斐波那契提出的问题

合集下载

斐波那契数列题目[集锦]

斐波那契数列题目[集锦]

斐波那契数列问题。

(专业C++作业ch4-1)题目描述著名意大利数学家斐波那契(Fibonacci)1202年提出一个有趣的问题。

某人想知道一年内一对兔子可以生几对兔子。

他筑了一道围墙,把一对大兔关在其中。

已知每对大兔每个月可以生一对小兔,而每对小兔出生后第三个月即可成为“大兔”再生小兔。

问一对小兔一年能繁殖几对小兔?提示:由分析可以推出,每月新增兔子数Fn={1,1,2,3,5,8,13,21,34,…}(斐波那契数列),可归纳出F1=1,F2=1,……,Fn=Fn-2+Fn-1。

仿照课本P128页的“2.基本题(1)”进行编程。

注意,(1)课本上的程序显示出数列的前16项的所有数值,这里要求只显示第n项数值;(2)课本上的程序在每次循环时显示数列中的两个数值(i=3时,显示了数列的第3项和第4项)。

输入描述一个正整数n,表示求第n个月的新增的兔子数。

输出描述对输入的n,求第n个月的新增的兔子数。

输入样例16输出样例9872. (18分)求阶乘和。

(专业C++作业ch4-2)题目描述编程求出阶乘和1!+2!+3!+…+n!。

注意:13!=6 227 020 800已经超出unsigned long的范围,故程序中不宜采用整型数据类型,而应使用双精度类型存放结果。

输入描述一个正整数n,n的值不超过18。

输出描述对输入的n,求阶乘和1!+2!+3!+…+n!。

(输出结果时,可以用输出格式控制“cout<<setprecision(17)”来控制双精度类型的结果按17个有效数字的方式显示)输入样例10输出样例40379133. (18分)除法问题。

(专业C++作业ch4-3)题目描述编写一个函数原型为int f(int n);的函数,对于正整数n计算并返回不超过n 的能被3除余2,并且被5除余3,并且被7出余5的最大整数,若不存在则返回0。

应编写相应的主函数调用该函数,在主函数中接受用户输入的正整数n。

整理几个重要的特殊数列

整理几个重要的特殊数列

几个重要的特殊数列 基础知识 1.斐波那契数列 莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。

在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。

年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。

其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。

现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。

特征根法:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。

(1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定; (2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。

(这个问题的证明我们将在后面的讲解中给出) 因此对于斐波那契数列,对应的特征方程为,其特征根为: ,所以可设其通项公式为,利用初始条件得,解得 所以。

这个数列就是著名的斐波那契数列的通项公式。

斐波那契数列有许多生要有趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。

斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。

为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明) (1)斐波那契数列的前项和; (2); (3)(); (4)(); (5)(); 2.分群数列 将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。

高考题中的斐波那契数列问题

高考题中的斐波那契数列问题

斐波那契数列是一个在数学和自然界中广泛出现的数列,其定义是:数列的第一个和第二个数都是1,之后的每一个数都是前两个数的和。

这个数列的前几项是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
在高考题中,斐波那契数列可能会以多种形式出现,例如选择题、填空题或应用题。

题目可能会要求考生识别斐波那契数列,或者利用斐波那契数列的性质来解决某个问题。

以下是一个可能的斐波那契数列高考题示例:
题目:数列{an} 满足a1 = 1, a2 = 1, an+2 = an + an+1 (n ∈N*),则a8 = ()
A. 21
B. 34
C. 55
D. 89
解析:根据斐波那契数列的定义,我们可以依次计算出数列的前几项:
a3 = a1 + a2 = 1 + 1 = 2
a4 = a2 + a3 = 1 + 2 = 3
a5 = a3 + a4 = 2 + 3 = 5
a6 = a4 + a5 = 3 + 5 = 8
a7 = a5 + a6 = 5 + 8 = 13
a8 = a6 + a7 = 8 + 13 = 21
因此,a8 = 21,选项 A 正确。

