新定义与阅读理解题类型三新解题方法型针-中考数学题型训练

合集下载

阅读理解及定义型问题(复习讲义)(解析版)中考数学重难点题型专题汇总

阅读理解及定义型问题(复习讲义)(解析版)中考数学重难点题型专题汇总

阅读理解及定义型问题(复习讲义)【考点总结|典例分析】考点01新定义型阅读理解题常见的两种类型1.新定义概念型阅读题:解新定义概念型阅读题,要把握新概念的现实模型,理解新概念的形2.新定义运算型阅读题:把新定义运算转化为一般的实数运算是解这类阅读理解题的关键.【特别提醒】(1)正确理解新定义运算的含义,认真分析题目中的定义,严格按照新定义的运算顺序进行运算求解,切记不可脱离题目要求.(2)在新定义的算式中,若遇有括号的也要先算括号里面的.(3)材料中的新概念、新运算与我们已学过的概念、运算有着密切的联系,注意“新”“旧”知识之间的联系与转化.考点02新公式应用型阅读题新公式应用型阅读题常见的三种类型1.新数学公式型:通过阅读材料,给出新的数学公式,根据新的数学公式解决所给问题.2.新变换法则型:通过阅读材料,给出新的数学变换法则,根据新的变换法则解决所给问题.3.新规定型:通过阅读材料,给出新的规定,根据新规定解决所给问题.【知识归纳】新公式应用型阅读题的解题策略1.通过对所给材料的阅读,从中获得新的数学公式或某种新的变换法则.2.分析新公式的结构特征及适用范围.3.将新公式转化为已学知识,寻找解决问题的突破口,进而利用新公式解决问题.解一元一次不等式的注意事项解一元一次不等式的步骤与解一元一次方程的步骤基本类似,只是注意在不等式的两边同乘或同除一个负数时,不等号的方向要发生改变.在数轴上表示不等式的解集时,要注意“分界点”和“方向”,大于向右画,小于向左画,含等于号的画成实心点,不含等于号的要画成空心圆圈.考点03新解题方法型阅读题新解题方法型阅读题常见的两种类型1.以例题的形式给出新方法:材料中首先给出一道例题及其解题方法,然后仿照新的解题方法解决与例题类似的问题.这类新方法型阅读题在中考中最为常见,值得关注.2.以新知识的形式给出新方法:先给出体现一个新解题方法的阅读材料,通过阅读体会新方法的实质,然后用新方法解决相关的问题.【特别提醒】(1)认真阅读题目,理解掌握新的解题方法是解决新问题的关键.(2)体会转化思想在解新方法型阅读题中的作用,理解新方法并进行转化,用我们熟悉的知识来解决新问题.【知识归纳】解答数字规律题的步骤(1)计算前几项,一般算出四五项.(2)找出几项的规律,这个规律或是循环,或是成一定的数列规律如等差,等比等.(3)用代数式表示出规律或是得出循环节(即几个数一个循环).(4)验证你得出的结论.考点04归纳概括型阅读题归纳概括型阅读题常见的三种类型1.等式型:通过对给出的几个等式中数的变化,分析、类比、推断、猜测,归纳出等式存在的一般性规律,再用含字母的等式表示一般规律.2.代数式型:通过对给出的几个代数式中数和字母的变化,分析、类比、猜测,归纳出代数式存在的一般性规律,再用含字母的代数式表示一般规律.3.三角函数式型:通过对给出的几个三角函数式中数或字母的变化,分析、类比、猜测,归纳出三角函数式存在的一般性规律,再用数或含字母的式子表示一般规律.1.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给x y -添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵()x y z m n x y z m n ----=----∴①说法正确∵0x y z m n x y z m n -----++++=x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.2.3=3=3=,…,3n =个根号,一般地,对于正整数a,b,如果满足n a =个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:①()4,12是完美方根数对;②()9,91是完美方根数对;③若(),380a 是完美方根数对,则20a =;④若(),x y 是完美方根数对,则点(),P x y 在抛物线2y x x =-上.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【分析】根据定义逐项分析判断即可.【详解】解:4=,∴()4,12是完美方根数对;故①正确;10=9≠∴()9,91不是完美方根数对;故②不正确;若(),380aa 即2380a a =+解得20a =或19a =-a 是正整数则20a =故③正确;若(),x yx =2y x x ∴+=,即2y x x =-故④正确故选C【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.3.对于实数a、b,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是()A.x=4B.x=5C.x=6D.x=7【答案】B【解析】根据新定义运算,把方程转化为分式方程.因为211(2)(2)4x x x ⊗-==---,所以原方程可转化为12144x x =---,解得x=5.经检验,x=5是原方程的解.4.(2020·随州)将关于x 的一元二次方程0=q +px -x 2变形为q -px x 2=,就可以将2x表示为关于x 的一次多项式,从而达到“降次”的目的,又如=-=⋅=)(23q px x x x x …,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:0=1-x -x 2,且x>0,则3x +2x -x 34的值为()A.51-B.53-C.51+D.53+【答案】C【解析】本题考查了降次法、整体代入法、整式的化简求值,一元二次方程的解法.解答过程如下:∵0=1-x -x 2,∴1x x 2+=,∴3x +2x -x 34=3x +1)2x(x -)1(x 2++=3x +2x -2x -12x x 22++=3x +x -12=3x+1)(x -1+=3x +1-x -1=2x,∵0=1-x -x 2,且x>0,∴x=251+,∴原式=2×251+=51+.因此本题选C.5.,,…若2的位置记为(1,2)(2,3),则的位置记为________.【答案】(4,2)【分析】先找出被开方数的规律,然后再求得∴规律为:被开数为从2开始的偶数,每一行4个数,∵=,28是第14个偶数,而14432÷=∴(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.6.对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a ⊕⊕12⊕4=______.【答案】【解析】依题意可知12⊕.7.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a,b,11ba b a ⊗=+.若21(1)++⊗=x x x x,则x 的值为___________.【答案】12-【分析】根据新定义可得221(1)x x x x x++⊗=+,由此建立方程22121x x x x x ++=+解方程即可.【详解】解:∵11ba b a ⊗=+,∴()211121(1)11x x x x x x x x x x x ++++⊗=+==+++,又∵21(1)++⊗=x x x x ,∴22121x x x x x++=+,∴()()()221210x x x x x ++-+=,∴()()2210x x x x +-+=,∴()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∴210x +=,解得12x =-,经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-.【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.8.定义[a ,b ,c ]为函数y =a x 2+bx c +的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(18,33);②当m>0时,函数图象截x 轴所得的线段长度大于32;③当m<0时,函数在x >14时,y 随x 的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有___________【解析】解:根据定义可得函数y =2m x 2+(1﹣m)x +(﹣1﹣m),①当m=﹣3时,函数解析式为y =﹣6x 2+4x +2,∴224144(6)248,22(6)344(6)3b ac b a a -⨯-⨯--=-===⨯-⨯-,∴顶点坐标是(18,33),正确;②函数y =2m x 2+(1﹣m)x +(﹣1﹣m)与x 轴两交点坐标为(1,0),(﹣12m m+,0),当m>0时,1﹣(﹣12m m +)=313222m +>,正确;③当m<0时,函数y =2m x 2+(1﹣m)x +(﹣1﹣m)开口向下,对称轴111444x m =->,错误;④当m≠0时,x =1代入解析式y =0,则函数一定经过点(1,0),正确.故选:①②④9.若记y=f(x)=221x x +,其中f(1)表示当x=1时y 的值,即f(1)=22111+=12;f(12)表示当x=12时y 的值,即f(12)=22111212512f ==+((();…;则f(1)+f(2)+f (22111212512f ==+((())+f(3)+f(13)+…+f(2011)+f(12011)=.【解析】解:∵y=f(x)=221x x+,∴f(1x )=22111x x +()()=211x +,∴f(x)+f(1x)=1,∴f(1)+f(2)+f(12)+f(3)+f(12)+…+f(2011)+f(12011)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2011)+f(12011)]=12+1+1+…+1=12+2010=201012.故答案为:201012.10.(2022·重庆)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”.例如:2543M =,∵223425+=,∴2543是“勾股和数”;又如:4325M =,∵225229+=,2943≠,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c dG M +=,()()()103a cb d P M -+-=.当()G M ,()P M 均是整数时,求出所有满足条件的M .【答案】(1)2022不是“勾股和数”,5055是“勾股和数”;理由见解析(2)8109或8190或4536或4563.【分析】(1)根据“勾股和数”的定义进行验证即可;(2)由“勾股和数”的定义可得2210a b c d +=+,根据()G M ,()P M 均是整数可得9c d +=,22812c d cd +=-为3的倍数,据此得出符合条件的c,d 的值,然后即可确定出M.(1)解:2022不是“勾股和数”,5055是“勾股和数”;理由:∵22228+=,820≠,∴1022不是“勾股和数”;∵225550+=,∴5055是“勾股和数”;(2)∵M 为“勾股和数”,∴2210a b c d +=+,∴220100c d <+<,∵()9c dG M +=为整数,∴9c d +=,∵()()()2291010910333c a c b d a b c dP c d M --+-+-+=--==为整数,∴22812c d cd +=-为3的倍数,∴①0c =,9d =或9c =,0d =,此时8109M =或8190;②3c =,6d =或6c =,3d =,此时4536M =或4563,综上,M 的值为8109或8190或4536或4563.【点睛】本题以新定义为背景考查了整式混合运算的应用以及学生应用知识的能力,解题关键是要理解新定义,能根据条件找出合适的“勾股和数”.11.请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答.引例:设a,b,c 为非负实数,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a+b+c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+b+c 的正方形来研究.解:如图①,设正方形的边长为a+b+c,则AB=a 2+b 2,BC=b 2+c 2,CD=a 2+c 2,显然AB+BC+CD≥AD,∴a 2+b 2+b 2+c 2+c 2+a 2≥2(a+b+c).探究一:已知两个正数x+y=12,求x 2+4+y 2+9的最小值(图②仅供参考);探究二:若a,b 为正数,求以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积.【解答】解:探究一:如解图①,构造矩形AECF,并设矩形的两边长分别为12,5,①则x+y=12,AB=x 2+4,BC=y 2+9,显然AB+BC≥AC,当A,B,C 三点共线时,AB+BC 最小,即x 2+4+y 2+9的最小值为AC,∵AC=122+52=13,∴x 2+4+y 2+9的最小值为13;②探究二:如解图②,设矩形ABCD 的两边长分别为2a,2b,E,F 分别为AB,AD 的中点,则CF=4a 2+b 2,CE=a 2+4b 2,EF=a 2+b 2,设以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积为S △CEF ,∴S △CEF =S 矩形ABCD -S △C DF -S △AEF -S △BCE =4ab-12×2a×b-12ab-12a×2b=32ab,∴以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积为32ab.12.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N,若N 能被它的各数位上的数字之和m 整除,则称N m 的“和倍数”.例如:∵247(247)2471319÷++=÷=,∴247是13的“和倍数”.又如:∵214(214)2147304÷++=÷= ,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a,b,c 分别是数A 其中一个数位上的数字,且a b c >>.在a,b,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A 可能为732或372或516或156【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A 是12的“和倍数”得出12a b c ++=,根据a b c >>,()F A 是最大的两位数,()G A 是最小的两位数,得出()()10210F A G A a b c +=++,()()16k F A G A +=(k 为整数),结合12a b c ++=得出152b k =-,根据已知条件得出16b <<,从而得出3b =或5b =,然后进行分类讨论即可得出答案.(1)解:∵()357357357152312÷++=÷=⋅⋅⋅⋅⋅⋅,∴357不是15“和倍数”;∵()441441441949÷++=÷=,∴441是9的“和倍数”.(2)∵三位数A 是12的“和倍数”,∴12a b c ++=,∵a b c >>,∴在a,b,c 中任选两个组成两位数,其中最大的两位数()10F A a b =+,最小的两位数()10G A c b =+,∴()()101010210F A G A a b c b a b c +=+++=++,∵()()16F A G A +为整数,设()()16k F A G A +=(k 为整数),则1021016a b c k ++=,整理得:558a c b k ++=,根据12a b c ++=得:12a c b +=-,∵a b c >>,∴12b b ->,解得6b <,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴0a b c >>>,∴1b >,∴16b <<,把12a c b +=-代入558a c b k ++=得:()5128b b k -+=,整理得:152b k =-,∵16b <<,k 为整数,∴3b =或5b =,当3b =时,1239a c +=-=,∵0a b c >>>,∴a >3,03c <<,7a ∴=,3b =,2c =,或8a =,3b =,1c =,要使三位数A 是12的“和倍数”,数A 必须是一个偶数,当7a =,3b =,2c =时,组成的三位数为732或372,∵7321261÷=,∴732是12的“和倍数”,∵3721231÷=,∴372是12的“和倍数”;当8a =,3b =,1c =时,组成的三位数为318或138,∵31812266÷=⋅⋅⋅⋅⋅⋅,∴318不是12的“和倍数”,∵13812116÷=⋅⋅⋅⋅⋅⋅,∴138不是12的“和倍数”;当5b =时,1257a c +=-=,∵0a b c >>>,∴57a <<,6a ∴=,5b =,1c =,组成的三位数为516或156,∵5161243÷=,∴516是12的“和倍数”,∵1561213÷=,∴156是12的“和倍数”;综上分析可知,数A 可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.13.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式,求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想一转化,把未知转化为已知.用“转化”的数学思想,我们]还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解(1)问题:方程x 3+x 2-2x=0的解是x 1=0,x 2=______.x 3=______.(2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m,宽AB=3m,小华把一根长为10m 的绳子的一端固定在点B,沿草坪边沿BA、AD 走到点P 处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP 的长.【解析】(1)x 2=1,x 3=-2(2)xx =+32两边平方,得232x x =+解此方程,得1,321-==x x 检验:当x=3时,满足题意;当x=-1时,不满足题意,舍去原方程的根为x=3。

