就不是相似图形.图27.1.4试一试如图27.1.5,左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.和你的伙伴交流一下,看看谁的方法又快又好.图27.1.5练习1.观察你周围的事物,举出几个相似图形的例子.2.你看到过哈哈镜吗?哈哈镜中的形象与你本人相似吗?习题27.11.试着用本书最后所附的格点图把下面的图形放大.(第1题)2.观察下面的图形(a)~(g),其中哪些是与图形(1)、(2)或(3)相似的?(第2题)§27.2 相似图形的性质1.成比例线段试一试由下面的格点图可知,B A AB ''=_________,C B BC ''=________,这样B A AB ''与C B BC''之间有关系_______________.图24.2.1概括像这样,对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比,如dcb a =(或a ∶b =c ∶d ),那么,这四条线段叫做成比例线段,简称比例线段(proportional segments ).此时也称这四条线段成比例.例1判断下列线段a 、b 、c 、d 是否是成比例线段:(1)a =4,b =6,c =5,d =10;(2)a =2,b =5,c =152,d =35.解 (1) ∵3264==b a ,21105==d c , ∴dc b a ≠, ∴ 线段a 、b 、c 、d 不是成比例线段. (2) ∵55252==b a ,55235152==d c , ∴dc b a =, ∴ 线段a 、b 、c 、d 是成比例线段. 对于成比例线段我们有下面的结论: 如果dcb a =,那么ad =bc. 如果ad =bc (a 、b 、c 、d 都不等于0),那么dc b a =. 以上结论称为比例的基本性质.例2证明:(1)如果d c b a =,那么dd c b b a +=+; (2) 如果d c b a =,那么d c cb a a -=-.证明(1)∵dcb a =,在等式两边同加上1,∴11+=+d cb a , ∴ ddc b b a +=+. (2) ∵dc b a =, ∴ ad =bc ,在等式两边同加上ac , ∴ ad +ac =bc +ac , ∴ ac -ad =ac -bc ,∴ a (c -d )=(a -b )c , 两边同除以(a -b )(c -d ), ∴dc cb a a -=-.练习1.判断下列线段是否是成比例线段: (1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4. 2.已知: 线段a 、b 、c 满足关系式cbb a =,且b =4,那么ac =______. 3.已知23=b a ,那么b b a +、ba a -各等于多少? 2.相似图形的性质两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?做一做图27.2.2是某个城市的大小不同的两张地图,当然,它们是相似的图形.设在大地图中有A 、B 、C 三地,在小地图中的相应三地记为A ′、B ′、C ′,试用刻度尺量一量两张地图中A (A ′)与B (B ′)两地之间的图上距离、B (B ′)与C (C ′)两地之间的图上距离.图24.2.2图27.2.2AB =______cm , BC =______cm ; A ′B ′=______cm , B ′C ′=______cm.显然两张地图中AB 和A ′B ′、BC 和B ′C ′的长度都是不相等的,那么它们之间有什么关系呢?小地图是由大地图缩小得来的,我们能感到线段A ′B ′、B ′C ′与AB 、BC 的长度相比都“同样程度”地缩小了. 计算可得B A AB ''=________,C B BC''=________. 我们能发现B A AB ''=CB BC''.上面地图中AB 、A ′B ′、BC 、B ′C ′这四条线段是成比例线段.实际上,上面两张相似的地图中的对应线段都是成比例的.这样的结论对一般的相似多边形是否成立呢? 图27.2.3中两个四边形是相似形,仔细观察这两个图形,它们的对应边之间是否有以上的关系呢?对应角之间又有什么关系?图27.2.3再看看图27.2.4中两个相似的五边形,是否与你观察图27.2.3所得到的结果一样?图27.2.4概括由此可以得到两个相似多边形的性质:对应边成比例,对应角相等.