这类题目主要考察考生对斐波那契数列定义的理解以及数列计算能力。

通过熟练掌握斐波那契数列的性质和递推公式,考生可以迅速找到问题的答案。

同时,这类题目也考察了考生的逻辑推理能力和数学运算能力。

几个特殊的数列

几个特殊的数列

几个重要的特殊数列基础知识1.斐波那契数列莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。

在1202年斐波那契提出了一个非常著名的数列,即:假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。

年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子?这就是非常著名的斐波那契数列问题。

其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。

现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。

特征根法:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。

(1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定;(2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。

(这个问题的证明我们将在后面的讲解中给出)因此对于斐波那契数列,对应的特征方程为,其特征根为:,所以可设其通项公式为,利用初始条件得,解得所以。

这个数列就是著名的斐波那契数列的通项公式。

斐波那契数列有许多生要有趣的性质,如:它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。

斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。

为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明)(1)斐波那契数列的前项和;(2);(3)();(4)();(5)();2.分群数列将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。

如在上述数列中,我们将作为第一组,将作为第二组,将作为第三组,……依次类推,第组有个元素,即可得到以组为单位的序列:(),(),(),……我们通常称此数列为分群数列。

斐波那契数数列原理

斐波那契数数列原理

斐波那契数数列原理斐波那契数列原理斐波那契数列是数学领域的一个经典问题,是自然数列中最为有趣的一个数列之一。

斐波那契数列是由0和1开始的数字序列,序列中每个数字都是前两个数字的和。

例如:0、1、1、2、3、5、8、13、21、34……斐波那契数列的起源可以追溯到12世纪意大利数学家列奥纳多·斐波那契,他在他的书《算盘书》中首次提出了这个问题。

曾经是一个简单的数学问题,如今它被应用到多种场景,例如金融,计算机科学,生物学等。

这个数列看似简单,但是其背后的原理和应用却是十分复杂的。

斐波那契数列的公式为:F(n) = F(n-1) + F(n-2),其中F(0)=0,F(1)=1。

这个公式描述了斐波那契数列中的每一项是由其前面两项的和求得。

例如:F(2) = F(1) + F(0) = 1 + 0 = 1,F(3) = F(2) + F(1) = 1 + 1 = 2,以此类推。

斐波那契数列的众多特征和应用使其成为许多研究者的热点问题。

其一,斐波那契数列的增长速度非常快,这是因为斐波那契数列的每一项都是前两项的和,因此每一项都比前一项要大。

其二,斐波那契数列和黄金分割(Golden Ratio)有着紧密的联系。

斐波那契数列中,相邻两项的比值接近于黄金分割的比例(约等于1.618)。

斐波那契数列的应用涉及金融,计算机科学,生物学等多个领域。

在金融领域,斐波那契数列可以用于分析市场趋势,确定买进或卖出的时机。

在计算机科学中,斐波那契数列可以用于优化算法性能,例如用于计算斐波那契数列的递归算法时间复杂度较高,可以用迭代算法进行优化。

在生物学领域,斐波那契数列可以用于描述病毒数量的增长速度,以及DNA序列中的特征。

总之,斐波那契数列虽然简单,但其背后的原理和应用十分复杂。

斐波那契数列和黄金分割有着紧密的联系,其应用涉及多个领域。

因此,深入研究斐波那契数列的原理与应用,将有助于我们更好地理解和解决实际问题。

斐波那契数列相关问题

斐波那契数列相关问题

斐波那契数列相关问题斐波那契数列是指每个数字都是前两个数字的和,从0和1开始。

数列的前几个数字依次是0、1、1、2、3、5、8、13、21、34、…。

这个数列在数学上有很多有趣的性质和应用,本文将介绍斐波那契数列的定义、性质、递推公式、应用和扩展。

一、斐波那契数列的定义斐波那契数列的定义是:F(0) = 0,F(1) = 1,F(n) = F(n-1) +F(n-2) (n≥2)。

通过这个定义可以得到斐波那契数列的前几个数字:0、1、1、2、3、5、8、13、21、34、…。

二、斐波那契数列的性质斐波那契数列有很多有趣的性质,下面列举一些主要的性质:1. 对称性:斐波那契数列是关于中间数字对称的,即F(n) =F(n-1) + F(n-2) = F(n-2) + F(n-3) = ... = F(2) + F(1) = F(1) + F(0)。