2019-2020年中考数学 专题51 新定义和阅读理解型问题(含解析)

2019-2020年中考数学 专题51 新定义和阅读理解型问题(含解析)

yxO2019-2020年中考数学 专题51 新定义和阅读理解型问题(含解析)新定义和阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题。

在新定义和阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维。

因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理,前面诸专题对存在性探究问题型进行了命题,后面将有专题对规律探究型问题进行命题。

本专题原创编写新定义和阅读理解型问题模拟题。

1.阅读下面的材料:小明在数学课外小组活动中遇到这样一个“新定义”问题:小明是这样解决问题的:由新定义可知a=1,b=-2,又b <0,所以1※(-2)请你参考小明的解题思路,回答下列问题: (1)计算:2※3= ;(2)若5※m= .(3)函数y=2※x (x≠0)的图象大致是( ) 【解析】考点:规律探索应用,反比例函数的图像2.我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题? (2)在Rt △ABC 中,∠ACB=90°,AB=c ,AC=b ,BC=a ,且b>a ,若Rt △ABC 是奇异三角形,求a :b :c ; (3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A ,B 重合),D是半圆的中点,C ,D 在直径AB 的两侧,若在⊙O 内存在点E ,使AE=AD ,CB=CE .①求证:△ACE 是奇异三角形;②当△A CE 是直角三角形时,求∠AOC 的度数.【答案】(1)真命题.(2)a :b :c=1(3)①见解析②60°或120°. 【解析】1.然后分两种情况讨论.试题解析:解:(1)真命题. (2分)ADB(3)在Rt ΔABC 中,a 2+b 2=c 2,①证明:∵AB 是⊙O 的直径,∴∠ACB=∠ADB=90°, 在Rt ΔACB 中,AC 2+BC 2=AB 2; 在Rt ΔADB 中,AD 2+BD 2=AB 2.∵D是半圆的中点,∴, ∴AD=BD , (6分),∴AB 2=AD 2+BD 2=2AD 2, (7分) 又∵CB=CE .AE=AD ,∴AC 2+CE 2=2AE 2. ∴ΔACE 是奇异三角形. (8分)⋂⋂=BD AD ⋂ADB考点:1.命题;2.勾股定理;3.圆周角定理及推论;4.直角三角形的性质.3.阅读理解:对于任意正实数a 、b ,∵2≥0,∴a -b ≥0,∴a +b ≥a=b 时,等号成立.结论:在a +b ≥a 、b 均为正实数)中,若ab 为定值p ,则a+b ≥a =b 时,a +b 有最小值根据上述内容,回答下列问题:(1)若m >0,只有当m = 时,m 有最小值 ; 若m >0,只有当m = 时,2m 有最小值 .(2)如图,已知直线L 1:y +1与x 轴交于点A ,过点A 的另一直线L 2与双曲线y (x >0)相交于点B (2,m ),求直线L 2的解析式.(3)在(2)的条件下,若点C 为双曲线上任意一点,作CD ∥y 轴交直线L 1于点D ,试 求当线段CD 最短时,点A 、B 、C 、D 围成的四边形面积.【答案】(1)当时,有最小值为2;当时,8(2) (3)232--=x y 2=m m m 1+1=m∴A (-2,0)又点B (2,m∴设直线的解析式为:,则有,解得:∴直线的解析式为:;2--=x y 2L ⎩⎨⎧-=-=21b k ⎩⎨⎧-=+=+-4202b k b k b kx y +=2L )4,2(,4--=B m4.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”。