实际上这也是我们判定两个多边形是否相似的方法,即如果_________________________,那么这两个多边形相似.例 在图27.2.5所示的相似四边形中,求未知边x 的长度和角度α的大小.图27.2.5分析利用相似多边形的性质和多边形的内角和公式就可以得到所需结果,但利用相似多边形的性质时,必须分清对应边和对应角.解 ∵ 两个四边形相似,∴ 181218x , ∴ x =27.∴ α=360°-(77°+83°+117°)=83°.思考两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?练习1.(1)根据图示求线段比:CD AC ,CB AC ,DBCD;(第1题)(2)试指出图中成比例的线段.2.等腰三角形两腰的比是多少?直角三角形斜边上的中线和斜边的比是多少?3.下图是两个等边三角形,找出图形中的成比例线段,并用比例式表示.(第3题)4.根据下图所示,这两个多边形相似吗?说说你的理由.(第4题)5.如图,正方形的边长a =10,菱形的边长b =5,它们相似吗?请说明理由.(第5题)习题27.21.所有的矩形都相似吗?所有的正方形呢?2.在比例尺为1∶5000000的地图上,量得甲、乙两地的距离是25厘米,则两地的实际距离是多少?3.判断下列各组线段是否是成比例线段: (1) 2厘米,3厘米,4厘米,1厘米;(2) 1.5厘米,2.5厘米,4.5厘米,6.5厘米; (3) 1.1厘米,2.2厘米,3.3厘米,4.4厘米; (4) 1厘米,2厘米,2厘米,4厘米.4.两地的实际距离为200米,地图上的距离为2厘米,这张地图的比例尺为多少?5.如图所示的两个矩形是否相似?(第5题)6.在本书最后所附的格点图中画出两个相似的三角形、四边形、五边形.7.已知:53=-b b a ,求b a的值. 8.已知d c b a =(b ±d ≠0),求证:db db c a c a -+=-+.阅读材料黄金分割两千多年前,古希腊数学家欧多克索斯(Eudoxus ,约公元前408—前355年)发现: 将一条线段(AB )分割成大小两条线段(AP 、PB ),若小段与大段的长度之比等于大段的长度与全长之比,即ABAPAP PB (此时线段AP 叫做线段PB 、AB 的比例中项),则可得出这一比值等于0.618….这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点.自然界中的黄金分割连女神维纳斯的雕像上也都烙有“0.618”的印记雅典帕德嫩神庙:包含黄金矩形的建筑物,它是世界上最美丽的建筑之一为什么人们会关注黄金分割呢?那是因为人们认为这个分割点是分割线段时最优美的、最令人赏心悦目的点.自古希腊以来,黄金分割就被视为最美丽的几何学比率,并广泛地用于建造神殿和雕刻中.但在比古希腊还早2000多年所建的金字塔中,它就已被采用了.文明古国埃及的金字塔,形似方锥,大小各异.但这些金字塔的高与底面的边长的比都接近于0.618.不仅在建筑和艺术中,就是在日常生活中,黄金分割也处处可见.如演员在舞台上表演,站在黄金分割点上,台下的观众看上去感觉最好.有人发现,人的肚脐高度和人体总高度的比也接近黄金比.就连普通树叶的宽与长之比,蝴蝶身长与双翅展开后的长度之比也接近0.618.还有黄金矩形、黄金三角形(顶角为36°的等腰三角形)等,五角星中更是充满了黄金分割. 去发现大千世界中奇妙无比的黄金分割吧!§27.3 相似三角形1.相似三角形在相似多边形中,最为简单的就是相似三角形(similar triangles ).图27.3.1相似用符号“∽”来表示,读作“相似于”.如图27.3.1所示的两个三角形中, ∠A =∠A ′,∠B =∠B ′,∠C =∠C ′,AC CAC B BC B A AB ''=''=''. 即△ABC 与△A ′B ′C ′相似,记作 △ABC ∽△A ′B ′C ′,读作“△ABC 相似于△A ′B ′C ′”. 如果记A C CAC B BC B A AB ''=''=''=k ,那么这个比值k 就表示这两个相似三角形的相似比.做一做如图27.3.2,△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.图27.3.2我们知道,根据两直线平行同位角相等,则∠ADE =∠ABC ,∠AED =∠ACB ,而∠A =∠A.通过度量,还可以发现它们的对应边成比例,所以△ADE ∽△ABC. 