一次函数之分段函数的实际应用-导学案

合集下载

一次函数实际应用——(3)分段函数

一次函数实际应用——(3)分段函数

一次函数实际应用——(3)分段函数例.(2008年襄樊第23题)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元(b >a)收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示.(1)求的值;某户居民上月用水8吨,应收水费多少元?(2)求的值,并写出当x>10时,与之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?练习:1.(2011湖南益阳,19,10分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?2.(2011江苏连云港,27,12分)因长期干旱,甲水库蓄水量降到了正常水位的最低值,为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)之间的函数关系.求: (1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?3、(2011江苏南京,22,7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?。

4.4.1一次函数的应用导学案北师大版数学八年级上册

4.4.1一次函数的应用导学案北师大版数学八年级上册

后“茶馆式”《一次函数的应用》教学设计学科 数学 课题 课型 新授 主备人xxx上课人xxx上课时间xxx教材分析 《一次函数的应用第一课时》是义务教育课程标准北师大版实验教科书八年级上册第四章第四节的内容。

本课时主要是利用图象、表格等信息,确定一次函数的表达式.本节内容特别注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法.第一次 学情分析 八年级学生已初步认识了变量之间的相依关系,积累了研究变量之间关系以及图象的一些方法和初步经验.在此基础上,学生能在“引导——探究——发现”式的课堂教学中积极参与讨论问题,大胆发表自己的见解和看法.但由于初中学生的年龄特点,他们借助直观、具体的图象更容易理解抽象的一次函数图象的变化规律及其性质。

第二次 学情分析 学生先学后,能学会的:能根据所给信息利用待定系数法确定一次函数的表达式. 学生先学后可能不会的:进一步利用所学知识解决实际问题. 教学目标 1.了解两个条件可以确定一个一次函数,一个条件可以确定一个正比例函数,并求出表达式. 2.会用待定系数法解决简单的实际问题.3.能根据函数的图象确定一次函数的表达式. 教学重点 利用一次函数解决复杂的实际问题. 教学难点 根据两个一次函数图象去分析解决问题.教学过程二次备课一、回顾旧知,探究新知前面,我们学习了一次函数及其图象和性质,你能写出两个具体的一次函数解析式吗?如何画出它们的图象?23=-+y x31=-y x思考:反过来,已知一个一次函数的图象经过两个具体的点,你能求出它的解析式吗? 活动一某物体沿一个斜坡下滑,它的速度v (m/s )与其下滑时间t(s)的关系如右图所示: (1)请写出v 与t 的关系式.(2)下滑3 s 时物体的速度是多少? 练一练 例1. 在弹性限度内,弹簧的长度 y (cm )是所挂物体质量 x (kg )的一次函数,某弹簧不挂物体时长14.5cm ,当所挂物体的质量为3kg 时,弹簧长16cm 。

分段函数的实际应用-教案

分段函数的实际应用-教案

分段函数的实际应用清远工贸职业技术学校数学组教师:陈学军班级:15春数控1班课时安排:1课时课程分析职业高中数学课程教学是专业建设与专业课程体系改革的一部分,应与专业课教学融为一体,立足于为专业课服务,解决实际生活中常见问题,结合中职学生的实际,强调数学的应用性,以满足学生在今后的工作岗位上的实际应用为主,这也体现了新课标中突出应用性的理念。

分段函数的实际应用在本课程中的地位:(1)函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中,分段函数在科技和生活的各个领域有着十分广泛的应用。

(2)本节所探讨学习分段函数在生活生产中的实际问题上应用,培养学生分析与解决问题的能力,养成正确的数学化理性思维的同时,形成一种意识,即数学“源于生活、寓于生活、用于生活”。

教材分析教材使用的是中等职业教育课程改革国家规划教材,分段函数内容安排在第三章函数的最后一部分讲解。

本节内容是在学生熟知函数的概念,表示方法和对函数性质有一定了解的基础上研究分段函数,同时深化学生对函数概念的理解和认识,也为接下来学习指数函数和对数函数作了良好铺垫。

由生活生产中的实际问题入手,求得分段函数此部分知识以学生生活常识为背景,可以引导学生分析得出,分段函数作图可以略讲由学生自己完成。

学情分析(1)知识层面:学生在初中学习了一次函数、二次函数、正比例函数、反比例函数这些基本初等函数图像和性质,对函数有一定程度的认识和理解;在本学期对函数知识又进一步系统的学习,加深学生对函数概念和性质的理解,为学习分段函数奠定良好的基础。