专题三 新定义和阅读理解题-2021年中考数学一轮考点复习练习

专题三 新定义和阅读理解题-2021年中考数学一轮考点复习练习

专题三 新定义和阅读理解题类型 新定义一、新定义运算1.(2020·青海)对于任意两个不相等的数a ,b 定义一种新运算“⊕”如下:a ⊕b =a +ba -b,如:3⊕2=3+23-2=5,那么12⊕4=___.2.(2020·荆州)定义新运算“a*b”:对于任意实数a ,b ,都有a*b =(a +b )(a -b )-1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4-3)-1=7-1=6.若x*k =x (k 为实数)是关于x 的方程,则它的根的情况为( C ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根3.(2020·通辽)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n -mn -3n ,如:1※2=12×2-1×2-3×2=-6. (1)求(-2)※3;(2)若3※m ≥-6,求m 的取值范围,并在所给的数轴上表示出解集.解:(1)(-2)※3=(-2)2×3-(-2)×3-33=43+23-33=3 3. (2)∵3※m ≥-6,∴32·m -3m -3m ≥-6.解得:m ≥-2.将解集表示在数轴上如下:二、新定义数4.(2020·淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是( D ) A .205 B .250 C .502 D .5205.对于三个数a ,b ,c ,我们规定用M {a ,b ,c }表示这三个数的平均数,用min {a ,b ,c }表示这三个数中最小的数.例如:M {-1,2,3}=-1+2+33=43,min {-1,2,3}=-1,如果M {3,2x +1,4x -1}=min {2,-x +3,5x },那么x =__12或13__.6.(2020·宜宾)定义:分数nm(m ,n 为正整数且互为质数)的连分数1a 1+1a 2+1a 3+…(其中a 1,a 2,a 3,…为整数,且等式右边的每一个分数的分子都为1),记作n m =△ 1a 1+1a 2+1a 3+…,例如719=△ 1197=12+57=12+175=12+11+25=12+11+152=12+11+12+12,719的连分数为12+11+12+12,记作719=△ 12+11+12+12,则__710____=△11+12+13.7.(2020·乐山)我们用符号[]x 表示不大于x 的最大整数.例如:[]1.5=1,[]-1.5=-2.那么:(1)当-1<[]x ≤2时,x 的取值范围是__0≤x<3____;(2)当-1≤x<2时,函数y =x 2-2a []x +3的图象始终在函数y =[]x +3的图象下方.则实数a 的范围是__a<-1或a ≥32____.三、新定义概念8.(2020·咸宁)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( B ) A .y =-x B .y =x +2 C .y =2xD .y =x 2-2x9.(2020·上海)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( A )A .平行四边形B .等腰梯形C .正六边形D .圆10.(2020·岳阳)对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点.若关于x 的二次函数y =-x 2-10x +m (m ≠0)有两个不相等的零点x 1,x 2(x 1<x 2),关于x 的方程x 2+10x -m -2=0有两个不相等的非零实数根x 3,x 4(x 3<x 4),则下列关系式一定正确的是( A ) A .0<x 1x 3<1 B.x 1x 3>1C .0<x 2x 4<1 D.x 2x 4>111.(2020·临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A (2,1)到以原点为圆心,以1为半径的圆的距离为__5-1____.四、新定义函数12.(2019·荆州)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y =x+1的伴随函数.(1)若y=x2-4是y=-x+p的伴随函数,求直线y=-x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx-3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.解:(1)∵y=x2-4,∴其顶点坐标为(0,-4).∵y=x2-4是y=-x+p的伴随函数,∴(0,-4)在一次函数y=-x+p的图象上.∴-4=0+p.∴p=-4.∴一次函数为y=-x-4.∴一次函数与坐标轴的交点分别为(0,-4),(-4,0).∴直线y=-x+p与两坐标轴围成的三角形的面积为:12×4×4=8.(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=-2,x1x2=n,∴||x1-x2=(x1+x2)2-4x1x2=4-4n.∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴4-4n=4.解得n=-3.∴伴随函数y=x2+2x-3=(x+1)2-4.∴其顶点坐标为(-1,-4).∵y =x 2+2x -3是y =mx -3(m ≠0)的伴随函数, ∴-4=-m -3.∴m =1.13.(2017·长沙)若三个非零实数x ,y ,z 满足: 只要其中一个数的倒数等于另外两个数的倒数的和, 则称这三个实数x ,y ,z 构成“和谐三数组” . (1)实数 1 , 2 , 3 可以构成“和谐三数组”吗?请说明理由;(2)若M (t ,y 1),N (t +1,y 2),R (t +3,y 3)三点均在函数y =kx (k 为常数,k ≠0)的图象上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三数组”, 求实数t 的值;(3)若直线y =2bx +2c (bc ≠0)与x 轴交于点A (x 1,0),与抛物线y =ax 2+3bx +3c (a ≠0)交于B (x 2,y 2),C (x 3,y 3)两点 .①求证:A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三数组”; ②若a>2b>3c ,x 2=1,求点P ⎝ ⎛⎭⎪⎫c a ,b a 与原点O 的距离OP 的取值范围 .解:(1)不能, 理由如下: 由已知1<2<3,∴11>12>13.又∵11≠12+13,∴实数 1 , 2 , 3 不可以构成“和谐三数组”. (2)M ⎝ ⎛⎭⎪⎫t ,k t ,N ⎝ ⎛⎭⎪⎫t +1,k t +1,R ⎝ ⎛⎭⎪⎫t +3,k t +3. ∵y 1,y 2,y 3构成“和谐三数组”, ①若t k =t +1k +t +3k ,解得t =-4;②若t +1k =t k +t +3k ,解得t =-2;③若t +3k =t k +t +1k,解得t =2.综上,t =-4,-2或 2.(3)①证明:∵直线y =2bx +2c (bc ≠0)与x 轴交于点A (x 1,0), ∴0=2bx 1+2c.解得x 1=-cb .联立⎩⎨⎧y =2bx +2c ,y =ax 2+3bx +3c.∴ax 2+bx +c =0.由根与系数的关系,得x 2+x 3=-b a ,x 2x 3=ca .∴1x 2+1x 3=x 2+x 3x 2x 3=-ba c a=-b c =1x 1. ∴x 1,x 2,x 3构成“和谐三数组”. ②∵x 2=1,∴a +b +c =0,x 3=ca.又∵a>2b>3c ,abc ≠0,则必有a>0,c<0,将b =-a -c 代入,可得a>2b>3(-a -b ). 解得-32<c a <-25,ca≠-1.同理可求得b a 的取值范围是-35<b a <12,ba ≠0.∵c a +ba=-1, ∴点P ⎝ ⎛⎭⎪⎫c a ,b a 在直线y =-x -1上运动.如图,由勾股定理和面积法易求得 22≤OP<102且OP ≠1.五、新定义图形14.(2019·达州)箭头四角形 模型规律如图1,延长CO 交AB 于点D ,则∠BOC =∠1+∠B =∠A +∠C +∠B.因为凹四边形ABOC 形似箭头,其四角具有“∠BOC =∠A +∠B +∠C ”这个规律,所以我们把这个模型叫做“箭头四角形”. 模型应用(1)直接应用:①如图2,∠A +∠B +∠C +∠D +∠E +∠F =__2α__.②如图3,∠ABE ,∠ACE 的2等分线(即角平分线)BF ,CF 交于点F ,已知∠BEC =120°,∠BAC =50°,则∠BFC =__85°__.③如图4,BO i 、CO i 分别为∠ABO ,∠ACO 的2019等分线(i =1,2,3,…,2017,2018).它们的交点从上到下依次为O 1,O 2,O 3、…,O 2 018.已知∠BOC =m°,∠BAC =n°,则∠BO 1 000C =__⎝ ⎛⎭⎪⎫1 0002 019m +1 0192 019n __度. (2)拓展应用:如图5,在四边形ABCD 中,BC =CD ,∠BCD =2∠BAD ,O 是四边形ABCD 内一点,且OA =OB =OD.求证:四边形OBCD 是菱形.图1 图2图3 图4 图5解:(2)证明:如图,延长AO 交CD 于E ,∵OA=OB,∴∠ABO=∠BAO.又∵∠BOE=∠ABO+∠BAO,∴∠BOE=2∠BAO.同理∠DOE=2∠DAO.∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO),即∠BOD=2∠BAD.