如果取点D 为边AB 的中点,那么上题中△ADE 和△ABC 的相似比就为k =21. 当k =1时,两个相似三角形不仅形状相同,而且大小也相同,即为全等三角形.全等三角形是相似三角形的特例.练习1.如图,正方形ABCD的边长为1,点O为对角线的交点,试指出图中的相似三角形.2.如果一个三角形的三边长分别是5、12和13,与其相似的三角形的最长边长是39,那么较大三角形的周长是多少?较小三角形与较大三角形周长的比是多少?(第1题)(第3题)3.右边是用12个相似的直角三角形所组成的图案,请你也用相似三角形设计出一个或两个美丽的图案.2.相似三角形的判定我们现在判定两个三角形是否相似,必须要知道它们的对应角是否相等,对应边是否成比例.那么是否存在判定两个三角形相似的简便方法呢?观察你与你同伴的直角三角尺,同样角度(30°与60°,或45°与45°)的三角尺看起来是相似的.这样从直观来看,一个三角形的三个角分别与另一个三角形的三个角对应相等时,它们就“应该”相似了.确实这样吗?探索如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么它们相似吗?试一试如图27.3.3,任意画两个三角形(可以画在本书最后所附的格点图上),使其三对角分别对应相等.用刻度尺量一量两个三角形的对应边,看看两个三角形的对应边是否成比例.你能得出什么结论?图27.3.3我们可以发现,它们的对应边成比例,即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形__________.而根据三角形内角和等于180°,我们知道如果两个三角形有两对角分别对应相等,那么第三对角也一定对应相等.于是,我们可以得到判定两个三角形相似的一个较为简便的方法:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. 思考如果两个三角形仅有一对角是对应相等的,那么它们是否一定相似?图27.3.4例1 如图27.3.4所示,在两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,证明△ABC∽△A′B′C′.证明∵∠C=∠C′=90°,∠A=∠A′,∴△ABC∽△A′B′C′(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似).例2 如图27.3.5,△ABC中,DE∥BC,EF∥AB,证明:△ADE∽△EFC.图27.3.5证明∵DE∥BC,EF∥AB,∴∠ADE=∠B=∠EFC,∴∠AED=∠C,∴△ADE∽△EFC(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似).练习1.找出图中所有的相似三角形.(第1题)(第2题)2.图中DG∥EH∥FI∥BC,找出图中所有的相似三角形.观察图27.3.6,如果有一点E 在边AC 上,那么点E 应该在什么位置才能使△ADE 与△ABC 相似呢?图27.3.6图中两个三角形的一组对应边AD 与AB 的长度的比值为31.将点E 由点A 开始在AC 上移动,可以发现当AE =________AC 时,△ADE 与△ABC 相似.此时ABAD=__________.探 索如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似吗?做一做利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?我们可以发现这两个三角形相似.这样我们又有了一种判定两个三角形是否相似的方法: 如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.例3证明图27.3.7中△AEB 和△FEC 相似.图27.3.7证明∵5.13654==FE AE , 5.13045==CE BE , ∴ CEBEFE AE =. ∵ ∠AEB =∠FEC ,∴ △AEB ∽△FEC (如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似).探索如果两个三角形的三条边对应成比例,那么这两个三角形相似吗?感觉上应该是能“相似”了.