不等式组的解集的四种情形

合集下载

一元一次不等式组解集的四种情况

一元一次不等式组解集的四种情况

一元一次不等式组解集的四种情况示例文章篇一:《一元一次不等式组解集的四种情况》嗨,小伙伴们!今天咱们来聊聊一元一次不等式组解集的四种情况,这可超级有趣呢!咱们先来说第一种情况。

想象一下,有两个不等式,就像两个小伙伴在争地盘。

如果一个不等式是x > a,另一个是x > b,这里a和b是两个数哦。

那这个不等式组的解集是啥呢?这就好比两个人都想要更大的地方,那肯定是取更大的那个数呀。

所以这个不等式组的解集就是x > 最大的那个数。

比如说,一个不等式是x > 3,另一个是x > 5,那这个不等式组的解集就是x > 5。

这多简单呀,就像两个小朋友抢糖果,谁要的更多就听谁的。

你们看,是不是很好理解呢?再来说第二种情况啦。

要是一个不等式是x < a,另一个是x < b呢?这就像是两个小懒虫,都想找个最小的地方躲起来。

那这个时候,解集就是x < 最小的那个数。

比如说x < 2和x < 4,那解集就是x < 2。

这就好像是两个小动物找洞穴,越小的洞穴越能让它们觉得安全,所以就选最小的那个啦。

第三种情况有点不一样咯。

如果一个不等式是x > a,另一个是x < b,这里a比b 小。

这就像是两个人,一个想往大的地方去,一个想往小的地方去,那中间的部分就是他们都能接受的啦。

这个时候不等式组的解集就是a < x < b。

就像在一条路上,一个人想走到3这个位置之后,另一个人想走到7这个位置之前,那3到7之间的路就是他们都能走的啦。

比如说x > 1和x < 5,那解集就是1 < x < 5。

这是不是很像两个人在商量一个共同的活动范围呀?最后一种情况呢。

要是一个不等式是x < a,另一个是x > b,这里a还比b小。

这就像两个人的要求完全相反啦,一个要小的地方,一个要大的地方,而且大的地方还在小的地方左边,这怎么可能同时满足呢?所以这个不等式组就没有解啦。

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:,。

要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。

解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。

知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。

要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
3 − 7 ≤ 8, ②
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1

2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1

2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①

《一元一次不等式组》教案

《一元一次不等式组》教案

《一元一次不等式组》教案《一元一次不等式组》教案1教学建议一、知识结构本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.二、重点、难点分析本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的根本性质对不等式进行变形、求不等式组中各个不等式解集的公共局部.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的根底.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.1、在构成不等式组的几个不等式中①这几个一元一次不等式必须含有同一个未知数;②这里的“几个〞并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.2、当几个不等式的解集没有公共局部时,我们就说这个不等式组无解.3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种根本情况:①其中第〔4〕个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。

所以说这个不等式组无解或说其解集为空集。

②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。

三、教法建议1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共局部.求公共局部的过程一定要结合数轴来讲。

2.这节课的讲解自始至终要突出解不等式组的根本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的根底,因此讲新课之前要复习提问这些内容。