又∵∠BCD=2∠BAD,∴∠BOD=∠BCD.连接OC,∵OB=OD,CB=CD,OC=OC,∴△OBC≌△ODC(SSS).∴四边形OBCD是平行四边形.又∵OB=OD,∴四边形OBCD是菱形.15.(2019·咸宁)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.图1 图2 图3解:(1)证明:∵四边形ABCD 为圆内接四边形, ∴∠A +∠C =180°,∠ABC +∠ADC =180°. ∵BD 平分∠ABC ,∴∠ABD =∠CBD. ∴AD ︵=CD ︵.∴AD =CD.∴四边形ABCD 是等补四边形. (2)解:AC 平分∠BCD ,理由如下:如图1,过点A 分别作AE ⊥BC 于点E ,AF 垂直CD 的延长线于点F , 则∠AEB =∠AFD =90°, ∵四边形ABCD 是等补四边形, ∴∠B +∠ADC =180°. 又∵∠ADC +∠ADF =180°,∴∠B =∠ADF. 图1 ∵AB =AD ,∴△ABE ≌△ADF (AAS ).∴AE =AF.∴AC 是∠BCF 的平分线, 即AC 平分∠BCD ;(3)解:如图2,连接AC , 图2 ∵四边形ABCD 是等补四边形,∴∠BAD+∠BCD=180°.又∵∠BAD+∠EAD=180°,∴∠EAD=∠BCD.∵AF平分∠EAD,∴∠FAD=12∠EAD.由(2)知,AC平分∠BCD,∴∠FCA=12∠BCD.∴∠FCA=∠FAD.又∵∠AFC=∠DFA,∴△ACF∽△DAF.∴AFDF=CFAF.即5DF=DF+105,∴DF=52-5.16.(2019·天水)如图1,对角线互相垂直的四边形叫做垂美四边形.图1 图2 图3(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC,BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形.理由:∵AB=AD,∴点A在线段BD的垂直平分线上.∵CB =CD ,∴点C 在线段BD 的垂直平分线上. ∴直线AC 是线段BD 的垂直平分线. ∴AC ⊥BD ,即四边形ABCD 是垂美四边形. (2)证明:∵AC ⊥BD ,∴∠AOD =∠AOB =∠BOC =∠COD =90°. 由勾股定理得,AB 2+CD 2=AO 2+BO 2+CO 2+DO 2, AD 2+BC 2=AO 2+DO 2+BO 2+CO 2, ∴AB 2+CD 2=AD 2+BC 2. (3)如图2,连接CG ,BE. ∵∠CAG =∠BAE =90°,∴∠CAG +∠BAC =∠BAE +∠BAC ,即∠GAB =∠CAE. 在△GAB 和△CAE 中,⎩⎨⎧AG =AC ,∠GAB =∠CAE ,AB =AE ,∴△GAB ≌△CAE (SAS ). ∴∠ABG =∠AEC ,又∵∠AEC +∠AME =90°. ∴∠ABG +∠AME =90°,即CE ⊥BG. ∴四边形CGEB 是垂美四边形. 由(2)得,CG 2+BE 2=CB 2+GE 2. ∵AC =4,AB =5,∴BC =3,CG =42,BE =5 2.∴GE2=CG2+BE2-CB2=73.∴GE=73.17.(2020·南通)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图1,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图2,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(-1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设AEBE=μ,点D的纵坐标为t,请直接写出μ关于t的函数解析式.解:(1)如图1,过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE=AB2-BE2=52-32=4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴EBCF=ABCD ,∴3CF=54,∴CF=125,∴sin∠CAD=CFAC=1255=1225.(2)如图2中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图3中,过点D作DH⊥x轴于H.∵A(-1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=22,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴BE AB =AE AD ,∴AE BE =AD AB ,∴μ=AD 4, 设D (x ,t ),由(2)可知,BD 2=2CD 2+AD 2,∴(x -3)2+t 2=2[(x -1)2+(t -2)2]+(x +1)2+t 2, 整理得(x +1)2=4t -t 2,在Rt △ADH 中,AD =AH 2+AD 2=(x +1)2+t 2=2t , ∴μ=AD 4=t2(0<t<4),即μ=t2(0<t<4). 18.(2019·长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__假命题) ②三个角分别相等的两个凸四边形相似;(__假命题) ③两个大小不同的正方形相似.(__真__命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,AB A 1B 1=BC B 1C 1=CDC 1D 1.求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. 图1 图2(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求S2S1的值.(2)证明:如图1中,连接BD,B1D1.∵∠BCD=∠B1C1D1,ABA1B1=BCB1C1=CDC1D1,∴△BCD∽△B1C1D1.∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD.BDB1D1=BCB1C1=CDC1D1.∴BDB1D1=ABA1B1.∵∠ABC=∠A1B1C1,∴∠ABC-∠CBD=∠A1B1C1-∠C1B1D1,∴∠ABD=∠A1B1D1.∴△ABD∽△A1B1D1.∴ADA1D1=ABA1B1=BDB1D1,∠A=∠A1,∠ADB=∠A1D1B1.∴ABA1B1=BCB1C1=CDC1D1=ADA1D1,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1.∴四边形ABCD与四边形A1B1C1D1相似.(3)∵AB ∥CD ,∴AO CO =ABCD . ∵EF ∥AB ∥CD ,∴AE ED =AO CO. ∴AE ED =AO CO =AB CD.① ∵四边形ABFE 和四边形EFCD 相似, ∴AE ED =AB EF =EF CD.② 由①②得AB CD =AB EF =EFCD ,∴EF =CD =AB ,∴四边形ABFE 与四边形EFCD 的相似比为1. ∴四边形ABFE 与四边形EFCD 的面积相等. 即S 2S 1=1. 19.(2019·北京)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧.例如,图1中DE ︵是△ABC 的一条中内弧.图1 图2(1)如图2,在Rt △ABC 中,AB =AC =22,D ,E 分别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ︵,并直接写出此时DE ︵的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ︵所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE ︵,使得DE ︵所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围. 解:图1(1)如图1,以DE 为直径的半圆弧DE ︵,就是△ABC 的最长的中内弧DE ︵,连接DE , ∵∠A =90°,AB =AC =22,D ,E 分别是AB ,AC 的中点, ∴BC =AC sin B =22sin 45°=4,DE =12BC =12×4=2,∴弧DE ︵=12×2π=π.图2(2)如图2,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 的垂直平分线FP. ①当t =12时,C (2,0),∴D (0,1),E (1,1),F ⎝ ⎛⎭⎪⎫12,1,设P ⎝ ⎛⎭⎪⎫12,m ,由三角形中内弧定义可知,圆心线段DE 上方射线FP 上均可,∴m ≥1.∵OA =OC ,∠AOC =90°,∴∠ACO =45°. ∵DE ∥OC ,∴∠AED =∠ACO =45°.作EG ⊥AC 交直线FP 于G ,FG =EF =12,根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求, ∴m ≤12.综上所述,m ≤12或m ≥1.②如图3,设圆心P 在AC 上,图3∵P 在DE 的中垂线上,∴P 为AE 的中点,作PM ⊥OC 于M ,则PM =32,∴P ⎝ ⎛⎭⎪⎫t ,32,∵DE ∥BC ,∴∠ADE =∠AOB =90°. ∴AE =AD 2+DE 2=12+(2t )2=4t 2+1. ∵PD =PE ,∴∠AED =∠PDE.∵∠AED +∠DAE =∠PDE +∠ADP =90°, ∴∠DAE =∠ADP.∴AP =PD =PE =12AE.由三角形中内弧定义知,PD ≤PM. ∴12AE ≤32,AE ≤3,即4t 2+1≤3. 解得t ≤ 2.∵t>0,∴0<t≤ 2.图4如图4,设圆心P在BC上,则P(t,0).PD=PE=OD2+OP2=4t2+1.