做一做在图27.3.8的方格上任画一个三角形,再画出第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比较两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?图27.3.8我们可以发现这两个三角形相似.即:如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.例4在△ABC 和△A ′B ′C ′中,已知: AB =6cm ,BC =8cm ,AC =10cm ,A ′B ′=18cm ,B ′C ′=24cm ,A ′C ′=30cm.试证明△ABC 与△A ′B ′C ′相似.证明∵31186==''B A AB , 31248==''C B BC , 313010==''C A AC , ∴ CA ACC B BC B A AB ''=''='', ∴ △ABC ∽△A ′B ′C ′(如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似).练习1.依据下列各组条件,证明△ABC 和△A ′B ′C ′相似.(1) AB =10cm ,BC =8cm ,AC =16cm ,A ′B ′=16cm ,B ′C ′=12.8cm ,A ′C ′=25.6cm ;(2) ∠A =∠80°,∠C =60°,∠A ′=80°,∠B ′=40°;(3) ∠A =40°,AB =8,AC =15,∠A ′=40°,A ′B ′=16,A ′C ′=30.2.在第1题小题(3)中,若BC =a ,∠B =α,试求出B ′C ′的长与∠B ′、∠C ′的大小.3.相似三角形的性质两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,在图27.3.9中,△ABC 和△A ′B ′C ′是两个相似三角形,相似比为k ,其中AD 、A ′D ′分别为BC 、B ′C ′边上的高,那么AD 、A ′D ′之间有什么关系?图24.3.9图27.3.9△ABD 和△A ′B ′D ′都是直角三角形,而∠B =∠B ′,因为有两个角对应相等,所以这两个三角形相似.那么k B A ABD A AD =''='' 由此可以得出结论:相似三角形对应高的比等于相似比. 图27.3.10中(1)、(2)、(3)分别是边长为1、2、3的等边三角形,它们都相似.图27.3.10(2)与(1)的相似比=__________, (2)与(1)的面积比=__________; (3)与(1)的相似比=__________, (3)与(1)的面积比=__________.从上面可以看出,当相似比=k 时,面积比=2k .我们猜想: 相似三角形的面积比等于相似比的平方.例5已知:△ABC ∽△A ′B ′C ′,且相似比为k ,AD 、 A ′D ′分别是△ABC 、 △A ′B ′C ′对应边BC 、 B ′C ′上的高,求证:2k S S C B A ABC='''∆∆.证明∵ △ABC ∽△A ′B ′C ′,∴k D A AD ='',k CB BC='', ∴ 22121k C B D A BCAD S S C B A ABC=''⋅''⋅='''∆∆思考图27.3.11中,△ABC 和△A ′B ′C ′相似,AD 、A ′D ′分别为对应边上的中线,BE 、B ′E ′分别为对应角的角平分线,那么它们之间有什么关系呢?图27.3.11可以得到的结论是____________________. 想一想: 两个相似三角形的周长比是什么? 可以得到的结论是____________________.练习1.如果两个三角形相似,相似比为3∶5,那么对应角的角平分线的比等于多少?2.相似三角形对应边的比为0.4,那么相似比为______,对应角的角平分线的比为______,周长的比为______,面积的比为______.3.如图,在正方形网格上有111C B A ∆和222C B A ∆,这两个三角形相似吗?如果相似,请给出证明,并求出111C B A ∆和222C B A ∆的面积比.(第3题)4.相似三角形的应用人们从很早开始,就懂得利用相似三角形的有关性质来计算那些不能直接测量的物体的高度或宽度.例6古代一位数学家想出了一种测量金字塔高度的方法: 如图27.3.12所示,为了测量金字塔的高度OB ,先竖一根已知长度的木棒O ′B ′,比较棒子的影长A ′B ′与金字塔的影长AB ,即可近似算出金字塔的高度OB.