(2)能力层面:学生对函数具有一定的理解,在此基础上能够建立简单实际问题的分段函数的关系式,通过分段函数的应用,培养学生分析与解决问题的能力,了解什么是数学建模,提高学生基本科学素质。

教学目标(1)知识目标:能够根据简单的实际问题,建立分段函数的关系式,会画分段函数的图象并求简单的分段函数的定义域和值域。

(2)能力目标:引导学生理解数学建模的方法,培养学生观察、分析、归纳等思维能力,体会分类讨论思想以及从一般到特殊等学习数学的方法;加强学生对实际生活中的数学背景知识及应用的认知,学生不仅可以将其应用到专业学习上,更能从数学的角度提升对各种问题知识感性认识和理解分析能力。

人教版八年级下册第19章一次函数导学案19.2.2第6课时 分段函数

人教版八年级下册第19章一次函数导学案19.2.2第6课时 分段函数

19.2.2一次函数(第5课时)——一次函数的实际应用 教学目标1. 能根据实际问题,写出分段函数表达式,并解决相关问题;2. 经历对实际问题建立数学模型的过程,体会待定系数法作用与一次函数模型的价值;3. 通过对具体问题的解决,感受数学的应用价值.重点难点重点:用一次函数来刻画生活中的实际问题.难点:数形结合思想和建模思想在分段函数解决实际问题中的价值体现.教学过程前面我们学习了一些一次函数的相关知识,今天我们学习分段函数与一次函数的实际应用. 类型一:根据文字语言,求函数关系式.例1 玉米种子的价格为5元/kg ,如果一次购买2 kg 以上的种子,超过 2 kg 部分的种子的价格打8折.(1)填写下表:(2)写出付款金额关于购买量的函数解析式.师生活动:教师引导学生读懂文字,学生独立填写表格.设计意图:种子的价格不是不变的,而是与购买量有关,设置成表格的目的有利于学生找到这种关系.分析:在解(2)时,设购买种子x kg 付款金额y 元问题1 种子的单价确定了吗?影响单价的因素是什么?师生活动:引导学生分类讨论:当0≤x ≤2时,......,当x >2时,.....最后点出y 与x 的函数解析式可以合起来表示为:⎩⎨⎧>+≤≤=2,2420,5x x x x y 像这样,在自变量的不同取值范围内,函数的表达式有不同的形式,这样的函数叫做分段函数.思考:根据解析式,请你解决下面问题(1)一次购买种子1.5kg需要付款多少元?(2)一次购买种子5kg需要付款多少元?设计意图:设置思考的目的在于引导学生关注自变量不同时,要注意选对应的函数关系. 问题2 分段函数与之前学过的函数有什么相同点和不同点?师生活动:相同点在于两者都是函数,即当x确定,y也唯一确定;不同点在于由x取值不同,y会出现不同的对应关系,即y与x的关系不是唯一确定.类型二:根据图象列函数解析式例2 今年以来,某地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;(2)结合图象,当用电量不超过100度,每度电的价格是元;当用电量超过100度,超过部分每度电的价格是元;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?问题1 观察图象,如何求当0≤x≤100和x>100时,y与x的函数关系式?师生活动:教师引导学生需要先判断函数类型再用待定系数法求解析式追问1 当0≤x≤100时,y是x的什么函数?追问2 当0≤x≤100时,设y=kx(k≠0),如何求出k?追问3 当x>100时,y是x的什么函数?追问4 如何求当x>100时时的函数解析式?(待定系数法)问题2 当用电量不超过100度时,每度电的费用有变化吗?此时单价是多少元?追问1 当用电量超过100度时,每度电的费用还是0.65元吗?如果不是,那应该是多少元?设计意图:考查学生识图能力和分析问题的能力.师生活动:回顾例1与例2,例1是由文字关系列出解析式,再画图,体现出有数到形的过程;例2是由图象上的点求解析式,体现出由形到数的过程. 在数学上数与形相互结合,能解决很多问题.【练习巩固】练习1 从A地向B地打长途电话,通话时间不超过3min收费2.4元,超过3min后每分加收1元.(1)写出通话费用y(单元:元)关于通话时间x(单位:min)的函数解析式.(本题中x 取整数,不足1min的通话时间按1min计费);(2)如果通话时间为2 min,通话的费用为元;如果通话时间为5 min,通话的费用为元;(3)如果有10元话费,打一次电话最多可以通话多长时间?设计意图:检测学生对于文字型分段函数的实际问题的应用解决情况.练习2 有一个进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 时间内既进水也出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系如图所示:(1)求y与x的函数解析式;(2)每分进水、出水各是多少?设计意图:检测学生对于图象型分段函数的实际问题的应用解决情况.【课堂小测】某景区售票处规定:非节假日的票价打a折售票;节假日根据团队人数x(人)实行分段售票:若x≤10,则按原展价购买;若x>10,则其中10人按原票价购买,超过部分的按原那价打b折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y1元,在节假日的购票款为y2元,y1、y2与x之间的函数图象如图所示.(1)观察图象可知:a=________,b=________;(2)当x>10时,求y2与x之间的函数表达式;。