这个性质可以通过数学归纳法证明。

2. 黄金分割比:斐波那契数列的相邻数字之间的比值趋近于黄金分割比,即lim(n→∞) F(n+1)/F(n) = φ,其中φ≈1.6180339887是黄金分割比。

这个性质在建筑、艺术等领域被广泛应用。

3. 奇偶性:斐波那契数列中,奇数位的数字是奇数,偶数位的数字是偶数。

这个性质可以通过对斐波那契数列进行模2求余证明。

4. 二项式系数:斐波那契数列与二项式系数之间存在一定的关系。

具体来说,斐波那契数列中每隔一位的数字之和是前一位的数字。

这个性质可以通过斐波那契数列的递推公式证明。

三、斐波那契数列的递推公式斐波那契数列可以使用递推公式计算,即F(n) = F(n-1) + F(n-2)。

通过递推公式可以快速计算斐波那契数列的任意项。

递推公式的衍生形式包括通项公式和矩阵乘法公式。

通项公式是指可以直接计算第n项的公式,通常会涉及到根号、指数和对数等数学运算。

矩阵乘法公式是指将斐波那契数列的前两个数字构成矩阵,并进行矩阵乘法得到第n项的公式。

数学-以斐波那契数列为背景的高中数学问题

数学-以斐波那契数列为背景的高中数学问题

这就产生了斐波那契数列:1,1,2,3,5,8,13,21,34…其规律是从第三项起,每一项都是前两项的和.用递推公式表达表达就是:12211n n na aa a a++==⎧⎨=+⎩斐波那契数列通项公式为n nna⎡⎤⎥=−⎥⎝⎭⎝⎭1.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 …实标生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:12211, ()n n n a a a a a n N *++===+∈,则357920211a a a a a ++++++是斐波那契数列{}n a 中的第__________项.答案:2022解析:由题意得357920212357920214579202167920212020202120221.a a a a a a a a a a a a a a a a a a a a a a a ++++++=++++++=+++++=++++==+=2.“斐波那契数列”是数学史上一个著名数列, 在斐波那契数列{}n a 中, 12211, ()n n n a a a a a n N *++===+∈ .用n S 表示他的前n 项和,若已知2020S m = ,那么2022________.a =答案:m +1解析:()12211,1n n n a a a a a n N *++===+∈123234345,,a a a a a a a a a ∴+=+=+=201920202021202020212022,a a a a a a +=+=以上累加得:1234202020212222a a a a a a ++++⋯⋯++3420212022a a a a =++⋯⋯++12320202022220221a a a a a a m a m ∴+++⋯⋯+=−=∴=+3.“斐波那契数列”由13世纪意大利数学家斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”,斐波那契数列{}n a 满足: 12121,(3)n n n a a a a a n −−===+≥,记其前n 项和为n S ,则6543( )S S S S +−−=A.8 B.13 C.21 D.34答案:C解析:【分析】由数列的递推式和斐波那契数列{}n a 的定义,计算可得所求值.【详解】()12121,1,3,n n n a a a a a n n *−−===+≥∈N 1n a −+++1n a −+++)21n a a −++++1n a a −+++2=1n a +−21n a −++=2n a a ++=31242323a a a a a a =+==+=,5346455,8a a a a a a =+==+= 65436453S S S S S S S S ∴+−−=−+−6554855321a a a a =+++=+++=故选C.4.若数列{}n F 满足,则称{}n F 为斐波那契数列.记数列{}n F 的前n 项和为n S ,则( ) A.26571F F F =+ B.681S F =−C.135910F F F F F +++= D.2222123678F F F F F F +++=答案:BC解析:()1212,A.11,3,n n n F F F F F n n N *−−===+>∈3214325436547658769871098226576576868132, 3,5, 8,13, 2134, 55,64,166, 1 ,A B.1123520, 120, B ;C.F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F S F S F F F F ∴=+==+==+==+==+==+==+==+=∴=+=≠+=++++=−=++故错误;=-1故正确591022221236222278123678125133455;D.114925641041321273,, .C F F F F F F F F F F F F F FD ++=++++==+++=+++++==⨯=∴++++≠.