随机信号功率谱分析

合集下载

数字随机信号功率谱密度分析-基带1

数字随机信号功率谱密度分析-基带1

数字随机信号功率谱密度分析-基带1数字随机信号功率谱密度分析-基带1数字随机信号功率谱密度(PSD )分析-基带1、形如∑a n g (t -nT 0)的基带数字信号的PSD设有随机数字信号x (t )=∑a g (t -nT )= ∑a n δ(t -nT 0)⎪*g (t )⎪n =-∞⎪其中g(t)为基带成型脉冲,其持续时间为t ∈(0,T0) 。

a n 为取值离散的平稳随机随机序列,可以为复值。

(1-1)式可以表示一般的基带随机过程。

至于(窄带)带通过程,则可用等效基带法表示为:s (t )=Re x (t )e j ωc t之后使用窄带随机过程理论来分析。

容易知道,(1-1)式所表示的随机过程是以T 0为周期的周期平稳随机过程。

要求其功率谱密度,一种方法是先求得其周期的自相关函数,然后在一个码元周期内求其平均自相关函数,再对后者求傅里叶变换。

我们这里不使用这种方法,而是直接由功率谱密度的定义来求。

下面使用定义来分析(1-1)式表示的随机信号的功率谱密度。

理论上,随机过程都是功率信号,故其功率谱密度的一般定义为:E ⎪X T (f )⎪⎪ P x (f )=lim ⎪其中X T (f)是对过程截断之后取其傅里叶变换。

E[·]表示取集平均。

按照傅里叶变换的定义:X T (f )=⎪x T (t )e -j 2πft dtx T (t)是对应的截断时间信号。

取T =(2N+1)T0,则(1-3)式变为P x (f )=limE ⎪X (2N +1) T 0(f )⎪ ⎪⎪N →+∞2N +1T ⎪⎪0因为(1-3)表示的极限存在,所以T 无论怎么趋向+∞,得到的极限都应该相等。

这里取特殊的按照T 0的倍数增长的方式, 即x T (t)的时间跨度限制为[-NT0,(N+1)T0],当N →∞时,x T (t)就是x (t)。

于是(1-5)式可以进一步写成P x (f )=limE ⎪X (2N +1) T 0(f )⎪⎪⎪N →+∞2N +1T ⎪⎪0N →+∞2N +1T ⎪0x T (t 1)e -j 2πft 1dt 1x T (t 2)e -j 2πft 2dt 2⎪2⎪⎪E X (2N +1) T 0(f )⎪=E ⎪x T (t )= ∑a n δ(t -nT 0)⎪*g (t )⎪n =-N ⎪x T (t 1)e-j 2πft 1x T (t 2)e -j 2πft 2dt 2⎪∑a g (tT 0+nT 0nT 0T 0-nT 0)ej 2πft 1∑a g (t-mT 0)e -j 2πft 2dt 2]g (t 2-mT 0)e -j 2πft 2dt 2]=E [∑a *n =-N Ng (t 1-nT 0)e j 2πft 1dt 1j 2πf (t 1+nT 0)T 0+mT 0=E [∑a n ⎪g (t 1)ea m ⎪g (t 2)e -j 2πf (t 2+mT 0) dt 2]把求和跟积分分离开,得E ⎪X (2N +1) T 0(f )⎪⎪N N T 0T 0⎪-j 2π(m -n ) fT 0⎪-j 2πf (t 2-t 1) *⎪=E a a e g t g t e dt 1dt 2 (1-8) ()()∑∑n m 12⎪⎪⎪0⎪0⎪⎪⎪m =-N n =-N ⎪在上式后项的积分中令变量替换t 2=t1+τ,得⎪⎪g (t )g (t )e-j 2πf (t 2-t 1)dt 1dt 2=⎪g (t 1)g (t 1+τ)dt 1e -j 2πf τd τR g (τ)e -j 2πf τd τ=ψg (f )正是g(t)的自相关函数的傅里叶变换。