如果O ′B ′=1,A ′B ′=2,AB =274,求金字塔的高度OB.图27.3.12解 ∵ 太阳光是平行光线,∴ ∠OAB =∠O ′A ′B ′.∵ ∠ABO =∠A ′B ′O ′=90°,∴ △OAB ∽△O ′A ′B ′(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似),∴ OB ∶O ′B ′=AB ∶A ′B ′,∴ 13721274=⨯=''''⨯=B A B O AB OB (米),即该金字塔高为137米.图27.3.13例7如图27.3.13,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选定点B 和C ,使AB ⊥BC ,然后,再选点E ,使EC ⊥BC ,用视线确定BC 和AE 的交点D.此时如果测得BD =120米,DC =60米,EC =50米,求两岸间的大致距离AB.解∵ ∠ADB =∠EDC ,∠ABC =∠ECD =90°,∴ △ABD ∽△ECD (如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似),∴CDBDEC AB =, 解得CD EC BD AB ⨯=1006050120=⨯=(米).答: 两岸间的大致距离为100米.这些例题向我们提供了一些利用相似三角形进行测量的方法.例8如图27.3.14,已知: D 、E 是△ABC 的边AB 、AC 上的点,且∠ADE =∠C.求证: AD ²AB =AE ²AC.图27.3.14证明∵ ∠ADE =∠C ,∠A =∠A ,∴ △ADE ∽△ACB (如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似).∴ABAEAC AD , ∴ AD ²AB =AE ²AC.练习1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2.如图,△ABC 中,DE ∥BC ,BC =6,梯形DBCE 面积是△ADE 面积的3倍,求DE 的长.(第2题)习题27.31. 判断下面各组中两个三角形是否相似,如果相似,请写出证明过程. (1) 如图,DE ∥BC ,△ABC 与△ADE ; (2) 如图,∠AED =∠C ,△ABC 与△ADE.(第1题)2. 已知: △ABC 的三边长分别为5、12、13,和△ABC 相似的△A ′B ′C ′的最大边长为26,求△A ′B ′C ′的另两条边的边长和周长以及最大角的度数.3. 使用三角尺画一个三角形,其中一个角为60°,一个角为45°,再画一个与它相似的三角形.4. 依据下列各组条件,判断△ABC 和△A ′B ′C ′是不是相似,如果相似,请给出证明过程.(1) ∠A =70°,∠B =46°,∠A ′=70°,∠C ′=64°;(2) AB =10厘米,BC =12厘米,AC =15厘米,A ′B ′=150厘米,B ′C ′=180厘米,A ′C ′=225厘米; (3) ∠B=35°,BC=10,BC 上的高AD=7,∠B ′=35°,B ′C ′=5,B ′C ′上的高A ′D ′=3.5.5. 已知在等腰△ABC 和△A ′B ′C ′中,∠A 、∠A ′分别是顶角.试依据下列条件,判断△ABC 和△A ′B ′C ′是否相似,如果相似,请写出证明过程. (1) ∠A =∠A ′.(2) ∠B =∠B ′(或∠C =∠C ′).6. 如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,求球拍击球的高度h.(第6题)阅读材料线段的等分将某件物品等分是生活中经常会遇到的事情.例如将一根绳子平均分成五段,从数学上看,就是将一条线段五等分.你知道下面这个简单的方法吗?如图1,将这条线段画在你的练习本上,使它恰好跨过六条横线.现在,你看到这条线段被分成了相等的五小段.如果你没有练习本,那也没有关系.让我们按照上面的想法,用三角尺完成等分线段这件事情.图1图2如图2,过线段AB 的一个端点A 任意画一条射线AP ,在AP 上依次取五段相等的线段1AA 、21A A 、32A A 、43A A 、54A A ,连结5BA ,再过1A 、2A 、3A 、4A 分别画5BA 的平行线,这些平行线就恰好将线段AB 平均分成五等分.你想知道其中的原因吗?想想相似图形的特征与性质,你就会明白了. 现在,你会画了吗?