故确故错误正5.斐波那契数列,又称黄分割数列,它在很多方面与大自然神奇地契合,小到地球上的动植物,如向日葵、松果、海螺的成长过程,大到海浪、飓风、宇宙星系演变,都遵循着这个规律,人们亲切地称斐波那契数列为自然界的数学之美,在数学上斐波那契数列{}n a 一般以递推的方式被定义:12211, ()n n n a a a a a n N *++===+∈,则( )A.1055a = B .2211n n n a a a ++−=C. 1n n a +⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是等比数列 D.设1n n na b a +=,则112n n n n b b b b +++−<−答案:ABC解析:12213A.1,,n n n a a a a a a ++===+开始各项依次为:则从102, 3 ,5 ,8 ,13 ,21 ,34 ,55 ,,55,;a ⋯⋯=因此正确()222211111B.n n n n n n n n n n a a a a a a a a a a ++++−+−=+−=−由222111n n n n n n a a a a a a ++−+−=−=⋯⋯可得:22132121 1.;a a a =−=⨯−=因此正确211111C.22n n n n n a a a a a ++++−+=++11111,222n n n n a a a a ++⎛⎫+=+=+ ⎪ ⎪⎝⎭21a +2111,,;22n n a a ++⎧⎫⎪⎪∴+⎨⎬⎪⎪⎩⎭数列是等比数列因此正确11211D.,n n n n n n n n n a a a b b b a a a +++++=−=−由则212111n n n n n n n a a a a a a a ++++−==12121,n n n n b b a a ++++−=同理可得:20,n n a a +>>由斐波那契数列的单调性可得:11211,.ABC.n n n n a a a a +++>因此因此不正确故选6.(多选)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个 90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列现将斐波那契数列记为{}n a ,12121,(3)n n n a a a a a n −−===+≥, 边长为斐波那契数a n 的正方形所对应扇形面积记为b n , (n ∈N *),则( )A.223 (3)n n n a a a n −+=+≥B. 123201920211a a a a a ++++=+C.()20202019201820214b b a a π−=⋅ D. 123202*********4b b b b a a π++++=⋅答案:AD解析:123,n n n a a a n −−=+≥由(递推公式)可得211212 n n n n n n n n a a a a a a a a ++−−−=+=+=−()221123A 3n n n n n n n a a a a a a n a +−−−+=++−=≥正确所以.故选项12313421,,,a a a a a a a ==−=−类似的有:11122(2),,1,n n n n n n a a a n a a a a +−++=−≥+−=−迭加可得123201920211B ;a a a a a +++⋯+=+故错误,故选项错误2112,,44n n n n n n b a b b a a ππ−+−=−=由题意可知,扇形面积为故()2020201920182021C ;4b b a a π−⋅=则错,故选项错误误121212223221(3),,,n n n a a a n a a a a a a a a −−=+≥==−由可得222211121,,n n n n n n n n a a a a a a a a a a +−+=−+++=迭加可得2123202020202021n n b a b b b b a a ππ=+++⋯+=⋅所以又.D AD.错误,故选故选项7.