随机信号的功率谱

随机信号的功率谱

功率谱分析在信号处 理中的应用
功率谱分析在信号处理领域具有 广泛的应用,如语音信号分析、 雷达信号处理、通信信号处理等 。通过功率谱分析,可以提取信 号的特征信息,实现信号检测、 识别和分类等任务。
未来发展趋势预测
• 高分辨率功率谱估计:随着信号处理技术的发展,对功率谱估计的分辨率要求 越来越高。未来将继续研究高分辨率的功率谱估计方法,以提高信号处理的精 度和性能。
杂波背景下目标检测
在雷达和声呐应用中,接 收到的信号往往包含杂波 ,即非目标反射的信号。 杂波可能来自地面、海面 、大气等环境因素。
功率谱分析可用于区分目 标回波和杂波。目标和杂 波在功率谱上通常具有不 同的特征,如频率范围、 幅度和形状等。
通过设定合适的阈值和滤 波器,可以在杂波背景下 准确地检测出目标。
定义
随机信号是一种无法用确 定函数描述,但具有一定 统计规律性的信号。
统计规律性
随机信号在大量重复观测 下呈现出一定的统计规律 ,如均值、方差等。
连续性
随机信号通常是时间连续 的,可以用连续时间函数 表示。
随机信号分类
根据信号性质分类
01
非平稳随机信号:统计特性随时间变化的 随机信号。
03
02
平稳随机信号:统计特性不随时间变化的随 机信号。
ARMA模型法
将随机信号建模为自回归滑动平均模型(ARMA),通过求解模型参数得到功率谱估计。 该方法适用于短数据和复杂信号,但模型定阶和参数估计较困难。
不同方法比较与选择
性能比较
现代谱估计方法通常具有更高的分辨率和更低的方差,性能优于经典谱估计方法。其中,MEM和MVM在分辨率 和方差性能方面表现较好,而ARMA模型法在处理短数据和复杂信号时具有优势。

随机信号分析__2.3功率谱密度

随机信号分析__2.3功率谱密度
S XY () SYX () 2mX mY ()
证明: 因为X(t)与Y(t)不相关,所以
E[ X (t1 )Y (t2 )] mX mY
SXY ( )
RXY
(
)e
j
d
mX mY
e j d
2mX mY () (1 2())
性质6: A RXY (t,t ) S XY ()
T
x(t) y(t)dt]
T
1T
lim[ T 2T
T RXY (t, t)dt]
1
lim
E[
X
* X
(T
,
)
X
Y
(T
,
)]
d
2 T
2T
定义互功率谱密度为:
S XY
()
lim
T
1 2T
E[ X
* X
(T ,) XY
(T ,)]

QXY
1
2
S XY ()d
同理,有:
SYX
()
lim
随机信号分析
2.3 功率谱密度
本节课的整体设计与构思
信号的时域与频域分析:
确定信号 x(t) : 傅立叶变换

x(t) X ()
号 随机信号 X (t):维纳—辛钦定理
RX ( ) SX ()
2.3.1 随机过程的功率谱密度
问题的引入: 1.对于随机信号,是否可以应用频域分
析方法?
2.傅立叶变换能否用于研究随机信号?
三、互谱密度的性质

性质1:SXY ( ) SYX ( ) SY*X ( )
证明:
SXY ( )
RXY
(

随机信号的功率谱分析 (DEMO)

随机信号的功率谱分析 (DEMO)

信号的功率谱分析1、功率谱密度函数的定义对于随机信号)(t x ,由于其任一样本函数都是时间的无限的函数,一般不能满足傅里叶变换的存在条件(即积分⎰∞∞-dt t x )(必须收敛)。

如果将样本函数取在一个有限区间]2,2[T T -内,如图所示,令在该区间以外的0)(=t x ,则积分⎰∞∞-dt t x )(收敛,满足傅里叶变换条件,变换后用功率谱密度函数表示。