由三角形中内弧定义知,PE2+CE2≤PC2,即(t2+1)2+(4t2+1)≥(3t)2.∵t>0,∴0<t≤2 2.综上所述,t的取值范围为0<t≤ 2.类型阅读理解题一、代数阅读理解题1.(2019·济宁)已知有理数a≠1,我们把11-a称为a的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a1=-2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,……,依次类推,那么a1+a2+…+a100的值是(A)A.-7.5B.7.5C.5.5D.-5.52.(2019·百色)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x =x 1+x 22,y =y 1+y 22.如图,已知点O 为坐标原点,点A (-3,0),⊙O 经过点A ,点B 为弦PA 的中点.若点P (a ,b ),则有a ,b 满足等式:a 2+b 2=9.设B (m ,n ),则m ,n 满足的等式是( D )A .m 2+n 2=9B.⎝ ⎛⎭⎪⎫m -322+⎝ ⎛⎭⎪⎫n 22=9 C .(2m +3)2+(2n )2=3D .(2m +3)2+4n 2=93.(2019·赤峰)阅读下面材料:我们知道一次函数y =kx +b (k ≠0,k ,b 是常数)的图象是一条直线,到高中学习时,直线通常写成Ax +By +C =0(A ≠0,B ≠0,A ,B ,C 是常数)的形式,点P (x 0,y 0)到直线Ax +By +C =0的距离可用公式d =||Ax 0+By 0+C A 2+B 2计算.例如:求点P (3,4)到直线y =-2x +5的距离.解:∵y =-2x +5,∴2x +y -5=0,其中A =2,B =1,C =-5.∴点P (3,4)到直线y =-2x +5的距离为:d =||Ax 0+By 0+C A 2+B 2=||2×3+1×4-522+12=55= 5. 根据以上材料解答下列问题:(1)求点Q (-2,2)到直线3x -y +7=0的距离;(2)如图,直线y =-x 沿y 轴向上平移2个单位长度得到另一条直线,求这两条平行直线之间的距离.解:(1)∵3x -y +7=0,∴A =3,B =-1,C =7.∴点Q (-2,2)到直线3x -y +7=0的距离为:d =||-2×3-1×2+732+(-1)2=110=1010. (2)直线y =-x 沿y 轴向上平移2个单位长度得到另一条直线为y =-x +2, 在直线y =-x 上任意取一点P ,当x =0时,y =0.∴P (0,0).∵y =-x +2,∴x +y -2=0,其中A =1,B =1,C =-2.∴d =||0+0-212+12=22= 2. ∴两平行线之间的距离为 2.4.(2019·安顺)阅读以下材料: 对数的创始人是苏格兰数学家纳皮尔(J.Nplcr ,1550—1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707—1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M·N )=log a M +log a N (a >0,a ≠1,M >0,N >0),理由如下:设log a M =m ,log a N =n ,则M =a m ,N =a n ,∴M·N =a m ·a n =a m +n .由对数的定义得m +n =log a (M·N ).又∵m +n =log a M +log a N ,∴log a (M·N )=log a M +log a N.根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式:__4=log 381__;(2)求证:log a M N=log a M -log a N (a >0,a ≠1, M >0,N >0);(3)拓展运用:计算log 69+log 68-log 62=__2__.解:(1)4=log 381(或log 381=4).(2)证明:设log a M =m ,log a N =n ,则M =a m ,N =a n ,∴M N =a ma n =a m -n , 由对数的定义得m -n =log a M N, 又∵m -n =log a M -log a N ,∴log a M N=log a M -log a N. (3)log 69+log 68-log 62=log 6(9×8÷2)=log 636=2.5.(2019·张家界)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依次类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,…. 一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为__5__,第5项是__25__.(2)如果一个数列a 1,a 2,a 3,…,a n …,是等差数列,且公差为d ,那么根据定义可得到: a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,…,a n -a n -1=d ,….所以a 2=a 1+da 3=a 2+d =(a 1+d )+d =a 1+2d ,a 4=a 3+d =(a 1+2d )+d =a 1+3d ,…由此,请你填空完成等差数列的通项公式:a n =a 1+(__n -1__)d.(n 为正整数)(3)-4 041是不是等差数列-5,-7,-9,…的项?如果是,是第几项?解:(1)根据题意得,d =10-5=5,∵a3=15,∴a4=a3+d=15+5=20,a5=a4+d=20+5=25.(2)∵a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,…∴a n=a1+(n-1)d.(3)等差数列-5,-7,-9,…的通项公式为:a n=-5-2(n-1),则-5-2(n-1)=-4 041,解之得n=2 019.∴-4 041是等差数列-5,-7,-9,…的项,它是此数列的第2 019项.6.(2019·济宁)阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=6x(x>0)是减函数.证明:设0<x1<x2,f(x1)-f(x2)=6x1-6x2=6x2-6x1x1x2=6(x2-x1)x1x2.∵0<x1<x2,∴x2-x1>0,x1x2>0.∴6(x2-x1)x1x2>0.即f(x1)-f(x2)>0.∴f (x 1)>f (x 2).∴函数f (x )=6x(x >0)是减函数. 根据以上材料,解答下面的问题:已知函数f (x )=1x 2+x (x <0), f (-1)=1(-1)2+(-1)=0,f (-2)=1(-2)2+(-2)=-74. (1)计算:f (-3)=__-269__,f (-4)=__-6316__; (2)猜想:函数f (x )=1x 2+x (x <0)是__增__函数(填“增”或“减”); (3)请仿照例题证明你的猜想.解:(1)∵f (x )=1x 2+x (x <0), ∴f (-3)=1(-3)2-3=-269, f (-4)=1(-4)2-4=-6316. (2)∵-4<-3,f (-4)<f (-3),∴函数f (x )=1x 2+x (x <0)是增函数. (3)设x 1<x 2<0,∵f (x 1)-f (x 2)=1x 21+x 1-1x 22-x 2 =(x 1-x 2)⎝⎛⎭⎪⎫1-x 1+x 2x 21x 22. ∵x 1<x 2<0,∴x 1-x 2<0,x 1+x 2<0.∴(x 1-x 2)⎝⎛⎭⎪⎫1-x 1+x 2x 21x 22<0.∴f(x1)-f(x2)<0.∴f(x1)<f(x2).∴函数f(x)=1x2+x(x<0)是增函数.二、几何阅读理解题7.(2019·山西)阅读以下材料,并按要求完成相应的任务:莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数、公式和定理.下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则OI2=R2-2Rr.图1图2如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2-2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI.∴IMIA=IDIN.∴IA·ID=IM·IN.①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°.∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴IADE=IFBD.∴IA·BD=DE·IF.②……任务:(1)观察发现:IM=R+d,IN=__R-d__(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5 cm,内切圆的半径为2 cm,则△ABC的外心与内心之间的距离为_ cm.解:(1)∵O,I,N三点共线,∴OI+IN=ON.∴IN=ON-OI=R-d.(2)BD=ID.理由如下:∵点I是△ABC的内心,∴∠BAD=∠CAD,∠CBI=∠ABI.∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI.∴BD=ID.(3)由(2)知:BD=ID,∴IA·ID=DE·IF.又∵IA·ID=IM·IN,∴DE·IF=IM·IN,∴2R·r=(R+d)(R-d).∴R2-d2=2Rr.∴d2=R2-2Rr.(4)由(3)知:d2=R2-2Rr.将R=5,r=2代入得:d2=52-2×5×2=5,∵d>0,∴d= 5.。