分段函数在实际生活中的应用

分段函数在实际生活中的应用

分段函数在实际生活中的应用新课标的不断深化,使得各地的教师了解到应不断强化学生对数学思维方式的检查,特别是将学生生活当作背景,在生活中应用分段函数,和分类探讨实现相结合的一类中考数学问题,极为引人注目。

这一类型的试题可以较好地测试学生对一局部根底功能与知识的掌握情况,也测试学生灵活使用知识处理具体问题的技能。

与此同时,还可以检验学生是够使用动和静、变化和不变、特殊和一般的辩证思维。

处理这一类型问题的重点在于必须将问题归纳成设定条件〔分段函数〕,结合自变量的各种取值范围,开展分类求解,从而实现不重不漏,并进行分层讨论求解。

一、分段函数数学模型概念分段函数的数学模型通常利用函数的方式来表达。

然而,也有一些情况,必须利用几个式子来表达。

如果自变量的值位于不同的域中,函数的表达式就会不同。

这样的函数称为分段函数。

如果自变量的值处在不同的域中,函数的表达式就会不同,这样的函数称为分段函数。

在具体使用时,分段函数当中包含了分类讨论的数学思想。

正是由于我们的日常生活中有许多问题需要各种方式来处理,所以分类讨论思想就变得十分重要。

分段函数是解决数学实际问题的一种很有效的工具。

利用分段函数数学模型,可以处理日常生活中遇到的许多问题。

〔一〕生活中的用水用电问题例如:为促进节能减排的开展,某市制定了以下用电收费标准:当每户月用电量低于120度,电价为a元/度;在超过120度以后,不超过局部依旧是a元/度,其他超过的局部那么是b元/度,据了解,某用户5月份用电115度,电费69元;6月份用电140度,电费94元。

〔1〕求出a、b的值;〔2〕用户每月用电量为小时〔度〕,应付电费为y〔元〕。

首先,分别求出0≤某≤120和某>120时,y和某间的函数关系;其次,如果用户方案在7月份的时候使用电费不超出83元,那么其在7月最多可使用多少度?解:〔1〕结合题目含义〔2〕①在0≤某≤120和某>120时,y=0.6某。