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8…,这列数的特点是:前两个数均为1,从第三个数起,一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n f 称为斐波那契数列,并将数列{}n f 中的各项除以4所得余数按原顺序构成的数列记为{}n g ,则下列说法正确的是( ) A.20211g = B.12320212696g g g g ++++=C.22221232020201920212f f f f f f ++++= D. 222123222022210f f f f f f −+−=答案:ABD解析:123451,1,2,3,1,g g g g g =====由已知得67891011120,1,1,2,3,1,0,,g g g g g g g ======={}6.n g 所以数列是以为周期的周期函数2021A ,202163365,1,A g =⨯+=对;故于选项因为所以选项正确1232021B ,g g g g ++++对于选项336(112310)(11231)2696,B ;=⨯++++++++++=故选项正确1221C ,,n n n f f f f f ++==+,对于选项()2211222312321,,f f f f f f f f f f f ∴==−=−()233423432,,f f f f f f f f =−=−()2112121,n n n n n n n n f f f f f f f f ++++++=−=−22221232020f f f f ++++所以()()()()122312343220192020201920182020202120202019f f f f f f f f f f f f f f f f f f =+−+−++−+−20202021,C ;f f =故错误()22222232122232221D ,,f f f f f f f f =−=−对于选项因为()22121222021222120,f f f f f f f f =−=−22212322202221212322232221202221222120f f f f f f f f f f f f f f f f f f −+−=++−+所以()20212221232223202321232223f f f f f f f f f f f f f =+−+−=+222322230,D .ABD.f f f f =−=故正确故选8.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 2na a ++=2211223n n n na a a +++=22223233n na a a a a a +++=+++224na a ++1n n a a +=称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论确的是() A.68a = B.954S =C.135********a a a a a ++++= D.22212201920202019a a a a a +++=答案:ACD解析:{}A ,61,1,2,3,5,8,A ;n a 对于选项数列的前项为故正确()81234256420192020201813520192020135201921221212231232B ,112358132154,B ;C ,,,,,:2020D ,,n n n S a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ++=+++++++===−=−⋯⋯=−++++=++++=+==−=−对于选项故错误对于选项由项;可得故是斐波那契数波列对于选项,斐的那契数列总有中第则()()21334234232220182018201920172018201920172018201920192020201920182222123201920192020,,,,D ;:A ,CD.,a a a a a a a a a a a a a a a a a a a a a a a a a a a a =−=−⋯⋯=−=−=−++++=故正确故选312n a ++=是奇数时等于第n+12, 当 n1.半径为1的两个圆12,O O外切,l是它们的一条外公切线,作312O O O l和、、均相切,作234,O O O l和、、均相切……,作11n n nO O O l+−和、、均相切,求8O的半径.解析:111,,,n n n n nO R l O S l O l O R O S P Q−+−⊥⊥作作过的平行线、于、111,n n n n nO M O R M O M PQ O P O Q−++⊥==+作于,则1nO Q+==因为1,n nO P O M+==同理==可得1112(2),1,n n n na a a a n a a+−==+≥==令则且3124235346452,3,5,8a a a a a a a a a a a a =+==+==+==+=75686713,21a a a a a a =+==+=,8228111.21441r a ===所以2.(2012上海)已知1()1f x x=+,各项均为正数的数列{}n a 满足()121,n n a a f a +==.若20102012a a =, 则2011a a +=__________.解析:2010201020121,,,1a t a a t t t ===+设由得解得则:()201020082200811,,.12k a t a t a k N a *====∈+则同理123579111123581,,,,,,,1235813n n a a a a a a a a +=======+又则2011813a a +故。