题型研究题型四新定义与阅读理解题类型三新解题方法型针对演练

题型研究题型四新定义与阅读理解题类型三新解题方法型针对演练

第二部分题型研究题型四新定义与阅读理解题类型三新解题方法型针对演练1.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公数最大公约数的一种方法一一更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也•以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91 - 56 = 3556 - 35= 2135 - 21= 1421 - 14= 714 —7= 7所以,91与56的最大公约数是7.请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.2.(2017 青岛节选)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题•下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究:求不等式|x —1|< 2的解集(1)探究|x —1|的几何意义如图①,在以0为原点的数轴上,设点A'对应的数是x —1,由绝对值的定义可知,点A与点0的距离为| x —1|,可记为A'O = |x—1|.将线段A'O向右平移1个单位得到线段AB此时点A对应的数是x,点B对应的数是1.因为AB= A'O,所以AB= | x—1|. 因此,|x —1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离ABA10-- 1 1——Ix-l 0 1 ...................... ....4 0 B -5-4-3-2-I Q 12^45*I d I ・工0 1图①團②第2题图(2)求方程| x —1| = 2的解因为数轴上3和一1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3, —1.(3)求不等式| x—1|<2的解集因为|x —1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x—1|<2的解集,并写出这个解集.3.(浙教八下第47页阅读材料改编)古希腊数学家丢番图(公元250年前后)在《算术》中提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ ax=b2(a> 0, b>0)的方程的a a图解法是:如图,以2和b为两直角边作Rt△ ABC再在斜边上截取BD= ?,则AD的长就是所求方程的解.(1)请用含字母a、b的代数式表示AD的长.(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.4.请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答.引例:设a, b, c 为非负实数,求证:a2+ b2+ , b2+ c2+ c2+ a2》2(a+ b+ c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+ b+ c的正方形来研究.解:如图①,设正方形的边长为a + b+ c, 则AB= a2+ b2, BC= b2+ c2, CD= a2+ c2, 显然AB+ BC+ CD> AD•••a2+ b2+ b2+ c2+ c2+ a2> 2(a+ b+ c).探究一:已知两个正数x, y,满足x + y = 12,求.x + 4 + y + 9的最小值(图②仅供参考);探究二:若a, b为正数,求以a2+ b2, 4a2+ b2, a2+ 4b2为边的三角形的面积.第4题图答案1.解:(1)108 - 45= 6363 - 45= 1845 - 18= 2727 - 18= 918-9= 9所以,108与45的最大公约数是9;第3题图罔①圏②⑵①先求104与78的最大公约数,104-78 = 2678 - 26= 5252 - 26= 26所以,104与78的最大公约数是26;②再求26与143的最大公约数,143-26 = 117117-26 = 9191 - 26= 6565 - 26= 3939 - 26= 1326 - 13= 13所以,26与143的最大公约数是13.综上所述,78、104、143的最大公约数是13. 2.解:在数轴上表示如解图所示.第2题解图所以,不等式的|x- 1|<2的解集为一1<x<3.a3.解:(1)I/ C= 90°, BC= ^, AC= b,■.j4b + a —a2(2)用求根公式求得:故AD的长就是方程的正根,遗憾之处:图解法不能表示方程的负根.4.解:探究一:如解图①,构造矩形AECF并设矩形的两边长分别为12,5,第4题解图①则x + y= 12 , AB= x2+ 4,BC= y + 9,显然AB+ BO AC当A, B, C三点共线时,AB+ BC最小,即x2+ 4+ y2+ 9的最小值为AC••• AC= . 122+ 52= 13, /• x + 4+ y + 9的最小值为13;第4题解图②X i =—4b2+ a2—a2探究二:如解图②,设矩形ABCD勺两边长分别为2a, 2b, E, F分别为AB, AD的中点, 则CF= 4a2+ b2, CE^ a2+ 4b2,EF= a2+ b2,设以,a2+ b2, 4a2+ b2, a2+ 4b2为边的三角形的面积为&CEF,••• & CEF= S 矩形 ABCD—S\ CDF一S^ AEF一S A BCE1 1 1=4ab- 2X 2a X b—2ab— 2aX 2b3=2ab, •••以a2+ b2, - 4a2+ b2, • a2+ 4b2为边的三角形的面积为^ab-。

中考数学复习《新定义新概念问题》

中考数学复习《新定义新概念问题》

中考数学复习新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N 点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC 中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.类型3 新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.同步训练:(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D专题训练1.(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:22. (2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.3. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.4. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)5. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).6.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.。

新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(共31题)(解析版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(31题)一、单选题1(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S=N+12L-1,其中N,L分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A0,30,B20,10,O0,0,则△ABO内部的格点个数是()A.266B.270C.271D.285【答案】C【分析】首先根据题意画出图形,然后求出△ABO的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵A0,30,B20,10,O0,0,∴S△ABO=12×30×20=300,∵OA上有31个格点,OB上的格点有2,1,4,2,6,3,8,4,10,5,12,6,14,7,16,8,18,9,20,10,共10个格点,AB上的格点有1,29,2,28,3,27,4,26,5,25,6,24,7,23,8,22,9,21,10,20,11,19,12,18,13,17,16,14,15,15,16,14,17,13,18,12,19,11,共19个格点,∴边界上的格点个数L=31+10+19=60,∵S=N+12L-1,∴300=N+12×60-1,∴解得N=271.∴△ABO内部的格点个数是271.故选:C.【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.2(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π-3【答案】B【分析】根据等边三角形的性质及弧长公式l =n πr180求解即可.【详解】解:∵等边三角形ABC 的边长为3,∠ABC =∠ACB =∠BAC =60°,∴AB =BC =AC =60π⋅3180=π,∴该“莱洛三角形”的周长=3×π=3π,故选:B .【点睛】本题考查了等边三角形的性质,弧长公式,熟练掌握等边三角形的性质和弧长公式是解题的关键.3(2023·重庆·统考中考真题)在多项式x -y -z -m -n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x -y -|z -m |-n =x -y -z +m -n ,x -y -z -m -n =x -y -z -m +n ,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1C.2D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x -y -z -m -n =x -y -z -m -n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现-x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x -y -z -m -n =x -y -z -m -n ;x -y -z -m -n =x -y +z -m -n ;x -y -|z -m |-n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n .当添加两个绝对值时,共有3种情况,分别是x -y -z -m -n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n ;x -y -z -m -n =x -y +z -m +n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.4(2023·湖南岳阳·统考中考真题)若一个点的坐标满足k ,2k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数y =t +1 x 2+t +2 x +s (s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是()A.s<-1B.s<0C.0<s<1D.-1<s<0【答案】D【分析】利用“倍值点”的定义得到方程t+1x2+tx+s=0,则方程的Δ>0,可得t2-4ts-4s>0,利用对于任意的实数s总成立,可得不等式的判别式小于0,解不等式可得出s的取值范围.【详解】解:由“倍值点”的定义可得:2x=t+1x2+t+2x+s,整理得,t+1x2+tx+s=0∵关于x的二次函数y=t+1x2+t+2x+s(s,t为常数,t≠-1)总有两个不同的倍值点,∴Δ=t2-4t+1s=t2-4ts-4s>0,∵对于任意实数s总成立,∴-4s2-4×-4s<0,整理得,16s2+16s<0,∴s2+s<0,∴s s+1<0,∴s<0s+1>0,或s>0s+1<0,当s<0s+1>0时,解得-1<s<0,当s>0s+1<0时,此不等式组无解,∴-1<s<0,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.5(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1, 3),B(-2,-6),C(0,0)等都是三倍点”,在-3<x<1的范围内,若二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,则c的取值范围是()A.-14≤c<1 B.-4≤c<-3 C.-14<c<5 D.-4≤c<5【答案】D【分析】由题意可得:三倍点所在的直线为y=3x,根据二次函数y=-x2-x+c的图象上至少存在一个“三倍点”转化为y=-x2-x+c和y=3x至少有一个交点,求Δ≥0,再根据x=-3和x=1时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为y=3x,在-3<x<1的范围内,二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,即在-3<x<1的范围内,y=-x2-x+c和y=3x至少有一个交点,令3x=-x2-x+c,整理得:-x2-4x+c=0,则Δ=b2-4ac=-42-4×-1×c=16+4c≥0,解得c≥-4,x=--4±-42-4×-1c2×-1=-4±16+4c2,∴x1=-2+4+c,x2=-2-4+c∴-3<-2+4+c<1或-3<-2-4+c<1当-3<-2+4+c <1时,-1<4+c <3,即0≤4+c <3,解得-4≤c <5,当-3<-2-4+c <1时,-3<4+c <1,即0≤4+c <1,解得-4≤c <-3,综上,c 的取值范围是-4≤c <5,故选:D .【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.6(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.二、填空题7(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150°上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是米.(结果保留π)【答案】5π【分析】把半径和圆心角代入弧长公式即可;【详解】l =n πr 180=150×π×6180=5π故填:5π.【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.8(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,⋯⋯,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,⋯⋯丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.9(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.AB是以O 为圆心,OA 为半径的圆弧,C 是弦AB 的中点,D 在AB上,CD ⊥AB .“会圆术”给出AB 长l 的近似值s 计算公式:s =AB +CD 2OA,当OA =2,∠AOB =90°时,l -s =.(结果保留一位小数)【答案】0.1【分析】由已知求得AB 与CD 的值,代入s =AB +CD 2OA得弧长的近似值,利用弧长公式可求弧长的值,进而即可得解.【详解】∵OA =OB =2,∠AOB =90°,∴AB =22,∵C 是弦AB 的中点,D 在AB上,CD ⊥AB ,∴延长DC 可得O 在DC 上,OC =12AB =2∴CD =OD -OC =2-2,∴s =AB +CD 2OA=22+2-2 22=3,l =90×2×2π360=π,∴l -s =π-3 ≈0.1.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