分段函数在生活实际中的应用(解析版)-2023年中考数学重难点解题大招复习讲义-函数

分段函数在生活实际中的应用(解析版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲【例1】.某公司专销产品A,第一批产品A上市40天内全部售完、该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(1)中的折线表示的是市场日销售量与上市时间的关系;图(2)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)写出每件产品A的销售利润z与上市时间t的关系式;(3)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?解:(1)由图1可得,当0≤t≤30时,设市场的日销售量y=kt,∵点(30,60)在图象上,∴60=30k,∴k=2,即y=2t;当30<t≤40时,设市场的日销售量y=k1t+b,∵点(30,60)和(40,0)在图象上,∴解得k1=﹣6,b=240.∴y=﹣6t+240.故y=;(2)由图②可得:当0≤t≤20时,每件产品的日销售利润为z=3t;当20<t≤40时,每件产品的日销售利润为z=60;故z=;(3)①当0≤t≤20时,w=3t•2t=6t2.t=20时,w的最大值为2400(万元);②当20<t≤30时,w=2t•60=120t.t=30时,w的最大值为3600(万元);③当30<t≤40时,w=60(﹣6t+240)=﹣360t+14400∵k=﹣360<0,∴w随t的增大而减小.∴w<﹣360×30+14400即w<3600(万元)∴第30天取最大利润3600万元.变式训练【变1-1】.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为30件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?解:(1)∵日销售量y(件)与销售时间x(天)之间的关系式是y=,∴第15天的销售量为2×15=30件,故答案为:30;(2)由销售单价p(元/件)与销售时间x(天)之间的函数图象得:p=,①当0<x≤20时,日销售额=40×2x=80x,∵80>0,∴日销售额随x的增大而增大,∴当x=20时,日销售额最大,最大值为80×20=1600(元);②当20<x≤30时,日销售额=(50﹣x)×2x=﹣x2+100x=﹣(x﹣50)2+2500,∵﹣1<0,∴当x<50时,日销售额随x的增大而增大,∴当x=30时,日销售额最大,最大值为2100(元),综上,当0<x≤30时,日销售额的最大值为2100元;(3)由题意得:当0<x≤30时,2x≥48,解得:24≤x≤30,当30<x≤40时,﹣6x+240≥48,解得:30<x≤32,∴当24≤x≤32时,日销售量不低于48件,∵x为整数,∴x的整数值有9个,∴“火热销售期”共有9天.【变1-2】.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.【例2】.心理学家通过实验发现:初中学生听讲的注意力随时间变化,讲课开始时,学生注意力逐渐增强,中间有一段平稳状态,随后开始分散.学生注意力指标数y随时间表t(分钟)变化的函数图象如下.当0≤t≤10时,图象是抛物线的一部分,当10≤t≤20时和20≤t≤40时,图象是线段.(1)当0≤t≤10时,求注意力指标数y与时间t的函数关系式;(2)一道数学探究题需要讲解24分钟,问老师能否经过恰当安排,使学生在探究这道题时,注意力指标数不低于45?请通过计算说明.解:(1)当0≤t≤10时,设抛物线的函数关系式为y=ax2+bx+c.由于它的图象经过点(0,25),(4,45),(10,60),所以,解得:,所以;(2)当20≤x≤40时,设函数解析式为:y=kx+d,将(20,60),(40,25)代入得:,解得:∴y=﹣x+95,令y=45,有45=﹣x+95,解得:x=28,即讲课后第28分钟时注意力不低于45,当0≤x≤10时,令y=45,有45=﹣x2+6x+25,解得:x1=4,x2=20(舍去),即讲课后第4分钟时,注意力不低于45,所以讲课后注意力不低于45的时间有28﹣4=24(分钟)>24(分钟),所以老师可以经过适当的安排,使学生在探究这道数学题时,注意力指数不低于45.变式训练【变2-1】.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w=;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,∵a=﹣100<0,对称轴为x=,∴当6≤x≤10时,w随x的增大而增大,即当x=10时,w=18000元,最大值当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28元/kg时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x=﹣=28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元,∴(28+a﹣6﹣a)[﹣100×(28+a)+5000]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.【变2-2】.东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=﹣2t+120.将t=30代入上式,得:y=﹣2×30+120=60.所以在第30天的日销售量是60kg.(2)设第t天的销售利润为w元.当1≤t≤24时,由题意w=(﹣2t+120)(t+30﹣20)=﹣(t﹣10)2+1250,∴t=10时,w最大值为1250元.当25≤t≤48时,w=(﹣2t+120)(﹣t+48﹣20)=t2﹣116t+3360,∵对称轴t=58,a=1>0,∴在对称轴左侧w随t增大而减小,∴t=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(﹣2t+120)(t+30﹣20)﹣(﹣2t+120)n=﹣t2+(10+2n)t+1200﹣120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∵t为整数,图象是孤立的点,∴﹣>23.5,(见图中提示)∴n>6.75.