2、功率谱密度函数(又称功率谱)的物理意义是在频域中对信号能量或功率分布情况的描述。

功率谱表示振动能量在频率域的分解,其应用十分广泛。

功率谱的横坐标是频率,纵坐标是实部、虚部的模的平方。

功率谱密度函数作为随机信号在频域内描述的函数。

对于随机信号而言,它不存在频谱函数,只存在功率谱密度函数(功率大小在频谱中反映为频谱的面积)。

时域中的相关分析为在噪声背景下提取有用信息提供了途径。

功率谱分析则从频域提供相关技术所能提供的信息,它是研究平稳随机过程的重要方法。

3.功率谱密度函数的应用(1)结构各阶固有频率的测定 工程结构特别是大型结构(如高层楼房、桥梁、高塔和重要机械设备等)要防止共振引起的破坏,需要测定其固有频率。

如果对结构加以激励(或以大地的脉动信号作为激励信号),即可测定结构的响应(振动信号),再对响应信号作自功率谱分析,便可由谱图中谱峰确定结构的各阶固有频率。

(2)利用功率谱的数学特点求取信号传递系统的频率响应函数。

(3)作为工业设备工作状况的分析和故障诊断的依据 根据功率谱图的变化,可以判断机器设备的运转是否正常。

同时.还可根据机器设备正常工作和不正常工作时,振动加速度信号的功率谱的差别,查找不正常工作时,功率谱图中额外谱峰产生的原因以及排除故障的方法。

自功率谱密度函数定义及其物理意义假如)(t x 是零均值的随机过程,即0=x μ(如果原随机过程是非零均值的,可以进行适当处理使其均值为零)又假设)(t x 中没有周期分量,那么当∞→τ,0)(→τx R 。

第4章随机信号的功率谱密度

第4章随机信号的功率谱密度

T 2T T
lim 1
2
T
1 2T
E[ XT (, ) 2 ]d

1
2

GX
()d
(4.1.11)
随机过程的平均功率W可以由它的均方值的时间平均得 到,也可以由它的功率谱密度在整个频率域上积分得到。
若X(t)为平稳过程时,均方值为常数,可写成:

xT (t, )e jt dt
T T
xT (t, )e jt dt
X T (, ) 2 X T (, ) X T (, )
GX
()

lim
T
E

1 2T
T T
xT (t1, )e jt1dt1
T T
xT
(t2
,

)e
jt2
xT
(t
)

x(t), t
0,
t

T
T
对于有限持续时间的xT(t),傅里叶变换是存在的,有:
XT ()

xT
(t)e
jt dt

T T
xT
(t)e
jt dt
xT
(t)

1
2

XT
()e
jt d
(4.1.6) (4.1.7)
称 XT ()为xT (t)的频谱函数,也简称为频谱。
由傅立叶反变换,x(t)可以表示为
则可以得到
x(t) 1
2

X
X
(
)e
jt
d
[x(t)]2dt

1
x(t)

第4章 随机信号的功率谱密度

第4章 随机信号的功率谱密度

确知信号的能量谱密度与功率谱密度 非周期信号的能量为: ∵ 非周期信号的能量为:
1 W = lim ∫ x ( t )dt = T → ∞ −T 2π
T 2 T


−∞
| X T ( ω ) | dω = ∫ | X T ( f ) | df
−∞
2

2
其中, 为一付氏变换对; 其中 xT ( t ) ⇔ XT ( ω ) 为一付氏变换对
为功率型平稳随机信号。 设 X( t )为功率型平稳随机信号。 由于随机信号的每一样本函数( 或实现) 由于随机信号的每一样本函数 ( 或实现 ) 都是一个确 因此, 定的时间函数 x(t , ξ i ) ,因此,对于每个样本函数都可以求 得对应的功率谱密度函数, 得对应的功率谱密度函数,即 | xT (t , ξi ) |2 | XT (ω , ξi ) |2 GX (ω , ξ i ) = lim = lim , T →∞ T →∞ 2T 2T
称为白噪声过程 简称白噪声 白噪声过程, 白噪声。 的平稳过程 N( t ),称为白噪声过程,简称白噪声。 W 其中, 为正实常数,单位: 其中, N 0 为正实常数,单位: Hz
白噪声的功率谱函数和自相关函数为: 白噪声的功率谱函数和自相关函数为:
N0 G N ( ω ) = 2 , ω ∈ ( −∞ ,+∞ ) N0 R N (τ ) = δ (τ ) 2
1 G X ( ω ) = lim T → ∞ 2T
+∞

T −t
−T − t
[∫
T −T
T
−T
R X ( t , t + τ )dt ] e − jωτ d τ
1 = ∫ [ lim − ∞ T → ∞ 2T

随机信号号的分析—功率谱密度(可编辑)