中考数学不等式(组)练习题

中考数学不等式(组)练习题

不等式与不等式组1.“a 与3的差是非负数”用不等式表示为 A .30a -> B .30a -< C .30a -≥D .30a -≤2.下列各式中,属于一元一次不等式的是 A .320x ->B .25>-C .321x y ->+D .135y y+<3.如果a b >,那么下列各式中正确的是 A .33a b -<- B .33a b < C .a b ->-D .33a b -<-4.明明准备用自己节省的零花钱充值共享单车“摩拜”,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是 A .3045300x -≥ B .3045300x +≥ C .3045300x -≤D .3045300x +≤5.不等式215x -≤的解集在数轴上表示为ABCD一、不等式的概念、性质及解集表示 1.不等式一般地,用符号“<”(或“≤”)、“>”(或“≥”)连接的式子叫做不等式.能使不课前检测知识梳理等式成立的未知数的值,叫做不等式的解.2.不等式的基本性质温馨提示:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变.3.不等式的解集及表示法(1)不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解集.(2)不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.二、一元一次不等式及其解法1.一元一次不等式不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式.2.解一元一次不等式的一般步骤解一元一次不等式的一般步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否改变).三、一元一次不等式组及其解法1.一元一次不等式组一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一元一次不等式组.2.一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组.3.一元一次不等式组的解法先分别求出每个不等式的解集,再利用数轴求出这些一元一次不等式的的解集的公共部分即可,如果没有公共部分,则该不等式组无解. 4.几种常见的不等式组的解集设a b <,a ,b 是常数,关于x 的不等式组的解集的四种情况如下表所示(等号取不到时在数轴上用空心圆点表示):不等式组 (其中a b <)数轴表示解集口诀x ax b ≥⎧⎨≥⎩ x b ≥ 同大取大x ax b ≤⎧⎨≤⎩ x a ≤ 同小取小x ax b ≥⎧⎨≤⎩ a x b ≤≤ 大小、小大中间找x ax b ≤⎧⎨≥⎩无解 大大、小小取不了考情总结:一元一次不等式(组)的解法及其解集表示的考查形式如下: (1)一元一次不等式(组)的解法及其解集在数轴上的表示; (2)利用一次函数图象解一元一次不等式; (3)求一元一次不等式组的最小整数解; (4)求一元一次不等式组的所有整数解的和. 四、列不等式(组)解决实际问题列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案. 考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.考向一 不等式的定义及性质考点突破(1)含有不等号的式子叫做不等式.(2)不等式两边同乘以或除以一个相同的负数,不等号要改变方向,在运用中,往往会因为忘记改变不等号方向而导致错误.典例1 数学表达式:①57-<;②360y ->;③6a =;④2x x -;⑤2a ≠;⑥7652y y ->+中,是不等式的有 A .2个 B .3个 C .4个D .5个典例2 四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,则他们的体重大小关系是A .P >R >S >QB .Q >S >P >RC .S >P >Q >RD .S >P >R >Q1.“数x 不小于2”是指 A .2x ≤ B .2x ≥ C .2x <D .2x >2.利用不等式的基本性质求下列不等式的解集,并说出变形的依据:(1)若20122013x +>,则x __________;(2)若123x >-,则x __________;(3)若123x ->-,则x __________;(4)若17x->-,则x __________.考向二 一元一次不等式的解集及数轴表示(1)一元一次不等式的求解步骤:去分母→去括号→移项→合并同类项→系数化为1.(2)进行“去分母”和“系数化为1”时,要根据不等号两边同乘以(或除以)的数的正负,决定是否改变不等号的方向,若不能确定该数的正负,则要分正、负两种情况讨论.典例3 不等式2723x x--≤的解集为________________.典例4 某不等式的解集在数轴上表示如下图所示,则该不等式的解集是A .2x ≥B .2x >-C .2x ≥-D .2x ≤-3.不等式215x ->-的解集为 A .2x > B .1x > C .2x >-D .2x <4.不等式3223x x +<+的解集在数轴上表示正确的是 A . B .C .D .考向三 一元一次不等式组的解集及数轴表示不等式解集的确定有两种方法:(1)数轴法:在数轴上把各个不等式解集表示出来,寻找公共部分并用不等式表示出来; (2)口诀法:“大大取大小小取小,大小小大中间找,大大小小取不了.”典例5 不等式组10251x x -≤⎧⎨-<⎩的解集为A .2x <-B .1x ≤-C .1x ≤D .3x <典例6 一元一次不等式组201103x x -≤⎧⎪⎨+>⎪⎩的解集在数轴上表示出来,正确的是A .B .C .D .【名师点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.不等式组31x x ><⎧⎨⎩的解集是A .3x >B .1x <C .13x <<D .无解6.将不等式组1010x x +≥->⎧⎨⎩的解集在数轴上表示,下列表示中正确的是A .B .C .D .考向四 一元一次不等式(组)的整数解问题此类问题的实质是解不等式(组),通过不等式(组)的解集,然后写出符合题意的整数解即可.典例7 若实数3是不等式220x a --<的一个解,则a 可取的最小正整数为 A .2 B .3 C .4D .5【名师点睛】本题主要考查不等式的整数解,熟练掌握不等式解的定义及解不等式的能力是解题的关键.