冲刺中考数学题型全揭秘创新题型新定义计算+阅读理解

冲刺中考数学题型全揭秘创新题型新定义计算+阅读理解

冲刺中考数学题型全揭秘创新题型新定义计算+阅读理解
冲刺2022年中考数学题型全揭秘——创新题型新定义计算+阅读理解
根据其类型,采用不同的思路.一般地:
(1)定义概念、法则型阅读理解题以纯文字、符号或图形的形式定义一种全新的概念、公式或法则等.解答时要在阅读理解的基础上解答问题.解答这类问题时,要善于挖掘定义的内涵和本质,要能够用旧知识对新定义进行合理解释,进而将陌生的定义转化为熟悉的旧知识去理解和解答。

(2)解题示范、新知模仿型阅读理解题以范例的形式给出,并在求解的过程中暗示解决问题的思路技巧,再以思路技巧为载体设置类似的问题.解决这类问题的常用方法是类比、模仿和转化;正误辨析型阅读理解题抓住学生学习中的薄弱环节和思维漏洞,“刻意”地制造迷惑,使得解答过程似是而非.解答时主要是通过对数学公式、法则、方法和数学思想的准确掌握,运用其进行是非辨别.
(3)迁移探究与拓展应用型,即阅读新问题,并运用新知识探究问题或解决问题,解答这类题的关键是认真阅读其内容,理解其实质,把握其方法、规律,然后加以解决.。