随机信号号的分析—功率谱密度(可编辑)

随机信号号的分析?功率谱密度2.3 平稳随机过程2.3.4 平稳随机过程的功率谱密度功率谱密度的定义令: 是实平稳随机过程,为其实现,因为功率信号,所以也为功率信号,因为任意的确定功率信号,它的功率谱密度可表示成,2.3-1式中,是的截短函数之频谱函数。

图2-3-1 功率信号及其截短函数而对于功率型的平稳随机过程而言,它的每一实现也将是功率信号,而每一实现的功率谱也可以由式2-3-1表示。

但是,随机过程中的每一实现是不能预知的,因此,某一实现的功率谱密度不能作为过程的功率谱密度。

过程的功率谱密度应看作是每一可能实现的功率谱的统计平均。

设的功率谱密度为,的某一实现之截短函数为,且,其中:,于是有则称为的功率谱密度。

功率密度谱和互谱密度前面给出的一些数字特征如均值,方差和相关函数等,描述的是连续随机信号在时间域上的特征,那么,随机信号在频域的数字特征是什么?如何计算的?它与时域特征有什么关系?1、功率密度谱设Xt为平稳的连续随机信号,它的任一个样本函数xt是一个功率信号,其平均功率可以定义为: (9.2.20)? 依据帕斯瓦尔定理,设表示的傅立叶变换,则上式可表示为9.2.21? 式中称为样本功率密度或样本功率谱。

由于随机信号的每一个样本实现是不能预知的,所以必须用所有样本功率密度的统计平均值来描述平稳的连续随机信号Xt的频域特征,即随机信号在频域的数字特征可定义如下。

定义10? 平稳的连续随机信号Xt的功率密度谱定义为样本功率密度的统计平均,即(9.2.22)维纳?欣钦(Wiener-Khinchine)定理若Xt为平稳随机信号,当自相关函数为绝对可积时,自相关函数和功率谱密度为一傅里叶变换对,即( )。

(9.2.23)9.2.242、互谱密度同理,在频域描述两个随机信号Xt和 Yt相互关联程度的数字特征,可以定义为互谱功率密度简称互谱密度。

而且,互相关函数与互谱密度是一傅里叶变换对( ),其中(9.2.25) 9.2.262FSK信号的功率谱密度的特点2FSK信号的功率谱密度也由连续谱和离散谱组成。

随机信号分析3.4功率谱密度

随机信号分析3.4功率谱密度
T 2


Rt , t dt
T T
P A[ R(t , t )]
1 A lim T 2T
记算术平均算子
dt
T T
2.定义与性质
{ X (t ), t T } 的自相关函数 Rx 定义3.7 平稳信号 的傅立叶变换
S x Rx e j d
R( ) S ( )
证明见书本P77
E


1 2 x (t )dt 2



X ( j ) d
2
②对于功率型信号,定义功率谱密度为
1 2 S ( ) lim X T ( j ) T 2T
3.维纳-辛钦定理的证明
E

1 x (t )dt 2
2



X ( j ) d
2
1 2 S ( ) lim X T ( j ) T 2T
S XY ( ) RXY ( )e
j
d
SYX ( ) RYX ( )e j d


它们简称为互功率谱。 互功率谱常常是复数,它反映了两个信号的关联性沿 的密度状况。 S XY ( ) 很大,两信号的相应频率分量关联度很高。 S XY () 0 ,表明它们响应频率分量是正交的。
式中,X T ( j) 是 xT (t ) 的傅立叶变换,而 xT (t ) 称为 截断信号,它是从 x(t ) 上截取的 T ,T 段, 它在 T ,T 区间以外为零,如图
3.维纳-辛钦定理的证明
3.维纳-辛钦定理的证明
对于随机信号X (t ) ,记其样本函数为 X (t , ) , 则样本功率为
R( ) S ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近代谱估计是建立在随机信号参数模型的基础上,通过信号参数模型或预测误差滤波器参数的估计。常用的参数模型有自回归(AR)模型、滑动平均(MA)模型、自回归滑动平均(ARMA)模型。
3.实验设备及材料
装有Matlab的计算机一台
4.实验方法步骤及注意事项
利用Matlab中的函数分析并绘出常用基本信号的波形。
本科学生实验报告
学号姓名
学院物理与电子信息专业、班级
实验课程名称
教师及职称
开课学期2014至2015学年下学期
填报时间2015年4月25日
云南师范大学教务处编印
一、实验设计方案
实验序号