又∵n<9,∴n的取值范围为6.75<n<9.1.为了节约水资源,自来水公司按分段收费标准收费,如图所示反映的是每月收取水费y (元)与用水量x(吨)之间的函数关系.按照分段收费标准,小颖家三、四月份分别交水费29元和19.8元,则四月份比三月份节约用水()A.2吨B.2.5吨C.3吨D.3.5吨解:当x<10时,设y=mx,将点(10,22)代入可得:22=10k,解得:k=2.2,即可得:y=2.2x,当x≥10时,设y与x的函数关系式为:y=kx+b(k≠0),当x=10时,y=22,当x=20时,y=57,将它们分别代入y=kx+b中得:,解得:,那么y与x的函数关系式为:y=3.5x﹣13,综上可得:y=,当y=29时,知道x>10,将y=29代入得29=3.5x﹣13,解得x=12,当y=19.8时,知道x<10,将y=19.8代入得19.8=2.2x,解得:x=9,即可得四月份比三月份节约用水:12﹣9=3(吨).故选:C.2.某市为鼓励市民节约使用燃气,对燃气进行分段收费,每月使用11立方米以内(包括11立方米)每立方米收费2元,超过部分按每立方米2.4元收取.如果某户使用9立方米燃气,需要燃气费为18元;如果某户的燃气使用量是x立方米(x超过11),那么燃气费用y与x的函数关系式是y=2.4x﹣4.4.解:使用9立方米燃气,需要燃气费为:2×9=18(元);y=2×11+2.4(x﹣11),即所求的函数解析式为y=2.4x﹣4.4(x>11).故答案为:18;y=2.4x﹣4.43.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价2元收费;若每月用水量超过14吨,则超过部分每吨按市场价3.5元收费.小明家2月份用水20吨,交水费49元;3月份用水18吨,交水费42元.(1)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(2)小明家5月份用水30吨,则他家应交水费多少元?解:(1)由题意可得,当0≤x≤14时,y=2x,当x>14时,y=2×14+(x﹣14)×3.5=3.5x﹣21,由上可得,y与x的函数关系式为y=;(2)当x=30时,y=3.5×30﹣21=84,即小明家5月份用水30吨,则他家应交水费84元.4.某市近期公布的居民用天然气阶梯价格听证会方案如下:第一档天然气用量第二档天然气用量第三档天然气用量年用天然气量360立方米及以下,价格为每立方米2.53元年用天然气量超出360立方米,不超600立方米时,超过360立方米部分每立方米价格为2.78元年用天然气量600立方米以上,超过600立方米部分价格为每立方米3.54元例:若某户2019年使用天然气400立方米,按该方案计算,则需缴纳天然气费为:2.53×360+2.78×(400﹣360)=1022(元)(1)若小明家2019年使用天然气300立方米,则需缴纳天然气费为759元(直接写出结果);(2)若小红家2019年使用天然气560立方米,则小红家2019年需缴纳的天然气费为多少元?解:(1)由题意可得,300×2.53=759(元),即小明家2019年使用天然气300立方米,则需缴纳天然气费为759元,故答案为:759;(2)由题意可得,360×2.53+(560﹣360)×2.78=910.8+200×2.78=910.8+556=1466.8(元),答:小红家2019年需缴纳的天然气费1466.8元.5.在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米/分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.解:(1)甲开始时的速度为:1000÷4=250(米/分钟),令250x=150(x+),解得,x=0.75,答:当x为0.75分钟时,两人第一次相遇;(2)当x=5时,乙跑的路程为:150×(5+)=825<1000,∴甲乙第二次相遇的时间为:5+=5.5(分钟),则当两人第二次相遇时,甲跑的总路程为:1000+(5.5﹣5)×=1100(米),答:当两人第二次相遇时,甲跑的总路程是1100米.6.“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5101618…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.解:(Ⅰ)10,18;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>10,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.7.电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电60度,则应缴费多少元?若该用户某月缴费125元时,则该用户该月用了多少度电?解:(1)当0≤x≤100时,设关系式为y=kx,把(100,65)代入得:k=0.65,∴y=0.65x(0≤x≤100)当x>100时,设y与x的函数关系式为y=kx+b,把(100,65)(130,89)代入得:,解得:k=0.8,b=﹣15,∴y=0.8x﹣15(x>100)答:当0≤x≤100和x>100时,y与x的函数关系式分别为y=0.65x(0≤x≤100),y=0.8x﹣15(x>100).(2)当0≤x≤100时,每度电收费0.65元,当x>100时,每度电收费0.8元.(3)当x=60时,代入y=0.65x=39元,当y=125时,代入y=0.8x﹣15得:x=175度,答:用电60度,则应缴费39元;月缴费125元时,则该用户该月用了175度电.8.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?