请你再试试看,将一条线段7等分.相似三角形与全等三角形“相似”与“全等”是数学上用来描写两个图形的形状与大小之间关系的一对语言.就三角形而言,当两者形状一样时,称其为相似;而当两个三角形的形状与大小都一样时,我们就称其为全等.相似是全等的拓展,全等是相似的特例.人们研究问题,往往有两种不同的思路,一是由特殊到一般,二是由一般到特殊.本套教材对于图形的研究遵循由特殊到一般的思路,先研究全等,以此作为基本事实(即公理),再研究相似.因而相似三角形的一些判定方法与性质完全可以通过包括全等公理在内的基本事实逻辑推理得到. 例如,如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似.即在△ABC 和△A ′B ′C ′中,∠A =∠A ′,∠B =∠B ′,可以推出△ABC ∽△A ′B ′C ′.证明: (1) 若AB =A ′B ′,则△ABC ≌△A ′B ′C ′,结论成立. (2) 若AB ≠A ′B ′.不妨设AB >A ′B ′.在△ABC 的边AB 、AC 上,分别截取AD =A ′B ′,AE =A ′C ′, 又∵ ∠A =∠A ′,∴ △ADE ≌△A ′B ′C ′, 于是∠B ′=∠ADE.∠B =∠B ′, ∠B =∠ADE , DE ∥BC.BC 边上的高AG 交DE 于点F ,于是AF ⊥DE. ∴ DBCE AD E ABC S S S 梯形+=∆∆,即)()(212121AF AG BC DE AF DE AG BC -⋅++⋅=⋅. 化简得 DE ²AG =BC ²AF , 即AFAGDE BC =. 因此AFAGDE BC AF DE AGBC S S S S ADE ABC C B A ABC ⋅=⋅⋅==∆∆'''∆∆212122)()(CB BC DE BC ''==.同理可证22)()(C A AC B A AB S S C B A ABC ''=''='''∆∆.∴C B BC C A AC B A AB ''=''=''. 又∵ ∠A =∠A ′,∠B =∠B ′,∴∠C=∠C′,∴△ABC∽△A′B′C′.这里的证明,实际上就是将△A′B′C′运动变换到△ABC内的△ADE处,得到DE∥BC,再研究△ADE与△ABC的关系.试试看,用类似的方法证明相似三角形的另两个判别方法,相信你一定会体会到逻辑推理的奇妙!§27.4 画相似图形相似与轴对称、平移、旋转一样,也是图形之间的一个基本变换,可以将一个图形放大或缩小,保持形状不变.下面介绍一种特殊的画相似多边形的方法.现在要把多边形ABCDE放大到1.5倍,即新图与原图的相似比为1.5.我们可以按下列步骤画出图27.4.1:图27.4.11.任取一点O;2.以点O为端点作射线OA、OB、OC、……;3.分别在射线OA、OB、OC、……上取点A′、B′、C′、……,使OA′∶OA=OB′∶OB=OC′∶OC=…=1.5;4.连结A′B′、B′C′、……,得到所要画的多边形A′B′C′D′E′.探索用刻度尺和量角器量一量,看看上面的两个多边形是否相似?你能否用逻辑推理的方法说明其中的理由?图27.4.1中的两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的相似叫做位似(homothety),点O叫做位似中心.放电影时,胶片和屏幕上的画面就形成了一种位似关系.利用位似的方法,可以把一个多边形放大或缩小.要画四边形ABCD的位似图形,还可以任取一点O,如图27.4.2,作直线OA、OB、OC、OD,在点O的另一侧取点A′、B′、C′、D′,使OA′∶OA=OB′∶OB=OC′∶OC=OD′∶OD=2,也可以得到放大到2倍的四边形A′B′C′D′.图27.4.2 图27.4.3实际上,如图27.4.3所示,如果把位似中心取在多边形内,那么也可以把一个多边形放大或缩小,而且较为简便.练习任意画一个五边形,再把它放大到原来的3倍.习题27.4任选一种方法,按下列相似比画出一个三角形的位似图形. (1) 相似比为21;(2) 相似比为2.5.阅读材料数学与艺术的美妙结合——分形雪花是什么形状呢?科学家通过研究发现: 将正三角形的每一边三等分,而以其居中的那一条线段为底边再作等边三角形.然后以其两腰代替底边.再将六角形的每边三等分,重复上述的作法.如图1所示,如此继续下去,就得到了雪花曲线.图1雪花曲线的每一部分经过放大都可以与它的整体形状相似,这种现象叫自相似.