实验名称
随机信号功率谱分析实验
实验时间
201实验目的
1、了解随机过程功率谱密度的意义并掌握如何利用MATLAB产生功率谱函数。
2、实验现象
(1)产生一组服从N(2,5)的正态白噪声序列,画出其自相关函数和功率谱密度;
(2)估计随机过程X(t)=cos(600πt)+cos(800πt)+N(t)的自相关函数和功率谱,其中N(t)服从N(0,1)的高斯分布;
在(0,2)上均匀分布的随机变量,估计该随机信号的自相关函数和功率谱密度;
2.实验总结
由于采用分段加窗求功率谱平均,有效减少了方差和偏差,但在估计过程存在两个与实际不符的假设,即
(1)利用有限的N个观察数据进行自相关估计,隐含着在已知N个数据之外的全部数据均为零的假设。
(2)假定数据时有N个观察数据以N为周期的周期性延迟。同时在计算过程中采用加窗处理,使得估计的方差和功率泄露较大,不适用于段序列的谱分析和对微信号的检测。
title('N(2,5)分布白噪声序列功率谱密度');
%2、随机过程X(t)=cos(600pit)+cos(800pit)+N(t) figure;
a=500;b=2*a; t=[0:1/b:1-1/b]; N=randn(1,b);
X=cos(600*pi*t)+cos(800*pi*t)+N; subplot(3,1,1) plot(X);
periodogram(X,[],512,a); axis([100 200 -inf inf]);
title('随机过程X(t)功率谱密度');
%3、随机相位信号cosXtAtfigure;
A=2;w=1000*pi; a=1000;b=a;
t=[0:1/b:1-1/b]; p=2*pi*rand(1,b);
2、掌握功率谱密度估计在随机信号处理中的作用。
2.实验原理、实验流程或装置示意图
功率谱估计是随机信号处理中的一个重要的研究和应用领域。
在工程实际中,经典功率谱估计法获得广泛应用的是修正周期图法。该方法采取数据分段加窗处理再求平均的方法。通过求各段功率谱平均,最后得到功率谱估计p(m),即
式中
为窗函数的方差,K表示有重叠的部分。
教师评语及评分:
签名:年月日
subplot 311 plot(x,'y');
title('N(2,5)分布白噪声序列');
subplot 312R_x=xcorr(x,'unbiased'); plot(R_x,'m');
gridtitle('N(2,5)分布白噪声序列自相关函数');
subplot 313periodogram(x,[],512,a);
注意事项:
(1)在使用MATLAB时应注意中英输入法的切换,在中文输入法输入程序时得到的程序是错误的;
(2)MATLAB中两个信号相乘表示为x.*u,中间有个‘.’,同样两个信号相除也是如此;
(3)使用MATLAB编写程序时,应新建一个m文件,而不是直接在Comandante窗口下编写程序;
在使用MATLAB编程时,应该养成良好的编写习惯。
title('X(t)=cos(600*pi*t)+cos(800*pi*t)+N(t)') subplot(3,1,2)
R_X=xcorr(X,'unbiased'); plot(R_X,'m');
title('随机过程X(t)自相关函数R_Xt');
ylabel('R_Xt');xlabel('时间间隔t') subplot(3,1,3)
5.实验数据处理方法
比较法画图法
6.参考文献
陈后金,等.《数字信号处理》.2版【M】.北京:高等教育出版社,2010
张德丰,等.《MATLAB数值计算与方法》.北京:机械工业出版社,2010
二.实验报告
1.实验内容
%1、N(2,5)的正态白噪声序列figure;
a=300;b=2*a;
x=normrnd(2,sqrt(5),1,b);
X=A*cos(w*t+p); X1=A*cos(w*t+p); subplot 211
R=xcorr(X,'unbiased'); plot(R,'m');
gridtitle('随机相位信号X(t)的自相关函数');
subplot 212periodogram(X,[],b*2,a);
title('随机相位信号X(t)的功率谱密度');
相关文档
最新文档