典例8 不等式组101102x x -≥⎧⎪⎨-<⎪⎩的最小整数解是A .1B .2C .3D .47.不等式3(2)4x x -≤+的非负整数解有_______________个.8.不等式组301 32x x --≥⎧⎪⎨>-⎪⎩的所有整数解之和为_______________.考向五 求参数的值或取值范围求解此类题目的难点是根据不等式(组)的解的情况得到关于参数的等式或不等式,然后求解即可.典例9 若关于x 的不等式组2x a x >⎧⎨<⎩的解集是212a x -<<,则a =A .1B .2C .12D .2-典例10 已知不等式组3(2)1213x x a x x --<⎧⎪+⎨>-⎪⎩仅有2个整数解,那么a 的取值范围是A .2a ≥B .4a <C .24a ≤<D .24a <≤【名师点睛】本题考查了一元一次不等式组的整数解.已知解集(整数解)求字母的取值或取值范围的一般思路:先把题目中除了未知数以外的字母当做常数看待,解不等式组,然后再根据题目中对结果的限制条件得到有关字母的式子,求解即可.学科@网9.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为A .23m >-B .23m ≤C .23m >D .23m ≤-10.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有2个,则m 的取值范围为______________.考向六 一元一次不等式(组)的应用求解此类题目的难点是建立“不等式(组)模型”,通过求解不等式(组)的解集并与实际相结合即可.典例11 某市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数为 A .至少20户 B .至多20户 C .至少21户D .至多21户典例12 某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则剩余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.11.某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2 h,乙机器人工作4 h,一共可以分拣700件包裹;若甲机器人工作3 h,乙机器人工作2 h,一共可以分拣650件包裹.(1)求甲、乙两机器人每小时各分拣多少件包裹;(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?12.在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有的购买方案,并指出哪种方案所需资金最少?最少资金是多少万元?1.(3分)不等式组的解集为( )A .﹣2<x <4B .x <4或x≥﹣2C .﹣2≤x <4D .﹣2<x≤42.(3分)若不等式组有解,则实数a 的取值范围是( )A .a <﹣36B .a≤﹣36C .a >﹣36D .a≥﹣36 3.3分)不等式组的整数解的个数为( )A .1B .2C .3D .44.(3分)当x 满足时,方程x 2﹣2x ﹣5=0的根是( ) A .1±B .﹣1 C .1﹣D .1+5.3分)当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A .m >1B .m <1C .m >4D .m <46.不等式组29611x x x k +>+⎧⎨-<⎩,的解集为2x <.则k 的取值范围为( )A .1k >B .1k < C.1k ≥ D .1k ≤7.某经销商销售一批电子手表,第一个月以600元/块的价格售出60块,从第二个月起降价,以550元/块的价格将这批电子手表全部售出,销售总额超过了58.万元,这批手表至少有 A .100块 B .101块 C .103块D .105块8.若不等式1ax x a +>+的解集是1x <,则a 必须满足的条件是A .1a <B .1a <-达标测评C .1a >-D .1a >9.已知不等式组3010x x ->⎧⎨+≥⎩,其解集在数轴上表示正确的是A .B .C .D .10.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高 A .40%B .33.4%C .33.3%D .30%11.已知关于x 的不等式组023x b x -≤⎧⎨-≥⎩的整数解有4个,则b 的取值范围是A .78b ≤<B .78b ≤≤C .89b ≤<D .89b ≤≤12.如图表示下列四个不等式组中其中一个的解集,这个不等式组是A .23x x ≥⎧⎨>-⎩B .23x x ≤<-⎧⎨⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤>-⎧⎨⎩13.适合不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩的全部整数解的和是A .1-B .0C .1D .21.(2017•株洲)已知实数a ,b 满足11a b +>+,则下列选项错误的为 A .a b >B .22a b +>+C .a b -<-D .23a b >2.(2017•眉山)不等式122x ->的解集是 A .14x <-B .1x <-C .14x >-D .1x >-3.(2017•六盘水)不等式963≥+x 的解集在数轴上表示正确的是ABCD4.(2017•遵义)不等式6438x x -≥-的非负整数解有 A .2个 B .3个 C .4个D .5个5.(2017•西宁)不等式组2131x x -+<⎧⎨≤⎩的解集在数轴上表示正确的是A .B .C .D .6.(2017•绥化)不等式组1313x x -≤⎧⎨+>⎩的解集是实战演练A .4x ≤B .24x <≤C .24x ≤≤D .2x >7.(2017•广西四市)一元一次不等式组⎩⎨⎧≤+>+31022x x 的解集在数轴上表示为A .B .C .D .8.(2017•德州)不等式组2931213x x x +≥⎧⎪+⎨>-⎪⎩的解集为A .3x ≥B .34x -≤<C .32x -≤<D .4x >9.(2017•自贡)不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是10.(2017•百色)关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是 A .3 B .2 C .1D .23。