只要有足够细的笔,这种自相似的过程可以任意继续表现下去.观察图2中的图形,这也是通过等边三角形绘制的另一幅自相似图形.图2图3是五边形的一幅自相似图形.图3图4自然界中其实存在很多自相似现象,如图4所示树木的生长,又如雪花的形成、土地干旱形成的地面裂纹等.现在已经有了一个专门的数学分支来研究像雪花这样的自相似图形,这就是20世纪70年代由美国计算机专家芒德布罗创立的分形几何.如图5,通过计算机可以把简单的图形设计成美丽无比的分形图案,人们称为分形艺术.图5§27.5 图形与坐标1.用坐标确定位置图27.5.1夏令营举行野外拉练活动,老师交给大家一张地图,如图27.5.1所示,地图上画了一个直角坐标系,作为定向标记,给出了四座农舍的坐标是: (1, 2)、(-3, 5)、(4, 5)、(0, 3).目的地位于连结第一与第三座农舍的直线和连结第二与第四座农舍的直线的交点.利用平面直角坐标系,同学们很快就到达了目的地.请你在图中画出目的地的位置.试一试图27.5.2是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置:图27.5.2有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置.现实生活中我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置,电影院的座位用几排几座来表示,国际象棋中竖条用字母表示、横条用数字表示等.右图是国际象棋的棋盘,E2在什么位置?如何描述A、B、C的位置?我们还可以用其他方式来表示物体的位置.例如,小明去某地考察环境污染问题,并且他事先知道下面的信息:“悠悠日用化工品厂”在他现在所在地的北偏东30度的方向,距离此处3千米的地方;“明天调味品厂”在他现在所在地的北偏西45度的方向,距离此处2.4千米的地方;“321号水库”在他现在所在地的南偏东27度的方向,距离此处1.1千米的地方.根据这些信息可以画出表示各处位置的一张简图:图27.5.3看来,用一个角度和距离也可以表示一个点的位置.这种方式在军事和地理中较为常用.练习小燕在某市公园的门口看到这个公园的平面示意图(如下图).试借助刻度尺、量角器解决下列问题.(1)建立适当的直角坐标系,用坐标表示假山、游戏车、马戏城的位置;(2)填空:九曲桥在假山的北偏东__________度的方向上,到假山的距离约为_________米;喷泉在假山的北偏西___________度的方向上,到假山的距离约为__________米.2.图形的变换与坐标在同一直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小之后,点的坐标会如何变化呢?例图27.5.4中,△AOB沿x轴向右平移3个单位之后,得到△A′O′B′.三个顶点的坐标有什么变化呢?图27.5.4解△AOB的三个顶点的坐标是A(2,4)、O(0,0)、B(4,0).平移之后的△A′O′B′对应的顶点是A′(5,4)、O′(3,0)、B′(7,0).沿x轴向右平移之后,三个顶点的纵坐标都没有改变,而横坐标都增加了3.思考在图27.5.5中,△AOB关于x轴的轴对称图形是△A′OB.对应顶点的坐标有什么变化?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形(四)直角三角形中的成比例线段 姓名____________ 例1.如图,在两个直角三角形中,2AD ,6AC ,90ADC ACB ==
︒=∠=∠. 试求AB 的长,使得这两个直角三角形相似
例2.如图,在AB C ∆中,,BC AD ,90BAC ⊥︒=∠E 是AC 中点,ED 交AB 的延长线于F.求证:AF DF AC AB =
例3.如图,CE 是AB C Rt ∆斜边AB 上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP 交AP
于G ,交CE 于D.求证:EP ED CE 2
⋅=
例4.如图,已知ABCD 是正方形,E 是AD 上一点,AE:ED=1:3,F 是AB 中点FG ⊥CE 于G.求证:CG EG FG 2⋅=
例5.如图AB C ∆中,AB DE ,BC AD ,90A ⊥⊥︒=∠. 求证:AE BE AC
AB 22=
例6.如图,在AB C Rt ∆中,︒=∠90ACB ,BC DF ,AC DE ,AB CD ⊥⊥⊥.