解:(1)当50≤x≤60时,y=(x﹣40)(100+60﹣x)=﹣x2+200x﹣6400;当60<x≤80时,y=(x﹣40)(100﹣2x+120)=﹣2x2+300x﹣8800;∴y=﹣x2+200x﹣6400(50≤x≤60且x为整数)y=﹣2x2+300x﹣8800(60<x≤80且x为整数);(2)当50≤x≤60时,y=﹣(x﹣100)2+3600;∵a=﹣1<0,且x的取值在对称轴的左侧,∴y随x的增大而增大,∴当x=60时,y有最大值2000;当60<x≤80时,y=﹣2(x﹣75)2+2450;∵a=﹣2<0,∴当x=75时,y有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.9.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题.(1)甲,乙两地的距离为720km;慢车的速度为80km/h.(2)求CD段的函数解析式.(不用写自变量的取值范围)(3)求当x为多少时,两车之间的距离为500km,请通过计算求出x的值.解:(1)甲、乙两地的距离为720km,慢车的速度为720÷9=80(km/h),故答案为:720,80;(2)∵快车的速度为﹣80=120(km/h),∴快车到达乙地所用时间为=6(h),此时慢车所行驶的路程是6×80=480(km),∴C(6,480),设CD段的函数解析式为y=kx+b,把C(6,480),D(9,720)代入得:,解得,∴CD段的函数解析式为y=80x;(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km,①相遇前:(80+120)x=720﹣500,解得x=1.1,②相遇后:∵点C(6,480),∴快车到达乙地后,慢车再行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),∴x=1.1h或6.25h,两车之间的距离为500km.10.某水产市场经营一种海产品,其日销售量y(kg)与销售单价x(元/千克)的函数关系如图所示.(1)分别求出当20≤x≤30,30<x≤35时,y与x之间的函数关系式.(2)当单价为32元/千克时,日销售量是多少?(3)当日销售量为80kg时,单价是多少?解:(1)当20≤x≤30时,设y与x之间的函数关系式是y=kx+b,∵点(20,100),(30,50)在该函数图象上,∴,解得,即当20≤x≤30时,y与x之间的函数关系式是y=﹣5x+200;当30<x≤35时,设y与x之间的函数关系式是y=ax+c,∵点(30,50),(35,0)在该函数图象上,∴,解得,即当30<x≤35时,y与x之间的函数关系式是y=﹣10x+350;(2)当x=32时,y=﹣10x+350=﹣10×32+350=30,即当单价为32元/千克时,日销售量是30千克;(3)当y=80时,80=﹣5x+200,解得x=24,即当日销售量为80kg时,单价是24元/千克.11.“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间t(h)之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE ﹣EF所示.(1)小丽和小明骑车的速度各是多少?(2)求点E的坐标,并解释点E的实际意义.解:(1)由题意可得:小丽速度==16(km/h)设小明速度为xkm/h由题意得:1×(16+x)=36∴x=20答:小明的速度为20km/h,小丽的速度为16km/h.(2)由图象可得:点E表示小明到了甲地,此时小丽没到,∴点E的横坐标==,点E的纵坐标==∴点E(,)12.为加强公民的节水意识,合理利用水资源,某市对居民用水实行阶梯水价.居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式,并写出自变量x的取值范围;(3)某户5月份按照阶梯水价应缴水费108元,其相应用水量为多少立方米?解:(1)由图可得,点B的实际意义是当用水25m3时,所交水费为90元;(2)设一级阶梯用水的单价为x元/m3,则二级、三级阶梯的用水单价分别为1.5x元/m3,2x元/m3,设点A的坐标为(a,45),则,解得,即点A的坐标为(15,45),设线段AB所在直线的表达式为y=kx+b,,解得,即线段AB所在直线的表达式为y=4.5x﹣(15<x≤25);(3)∵108>90,∴某户5月份的用水量超过25m3,设该用户5月份用水量为m立方米,90+(m﹣25)×3×2=108,解得m=28,答:其相应用水量为28立方米.13.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm)20212223身高h(cm)160169178187(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)(2)某人身高为196cm,一般情况下他的指距应是多少?解:(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160;d=21,h=169,分别代入得,.解得k=9,b=﹣20,即h=9d﹣20;(2)当h=196时,196=9d﹣20,解得d=24cm.14.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小王4月份上网20小时,他应付多少元的上网费用?(3)若小王5月份上网费用为98元,则他在该月份的上网时间是多少.解:(1)当x≥30时,设y与x之间的函数关系式为y=kx+b,由题意,解得,∴y=x+20.(2)若小王4月份上网20小时,由图象可知,他应付50元的上网费.(3)把y=98代入,y=x+20,解得x=78,∴若小王5月份上网费用为98元,则他在该月份的上网时间是78小时.15.为提高校园绿化率,美化校园,某示范高中准备购买一批樟树和樱花树,一共100棵,其中樟树不少于10棵.园林部门称樟树成活率为70%,樱花树的成活率为90%,学校要求这批树的成活率不低于80%.樟树的单价y1和购买数量x的函数关系以及樱花树的单价y2和购买数量x的函数关系如图所示.(1)写出y1关于x的函数关系式;(2)请你帮学校作个预算,购买这批树最少需要多少钱?解:(1)当0<x≤60时,设y1=k1x+b1(k1≠0),把(0,180),(60,60)代入得,,∴∴y1=﹣2x+180(0<x≤60);当60<x≤100时,y1=60.