不等式的性质、解集与解法

不等式的性质、解集与解法

不等式的基本性质及其解集一、不等式的性质1.不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变. c a b a +⇒> ca b a c b +⇒<+, c b +2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

若:0,>>c b a ,可得ac bc .3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.若ac c b a ⇒<>0, bc . 二.不等式的解集1.定义:一般的,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称这个不等式的解集.2.解与解集的联系: 解集和解那个的范围大.(解是指个体,解集是指群体) 3.不等式解集的表示方法. 1-≤x ①用不等式表示。

如1-≤x 或x <-1等。

x <②用数轴表示.(注意实心圈与空心圈的区别) 4.解一元不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意是否需要变号。

典型例题例1.①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围. ②不等式a x <2的解集为7<x ,求a 的值.例2.(1)如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围.(2)已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.例3.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。

A 、x >-1B 、x <-1C 、x <-2D 、无法确定 例4.(1)若0)2(32=--+-k y x x 中,y 为非负数,求k 的取值范围.思考题.设c b a ,,均为正数,若ac bc b a b a c +<+<+,试确定c b a ,,三个数的大小.y k 2x(第3题图)【经典练习】一、选择题(每小题2分,共36分)1、“x 的2倍与3的差不大于8”列出的不等式是( ) A 、2x -3≤8 B 、2x -3≥8 C 、2x -3<8 D 、2x -3>82、下列不等式一定成立的是( ) A 、5a >4aB 、x +2<x +3C 、-a >-2aD 、aa 24> 3、如果x <-3,那么下列不等式成立的是( ) A 、x 2>-3x B 、x 2≥-3x C 、x 2<-3x D 、x 2≤-3x 4、不等式-3x +6>0的正整数解有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 *5、若m 满足|m |>m ,则m 一定是( ) A 、正数 B 、负数 C 、非负数 D 、任意有理数 6、在数轴上与到原点的距离小于8的点对应的x 满足( ) A 、-8<x <8 B 、x <-8或x >8 C 、x <8 D 、x >8**7、要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A 、m >23,n >-31B 、m >3,n >-3C 、m <23,n <-31D 、m <23,n >-31*8、 下列说法中,正确的有( ).① 若0ab <,则0,0;a b <<②若0,0a b <>,则0ab <;③若22,a b m m <则a b <;④若a b <,则22am bm <;⑤若0a b <<,则0a b +<;⑥若0a b +<,则0a b <<.A 、4个B 、3个C 、2个D 、1个 9、 下列说法正确的是( ). A 、5是不等式x+5>10的解集 B 、x <5是不等式x-5>0的解集 C 、x ≥5是不等式-x ≤-5的解集D 、x >3是不等式x-3≥0的解集10、 若a-b <0,则下列各式中一定正确的是( ).A 、a >bB 、ab >0C 、ab<0 D 、-a >-b11 不等式5x-1≤24的正整数解有( ).A 、4个B 、5个C 、6个D 、无限多个 **12 实数b 满足|b |<3,并且实数a 使得a <b 恒成立,则a 的取值范围是( ) A 、小于或等于3的实数 B 、 小于或等于-3的实数 C 、小于-3的实数 D 、 小于3的实数 13、 若4x <-,则下列不等式中正确的是( ). A .x 2≥-4x B 、x 2≤-4x C 、 x 2>-4x D 、 x 2<-4x*14、关于x 的方程2435x a x b++=的解不是负数,则a 与b 的关系是( ) A 、35a b > B 、 b ≥53aC 、5a =3bD 、5a ≥3b 15、在不等式100>5x 中,能使不等式成立的x 的最大正整数值为( ). A 、18 B 、19 C 、20 D 、21 16、下列不等式中,错误的是( ). A 、57-<-B 、5>3C 、0a 12>+D 、a a ->**17、已知5x -m ≤0只有两个正整数解,则m 的取值范围是( ) A 、10<m <15 B 、10≤m ≤15 C 、10<m ≤15 D 、10≤m <15 18、下列各式中,是一元一次不等式的是( ). A 、1y x 21<- B 、02x 3x 2>+- C 、2x141x 2+=+ D 、x 61x 31x 21>+二、填空题(每小题2分,共36分)1、不等式6-2x >0的解集是________.2、当x ________时,代数式523--x 的值是非正数. 3、当m ________时,不等式(2-m )x <8的解集为x >m-28. 4、若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________.5、已知三角形的两边为3和4,则第三边a 的取值范围是________.6、已知一次函数y =(m +4)x -3+n (其中x 是自变量),当m 、n 为________时,函数图象与y 轴的交点在x 轴下方.*7、某种商品的价格第一年上升了10%,第二年下降了(m -5)%(m >5)后,仍不低于原价,则m 的值应为________.8、5m-3是非负数,用不等式表示为______. 9、不等式238654x--<-<-的解集为______.10、当a b >,则2ab b <成立的条件是______.*11、明明的语文、外语两科的平均分为m 分,若使语文、外语、数学三科的平均分超过n 分,则数学分数a (分)应满足的关系式是_________.(m >n ) 12、设a <b ,用“<”或“>”|号填空:11(1)_____;(2)100_____100;22(3)1.5_____1.5;(4)_____.1212a b a b a ba b --++--13、不等式的性质:(1)如果a>b, 那么a+c b+c. (2)如果m>n, p>0, 那么mp np. (3) . 14、若-3x +4<-2x -5,则-x ______-9.15、已知直线y=kx+b 经过点(2,0),且k <0,则当x ______时,y <0. 16、不等式x <3的非负整数解是________.17、不等式|x |-2≤3的正整数解是____________.18、在2y 2-3y +1>0, y 2+2y +1=0,-6<-2, 27ab<2, 2312x x +- ,2103y y --<,7x +5≥5x +6中, 一元一次不等式有_____个,它们是_____________________.三、解答题1、解下列不等式,并把解集在数轴上表示出来:(每题4分共16分) (1)3(1-x )-2(x+8)<2; (2)3(x+3)-5(x-1) ≥7; (3)132+-x ≤42+x ;(4))69(6123--x x ≥7+x .3、(6分)在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛。