Fibonacci数列(斐波那契数列)

Fibonacci数列(斐波那契数列)
pln(f)f ep
f e 0 . 4 7 8 2 n 0 . 7 6 2 4 0 . 4 6 6 5 e 0 . 4 7 8 2 n
这是粗略通项公式,那怎样寻找精确的通项公式呢?
3.Fibonacci数列的通项公式
数列满足递推关系 fn2fn1fn ,称这样 的递推关系为二阶线性差分方程。
猜测: 1 和 2 都是差分方程的解,都是数列
的通项,但这是不怎么可能,因为数列不会 有两个通项吧。猜测 1 与 2 的线性组合仍 是差分方程的解。设 fnC 11nC2 2 n ,代入 差分方程进行检验,猜测确实成立!
因此,差分方程的解为:
n
n
fnC1125 C2125
3.Fibonacci数列的通项公式
4.自然界中的斐波那契数列
这也可纳入饮食的0.618规律之列。抗衰老有 生理与心理抗衰之分,哪个为重?研究证明, 生理上的抗衰为四,而心理上的抗衰为六, 也符合黄金分割律。充分调动与合理协调心 理和生理两方面的力量来延缓衰老,可以达 到最好的延年益寿的效果。一天合理的生活 作息也符合0.618的分割,24小时中,2/3时 间是工作与生活,1/3时间是休息与睡眠;在 动与静的关系上,究竟是"生命在于运动",还 是"生命在于静养"?
根据初始条件 f1 f2 1,可能确定常数 c 1 , c 2 ,
[c1,c2]=solve('c1*(1+sqrt(5))/2+c2* (1sqrt(5))/2=1','c1*((1+sqrt(5))/2)^2+ c2*((1-sqrt(5))/2)^2=1')
3.Fibonacci数列的通项公式
Fibonacci数列(斐波那契数列)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斐波那契是欧洲中世纪颇具影响的数学家,公元1170年生于意大利的比萨,早年曾就读于阿尔及尔东部的小港布日,后来又以商人的身份游历了埃及、希腊、叙利亚等地,掌握了当时较为先进的阿拉伯算术、代数和古希腊的数学成果,经过整理研究和发展之后,把它们介绍到欧洲。

公元1202年,斐波那契的传世之作《算法之术》出版。

在这部名著中,斐波那契提出了以下饶有趣味的问题:假定一对刚出生的小兔一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。

一年内没有发生死亡。

问一对刚出生的兔子,一年内能繁殖成多少对兔子?图 1 逐月推算,我们可以得到数列:1,1,2,3,5,8,13,21,34,55,89,144,233。

这个数列后来便以斐波那契的名字命名。

数列中的每一项,则称为“斐波那契数”。

第十三位的斐波那契数,即为一对刚出生的小兔,一年内所能繁殖成的兔子的对数。

这个数字等于233。

从斐波那契数的构造明显看出:斐被那契数列从第三项起,每项都等于前面两项的和。

假定第n项斐波那契数为,于是我们有:通过以上关系式,我们可以一步一个脚印地算出任意,不过,当n很大时,推算是很费事的。

我们必须找到更为科学的计算方法。

为此,我们在以下一列数中去导求满足关系式的解答。

解上述q的一元二次方程得: [!--empirenews.page--] 。

据此,设,并结合,可确定α,β,从而可以求出:以上公式是法国数学家比内首先求得的,通称比内公式。

令人惊奇的是,比内公式中的是用无理数的幂表示的,然而它所得的结果却是整数。

读者不信,可以找几个n的值代进去试试看!斐波那契数列有许多奇妙的性质,其中有一个性质是这样的:有兴趣的读者,不难自行证明上述等式。

斐波那契数列的上述性质,常被用来构造一些极为有趣的智力游戏。

例如,美国《科学美国人》杂志就曾刊载过一则故事:一位魔术师拿着一块边长为8英尺的正方形地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯。

”这位匠师对魔术师算术之差深感惊异,因为商者之间面积相差达一平方英尺呢!可是魔术师竟让匠师用图2和图3的办法达到了他的目的!这真是不可思议的事!亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢?斐波那契数列在自然科学的其他分支,也有许多应用。

例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。

所以,一株树苗在一段间隔(如图4),例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。

这样,一株树木各个年份的枝桠数,便构成斐波那契数列。

这个规律,就是生物学上著名的“鲁德维格定律”。

相关文档
最新文档