综上,y1=﹣2x+180(0<x≤60)或y1=60(60<x≤100);(2)设购买樟树x棵,则购买樱花树(100﹣x)棵,由≥80%,得x≤50,∴10≤x≤50.设购树所需费用为W元,当40≤x≤50时,W=(﹣2x+180)x+100(100﹣x)=﹣2(x﹣20)2+10800,W min=﹣2(50﹣20)2+10800=9000(元).当10≤x<40时,W=(﹣2x+180)x+70(100﹣x)=﹣2(x﹣27.5)2+2×27.52+7000,W min=﹣2×(10﹣27.5)2+2×27.52+7000=7900(元),综上所述,购树所需费用最少为7900元.16.A,B两地相距300km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回.如图是两车离A地的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围.(2)若两车行驶5h相遇,求乙车的速度.解:(1)设甲车从A地驶向B地y与x的关系式为y=kx,把(4,300)代入得:300=4k,解得:k=75,∴y=75x(0<x≤4)设甲车从B地返回A地y与x的关系式为y=kx+b,把(4,300)(7,0)代入得:,解得:k=﹣100,b=700,∴y=﹣100x+700(4<x≤7),答:甲车行驶过程中y与x之间的函数解析式为:y=75x(0<x≤4),y=﹣100x+700(4<x≤7),(2)设乙车速度为m千米/小时,则:5m=﹣100×5+700解得:m=40答:乙车的速度为40千米/小时.17.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.水果种植专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按2元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤500和x>500时,y与x之间的函数关系式.(2)若经销商计划一次性购进甲、乙两种水果共1200千克,且甲种水果不少于400千克,但又不超过乙种水果的两倍.问经销商要确保完成收购计划,至少准备多少资金?解:(1)当0≤≤x≤500时,设y=k1x(k1≠0),根据题意得500k1=1500,解得k1=3;∴y=3x;当x>500时,设y=k2x+b(k2≠0),根据题意得,,解得,∴y=2.5x+250,∴y=;(2)购进甲种水果为x千克,则购进乙种水果(1200﹣x)千克,根据题意得:,解得400≤x≤800,当400≤x≤500时,w1=3x+2(1200﹣x)=x+2400.当x=400时.w min=2800元,当500≤x≤800时,w2=2.5x+250+2(1200﹣x)=0.5x+2650.当x=500时,w min=2900元,∵2900>2800,∴当x=400时,总费用最少,最少总费用为2800元.此时乙种水果1200﹣400=800(千克).答:购进甲种水果为400千克,购进乙种水果800千克,才能使经销商付款总金额w(元)最少,至少准备2800元资金.18.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时血液中含药量为每毫升3微克,每毫升血液中含药量y微克随时间x小时主变化如图所示,当成人按规定剂是服药后,(1)分别求出x<2和x>2时y与x的函数关系式,(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?解:(1)当x≤2时,设y=k1x,把(2,6)代入上式,得k1=3,∴x≤2时,y=3x;当x>2时,设y=k2x+b,把(2,6),(10,3)代入上式,得k2=﹣,b=.∴x≥2时,y=﹣x+.(2)把y=4代入y=3x,得x1=,把y=4代入y=﹣x+,得x2=.则x2﹣x1=6小时.答:这个有效时间为6小时.19.甲骑电瓶车,乙骑自行车从西山漾公园丝绸小镇门口出发沿同一路线匀速前往太湖龙之梦乐园,设乙行驶的时间为x(h),甲、乙两人距出发点的路程s甲、s乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度25km/h,乙的速度是10km/h;(2)对比图①、图②可知:a=10,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25km/h,乙的速度为:25÷2.5=10km/h,故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,25(b﹣0.5)=10b,得b=,故答案为:10,;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=,即乙出发h或h时,甲、乙两人路程差为7.5km.20.某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)甲步行的速度80米/分,乙出发时甲离小区的距离800米;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,求出当25≤x≤30时s关于x的函数关系式.解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),故答案为:80米/分,800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,∴乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x=25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),此时甲还要1分钟到学校,即甲离学校80米,∴当25≤x≤30时s关于x的函数的大致图象如图:当25≤x≤29时,设s=mx+n,将(25,700),(29,80)代入得:,解得,∴s=﹣155+4575;当29<x≤30时,设s=px+q,将(29,80),(30,0)代入得:,解得,∴s=﹣80x+2400,∴s=.。