求证:CB CF AC CE )1(⋅=⋅;BF AE AB CD )2(3⋅⋅=
例7.如图,DEFG 是AB C Rt ∆的内接矩形,D 在AB 上,G 在AC 上,EF 在斜边BC 上,已知AB=3,AC=4,
矩形DEFG 的面积为
3
5.求BE 和FC 的长.
习题:
1.选择:
(1)在AB C Rt ∆中,AB DE ,BC AD ,90A ⊥⊥︒=∠,若AD=3,DE=2,则AC 等于( ) A 、29 B 、221 C 、2159 D 、5
154 (2)AD 为AB C Rt ∆斜边上的高,过D 作AB DE ⊥于E ,则有相似三角形…………( )
A 、8对
B 、10对
C 、12对
D 、20对
(3)若直角三角形斜边上的高将斜边分成的两部分长分别为4和9,则这个直角三角形的面积
为……………………………………………………………………………( )
A 、38
B 、39
C 、40
D 、41
(4)已知ABCD 是矩形,E 、F 分别在AD 和CD 上,且,DEF ,ABE ,90BEF ∆∆︒=∠EB F ∆和CB F ∆中,
一定相似的两个三角形是…………………………………………( )
A 、C
B F ∆和DEF ∆ B 、A B E ∆和EB F ∆
C 、DEF ∆和EB F ∆
D 、A B
E ∆和DE
F ∆ (5)将正方形ABCD 的BC 边延长到E,使CE=AC,AE 与DC 相交于F 点,则CE:FC 等于( )
A 、12+
B 、12-
C 、22+
D 、22-
(6)在AB C Rt ∆中,AD 为斜边BC 上的高,若ABD CAD S 3S ∆∆=,则AB:AC 等于…( )
A 、1:3
B 、1:4
C 、1:3
D 、1:9
(7)AB C ∆中,,120BAC ,AC AB ︒=∠=D 是BC 的中点,DE ⊥AC ,则AE:EC 等于( )
A 、1:2
B 、1:3
C 、1:4
D 、1:3
2.填空:
(1)C 为AB C Rt ∆的直角顶点,,BC DF ,AC DE ,AB CD ⊥⊥⊥D 、E 、F 分别为垂足。
若BC=6cm,AC=8cm,
则BF:AE=__________________;
(2)在四边形ABCD 中,,60A ,90D B ︒=∠︒=∠=∠AB=4,AD=5。
则BC:CD=__________;
3.已知:AB C ∆中,BC AD ⊥于D ,AB DE ⊥于E ,AC DF ⊥于F 。
求证:AB
AC AF AE =
4.已知:AB C ∆中,∠=∠Rt C ,DEFG 是AB C ∆的内接正方形。
求证:
(1)BE AD DE 2⋅=;(2)若BC=a,AC=b,AB=c, 则AD:DE:EB=2
2a :ab :b
5.如图,,AB BD ,AB AC ⊥⊥AD 和BC 相交于E ,A B EF ⊥。
求证:B FD AFC ∠=∠
6. 如图,P 为AB C Rt ∆的斜边AB 上的高CE 的延长线上任一点,
自B 作AP BG ⊥交CP 于D 。
求证:EP ED CE 2
⋅=
7. 已知:AB C ∆中,︒=∠90B AC ,BC=13,AB+AC=17,AD ⊥BC 于D 。
求BD 的长
8. 在AB C ∆中,︒=∠90ACB ,DF 为AB 的中垂线,分别交AB ,BC 于D ,F ,交AC 的延长线于E 。
求证:(1)DF DE CD 2
⋅=;(2)DE DF CE CF 22=
9.在AB C ∆中,︒=∠90ACB ,M 为AC 的中点,MN ⊥AB 于N 。
求证:AC AN AB 22⋅=
10。
在AB C ∆中,底边BC=48cm,高AH=16cm,DEFG 为内接矩形,DE 在BC 边上,G 、F 分
别在AB 、AC 上,且EF:FG=5:9,AH 交GF 于K 。
求矩形DEFG 的面积。