人教版七年级数学下册 第九章 :不等式组的解集规律 巩固练习(包含答案)

人教版七年级数学下册 第九章 :不等式组的解集规律 巩固练习(包含答案)

不等式组的解集规律1.不等式组的解集有四种情况:①同大取大,②同小取小,③大小小大取中间,④大大小小是无解。

2.同解指两个不等式组具有相同的解集3.有关不等式组解集的问题可借助数轴画图,运用数形结合的思想解决。

【例1】如果关于x 的不等式组2030x a x b -≥⎧⎨-≤⎩的整数解仅有x =2、x =3,那么适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有( )A.3个B.4个C.5个D.6个【例2】已知关于x 的不等式组5310x a x -≥-⎧⎨-⎩<无解,则a 的取值范围是 。

【例3】若不等式组237635x a b b x a-⎧⎨-⎩<<的解集是5<x <22,求a ,b 的值【例4】若关于x 的不等式组2123x a x b -⎧⎨-⎩<>与不等式组()351235112x x -⎧-⎪⎨⎪-+⎩<<的解集相同,求代数式()()11a b +-的值。

1.若关于x 的一元一次不等式组0231x a x -⎧⎨-⎩><恰有2个负整数解,则a 的取值范围是 。

2.若关于x 的不等式组324x a x a +⎧⎨-⎩<>无解,则a 的取值范围是( ) A.3a ≤- B.a <-3 C.a >3 D.3a ≥3.若关于x 的一元一次不等式组()63191x x x m -+-⎧⎪⎨--⎪⎩<>的解集是x >3,则m 的取值范围是( )A.m>4B.m≥4C.m <4D.m≤44.关于x 的不等式组32223x b a a x b +⎧⎪⎨+≤⎪⎩>与不等式组31234x x +-⎧⎨+≤⎩>,同解,则a = ,b = 。

5.已知关于x 的不等式组12x m x m -⎧⎨--⎩<>的解集中任意一个x 的值都不在一1≤x ≤2的范围内,则m 的取值范是( )A.24m -≤≤B.m ≤-2或m ≥4C.24m -<<D.m <-2或m >46.不等式组()()11132412x x x x a -⎧--⎪⎨⎪-≤-⎩<恰有3个整数解,则a 的取值范围是( )A.65a -≤-<B.-6<a ≤-5C.-6<a <-5D.-6≤a ≤-57.若不等式组200x a x b -+≤⎧⎨-≤⎩的解集为12x -≤≤(1)求a 、b 的值;(2)解不等式ax+b<0,并把它的解集在下面的数轴上表示出来。

不等式的解法高中数学

不等式的解法高中数学

不等式的解法高中数学高中数学:不等式与不等式组的解法1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。

例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a<2时,其解集为(-∞,b+2a-2)③当a=2,b≥-2时,其解集为φ④当a=2且b<-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△<0,其解集为R②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的解法将不等式中每个不等式求得解集,然后求交集即可.例3:解不等式组m2+4m-5>0(1)m2+4m-12<0(2)解:由①得m<-5或m>1由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)4.分式不等式的解法任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.例4:解不等式x2-x-6-x2-1>2解:原不等式化为:3x2-x-4-x2-1>0它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0解(I)得解集空集,解(II)得解集(-1,43).故原不等式的解集为(-1,43).5.含有绝对值不等式的解法去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档