八年级数学上册一次函数之分段函数导学案(修复的)

八年级数学上册一次函数之分段函数导学案(修复的)
【师生共同探究,总结】:
定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在
k1x+b1x≤a1
y =k2x+b2a1≤x≤a2①的函数解析式,则称该函数解析式为X的分段函数。
K3x+b3a2≤x≤a3
…………
应该指出:(一),函数解析式①这个整体只是一个函数,并非是Y=K1X+b1Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.,例如Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。
分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
@一次函数与一次函数构成的两段分段函数@常数函数与一次函数构成的两段分段函数@三段型分段函数@四段型分段函数@五段型分段函数。
【作业与教学反思】:
1.(江苏省宿迁市20XX年初中毕业暨升学考试)我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此出租车最远能到达公里处.
(3)若 城位于 地正南方向,且距 地650km,试判断这场沙尘暴是否会侵袭到 城.如果会,在沙尘暴发生后多长时间它将侵袭到 城?如果不会,请说明理由.
4.(南京市20XX年中考数学试题)某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示;根据图象解答下列问题:
(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?

人教版八年级数学下册-19.2-一次函数应用题-分段函数的应用-分类和练习-学案(无答案)

人教版八年级数学下册-19.2-一次函数应用题-分段函数的应用-分类和练习-学案(无答案)

一次函数的实际应用——分段函数应用题一、分段函数应用题例1:某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系__________例2:某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨元收费.如果超过20吨,未超过的部分按每吨元收费,超过的部分按每吨元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户5月份水费平均为每吨元,求该户5月份用水多少吨(一)表格类例3:为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)超过30平方米不超过m(平方米)部分(45≤m≤60)超过m平方米部分根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.变式练习:为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:(1)若甲用户3月份的用气量为60m3,则应缴费元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少(二)图象类例4:为了响应国家节能减排的号召,鼓励市民节约用电,我市从7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是元,这个月他家用电多少千瓦时每月用气量单价(元/m3)不超出75m3的部分超出75m3不超出125m3的部分a超出125m3的部分a+变式练习:我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元收费,超过10吨的部分,按每吨b 元(b a >)收费.设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图13所示.(1)求a 的值;某户居民上月用水8吨,应收水费多少元(2)求b 的值,并写出当10x >时,y 与x 之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨二、反馈练习1.为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客. 门票定价为50元/人,非节假日打a 折售票,节假日按团队人数分段定价售票,即m 人以下(含m 人)的团队按原价售票;超过m 人的团队,其中m 人仍按原价售票,超过m 人部分的游客打b 折售票. 设某旅游团人数为x 人,非节假日购票款为y 1(元),节假日购票款为y 2(元). y 1,y 2与x 之间的函数图象如图8所示.(1)观察图象可知:a =______;b =______;m = ; (2)直接写出y 1,y 2与x 之间的函数关系式;(3)某旅行社导游王娜于5月1日带A 团,5月20日(非节假日)带B 团都到该景区旅游,共付门票款1900元,A ,B 两个团队合计50人,求A ,B 两个团队各有多少人2.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x (元)表示商品价格,y (元)表示支出金额,分别写出两种购物方案中y 关于x 的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱3.在“老年节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加.旅行前,旅行社承诺每车保证有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,甲种客车载客量为40人/辆,乙种客车载客量为30人/辆. ⑴请帮助旅行社设计租车方案.⑵若甲种客车租金为350元/辆,乙种客车租金为280元/辆,旅行社按哪种方案租车最省钱此时租金是多少⑶旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45座和30座的大小两种客车.大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20座上座率,请直接写出旅行社的租车方案.4.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数之分段函数的实际应用导学案
一、预习感知
1.什么叫一次函数?
2.一次函数的图象是一条 .画图举例
3.什么叫正比例函数?
4.正比例函数的图象是过 的 .画图举例
二 、合作探究
活动(一) 下面的图象反映的过程是,张强从家跑步去体育场,在哪里锻炼了一阵后又走到文具店去买笔,然后散步
[
根据图象口答下列问题:
(1)体育场离张强家多远?
(2)张强从家到体育场用了多少时间?
(3)体育场离文具店多远?
(4)张强在文具店停留了多少时间?
(5)张强从文具店回家的平均速度是多少?
探究(一):【陕西2013副题】某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费,如图是居民每户每月的水(自来水)费y (元)与所用的水(自来水)量x (吨)之间的函数图象。

根据图象回答下列问题:
x/分钟
2.5 1.5 0 15 30 45 65 90 x/吨 17 20 30 0
66
116\
(1)当17≤x≤30时,求y 与x 之间的函数关系式。

(2)当一户居民在某月用水量为15吨时,求这户居民这个月的水费是多少元? (3)已知某户居民上月水费为91元,求这户居民上月用水量是多少吨?。

相关文档
最新文档