中考数学真题-新定义与阅读理解创新型问题

中考数学真题-新定义与阅读理解创新型问题

新定义与阅读理解创新型问题一、单选题1.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a ab a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( )A .0B .2C .3D .42.(广东省2021年中考真题数学试卷)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积S =-秦九韶公式.若5,4p c ==,则此三角形面积的最大值为( )A B .4C .D .53.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( ) A .[]2,3B .[]2,3-C .[]2,3-D .[]2,3--4.(江苏省无锡市2021年中考数学真题)设1(,)P x y ,2(,)Q x y 分别是函数1C ,2C 图象上的点,当a x b≤≤时,总有1211y y -£-£恒成立,则称函数1C ,2C 在a x b ≤≤上是“逼近函数”,a x b ≤≤为“逼近区间”.则下列结论:①函数5y x =-,32y x =+在12x ≤≤上是“逼近函数”; ①函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”; ①01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”; ①23x ≤≤是函数5y x =-,24y x x =-的“逼近区间”. 其中,正确的有( ) A .①①B .①①C .①①D .①①5.(2021·广西来宾市·中考真题)定义一种运算:,,a a ba b b a b≥⎧*=⎨<⎩,则不等式(21)(2)3x x +*->的解集是( ) A .1x >或13x <B .113x -<<C .1x >或1x <-D .13x >或1x <- 6.(2021·广西中考真题)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N =.已知集合{}1,0,A a =,集合1,,b B a a a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -的值是( ) A .-1B .0C .1D .27.(2021·湖北中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠ B .54k ≤C .54k ≤且0k ≠ D .54k ≥8.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b++=+,那么我们称这一对数,a b为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( ) A .2- B .1- C .2 D .3二、填空题9.(广西贵港市2021年中考数学真题)我们规定:若()()1122,,,a x y b x y →→==,则1212a b x x y y →→⋅=+.例如(1,3),(2,4)a b →→==,则123421214a b →→⋅=⨯+⨯=+=.已知(1,1),(3,4)a x x b x →→=+-=-,且23x -……,则a b →→⋅的最大值是________.10.(辽宁省丹东市2021年中考数学试题)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果ABC 是锐角(或直角)三角形,则其费马点P 是三角形内一点,且满足120APB BPC CPA ∠=∠=∠=︒.(例如:等边三角形的费马点是其三条高的交点).若AB AC BC ===P 为ABC 的费马点,则PA PB PC ++=_________;若2,4AB BC AC ===,P 为ABC 的费马点,则PA PB PC ++=_________.11.(浙江省宁波市2021年中考数学试卷)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.12.(山东省菏泽市2021年中考数学真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;①当2m =时,函数图象过原点;①当0m >时,函数有最小值;①如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.13.(2021·湖南娄底市·中考真题)弧度是表示角度大小的一种单位,圆心角所对的弧长和半径相等时,这个角就是1弧度角,记作1rad .已知1rad,60αβ==︒,则α与β的大小关系是α________β.14.(2021·上海中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O ,在正方形外有一点,2P OP =,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的取值范围为__________.15.(2021·湖北中考真题)对于任意实数a 、b ,定义一种运算:22a b a b ab ⊗=+-,若()13x x ⊗-=,则x 的值为________.三、解答题16.(江苏省南通市2021年中考数学试题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”. (1)分别判断函数22,y x y x x =+=-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由; (2)设函数3(0),y x y x b x=>=-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC 的面积为3时,求b 的值;(3)若函数22()y x x m =-≥的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.17.(江苏省常州市2021年数学中考真题)在平面直角坐标系xOy 中,对于A 、A '两点,若在y 轴上存在点T ,使得90ATA '∠=︒,且TA TA '=,则称A 、A '两点互相关联,把其中一个点叫做另一个点的关联点.已知点()2,0M-、()1,0N -,点(),Q m n 在一次函数21y x =-+的图像上.(1)①如图,在点()2,0B、()0,1C -、()22D ,--中,点M 的关联点是_______(填“B ”、“C ”或“D ”); ①若在线段MN 上存在点()1,1P 的关联点P ',则点P '的坐标是_______; (2)若在线段MN 上存在点Q 的关联点Q ',求实数m 的取值范围; (3)分别以点()4,2E 、Q 为圆心,1为半径作E 、Q .若对E 上的任意一点G ,在Q 上总存在点G ',使得G 、G '两点互相关联,请直接写出点Q 的坐标.18.(湖南省张家界市2021年中考数学真题试题)阅读下面的材料: 如果函数()y f x =满足:对于自变量x 取值范围内的任意1x ,2x , (1)若12x x <,都有12()()f x f x <,则称()f x 是增函数; (2)若12x x <,都有12()()f x f x >,则称()f x 是减函数. 例题:证明函数2()(0)f x x x =>是增函数. 证明:任取12x x <,且1>0x ,20x >则2212121212()()()()f x f x x x x x x x -=-=+- ①12x x <且1>0x ,20x > ①120x x +>,120x x -<①1212()()0x x x x +-<,即12())0(f x f x -<,12()()f x f x < ①函数2()(0)f x x x =>是增函数. 根据以上材料解答下列问题:(1)函数1()(0)f x x x =>,1(1)11f ==,1(2)2f =,(3)f =_______,(4)f =_______; (2)猜想1()(0)f x x x=>是函数_________(填“增”或“减”),并证明你的猜想.19.(山东省枣庄市2021年中考数学真题)小明根据学习函数的经验,参照研究函数的过程与方法,对函数()20x y x x-=≠的图象与性质进行探究.因为221x y x x-==-,即21y x =-+,所以可以对比函数2y x =-来探究. 列表:(1)下表列出y 与x 的几组对应值,请写出m ,n 的值:m = ,n = ;描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y x=相应的函数值为纵坐标,描出相应的点,如图所示:(2)请把y 轴左边各点和右边各点,分别用条光滑曲线顺次连接起来: (3)观察图象并分析表格,回答下列问题:①当0x <时,y 随x 的增大而 ;(填“增大”或“减小”) ①函数2x y x-=的图象是由2y x =-的图象向 平移 个单位而得到.①函数图象关于点 中心对称.(填点的坐标) 20.(内蒙古赤峰市2021年中考数学真题)阅读理解: 在平面直角坐标系中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且x 1≠x 1,y 2≠y 2,若M 、N 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为M 、N 的“相关矩形”.如图1中的矩形为点M 、N 的“相关矩形”. (1)已知点A 的坐标为()2,0.①若点B 的坐标为()4,4,则点A 、B 的“相关矩形”的周长为__________;①若点C 在直线x =4上,且点A 、C 的“相关矩形”为正方形,求直线AC 的解析式; (2)已知点P 的坐标为()3,4-,点Q 的坐标为()6,2-, 若使函数ky x=的图象与点P 、Q 的“相关矩形 ”有两个公共点,直接写出k 的取值范围.21.(湖北省荆州市2021年中考数学真题)小爱同学学习二次函数后,对函数()21y x =--进行了探究,在经历列表、描点、连线步骤后,得到如 下的函数图像.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:__________; ①方程()211x --=-的解为:__________;①若方程()21x a --=有四个实数根,则a 的取值范围是__________.(2)延伸思考:将函数()21y x =--的图象经过怎样的平移可得到函数()21213y x =---+的图象?写出平移过程,并直接写出当123y <≤时,自变量x 的取值范围.22.(2021·江西中考真题)二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ¢,如下表:①补全表格;①在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '. 形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”. 探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为_______;①在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L ',都有唯一交点,这条抛物线的解析式可能是______.(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0abc ≠);①若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值. 23.(2021·北京中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________; (2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.24.(2021·四川中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地.若x a N =(0a >且1a ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式32log 9=可以转化为指数式239=.我们根据对数的定义可得到对数的一个性质:log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>,理由如下:设log ,log a a M m N n ==,则,n m M a N a ==.m n m n M N a a a +∴⋅=⋅=.由对数的定义得log ()a m n M N +=⋅又log log a a m n M N +=+log ()log log a a a M N M N ∴⋅=+.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①2log 32=___________;①3log 27=_______,①7log l =________; (2)求证:log log log (0,1,0,0)aa a MM N a a M N N=->≠>>; (3)拓展运用:计算555log 125log 6log 30+-.25.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .26.(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”; (1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3nF n =.求满足()F n 各数位上的数字之和是偶数的所有n . 27.(2021·四川中考真题)已知平面直角坐标系中,点P (00,x y )和直线Ax +By +C =0(其中A ,B 不全为0),则点P 到直线Ax +By +C =0的距离d可用公式d =来计算.例如:求点P (1,2)到直线y =2x +1的距离,因为直线y =2x +1可化为2x -y +1=0,其中A =2,B =-1,C =1,所以点P (1,2)到直线y =2x +1的距离为:5d ==== 根据以上材料,解答下列问题:(1)求点M (0,3)到直线9y =+的距离;(2)在(1)的条件下,①M 的半径r = 4,判断①M与直线9y =+的位置关系,若相交,设其弦长为n ,求n 的值;若不相交,说明理由.28.(2021·湖北中考真题)数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.猜想发现:由5510+==;112333+==;0.40.40.8+==;1525+>=;0.2 3.2 1.6+>=;111282+>= 猜想:如果0a >,0b >,那么存在a b +≥a b =时等号成立). 猜想证明:①20≥①①0=,即a b =时,0a b -=,①a b += ①0≠,即a b ¹时,0a b ->,①a b +>综合上述可得:若0a >,0b >,则a b +≥a b =时等号成立).猜想运用:(1)对于函数()10y x x x=+>,当x 取何值时,函数y 的值最小?最小值是多少? 变式探究:(2)对于函数()133y x x x =+>-,当x 取何值时,函数y 的值最小?最小值是多少? 拓展应用:(3)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为S (米2).问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积S 最大?最大面积是多少?29.(2021·内蒙古中考真题)数学课上,有这样一道探究题. 如图,已知ABC 中,AB =AC =m ,BC =n ,()0180BAC αα∠=︒<<︒,点P 为平面内不与点A 、C 重合的任意一点,将线段CP 绕点P 顺时针旋转a ,得线段PD ,E 、F 分别是CB 、CD 的中点,设直线AP 与直线EF 相交所成的较小角为β,探究EFAP的值和β的度数与m 、n 、α的关系,请你参与学习小组的探究过程,并完成以下任务: (1)填空: (问题发现)小明研究了60α=︒时,如图1,求出了EFPA =___________,β=___________; 小红研究了90α=︒时,如图2,求出了EFPA=___________,β=___________; (类比探究)他们又共同研究了α=120°时,如图3,也求出了EFPA; (归纳总结)最后他们终于共同探究得出规律:EFPA=__________(用含m 、n 的式子表示);β=___________ (用含α的式子表示). (2)求出120α=︒时EFPA的值和β的度数.30.(2021·山东中考真题)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB AD =,CB CD =,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD 的对角线AC ,BD 交于点O .猜想:22AB CD +与22AD BC +有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt ACB △的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE ,BG ,GE .已知4AC =,5AB =,求GE 的长.31.(2021·湖北中考真题)已知等边三角形ABC ,过A 点作AC 的垂线l ,点P 为l 上一动点(不与点A 重合),连接CP ,把线段CP 绕点C 逆时针方向旋转60︒得到CQ ,连QB .(1)如图1,直接写出线段AP与BQ的数量关系;(2)如图2,当点P、B在AC同侧且AP AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且APQ求线段AP的长度.32.(2021·江苏中考真题)如图,在①O中,AB为直径,P为AB上一点,P A=1,PB=m(m为常数,且m>0).过点P的弦CD①AB,Q为BC上一动点(与点B不重合),AH①QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:①OAD=60°;①求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的①O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时①Q 的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二部分题型研究
题型四新定义与阅读理解题
类型三新解题方法型
针对演练
1. 求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.
例如:求91与56的最大公约数
解:91-56=35
56-35=21
35-21=14
21-14=7
14-7=7
所以,91与56的最大公约数是7.
请用以上方法解决下列问题:
(1)求108与45的最大公约数;
(2)求三个数78、104、143的最大公约数.
2. (2017青岛节选)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
探究:求不等式|x-1|< 2的解集
(1)探究|x -1|的几何意义
如图①,在以O 为原点的数轴上,设点A′对应的数是x -1,由绝对值的定义可知,点A′与点O 的距离为|x -1|,可记为A′O =|x -1|.将线段A′O 向右平移1个单位得到线段AB ,此时点A 对应的数是x ,点B 对应的数是1.因为AB =A′O ,所以AB =|x -1|.因此,|x -1|的几何意义可以理解为数轴上x 所对应的点A 与1所对应的点B 之间的距离
AB .
第2题图
(2)求方程|x -1|=2的解
因为数轴上3和-1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,-1.
(3)求不等式|x -1|<2的解集
因为|x -1|表示数轴上x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x 的范围.
请在图②的数轴上表示|x -1|<2的解集,并写出这个解集.
3. (浙教八下第47页阅读材料改编)古希腊数学家丢番图(公元250年前后)在《算术》中提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x 2
+ax =b 2
(a >0,b >0)的方程的
图解法是:如图,以a
2和b 为两直角边作Rt △ABC ,再在斜边上截取BD =a 2
,则AD 的长就
是所求方程的解.
(1)请用含字母a 、b 的代数式表示AD 的长.
(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.
第3题图
4. 请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答.
引例:设a,b,c为非负实数,求证:a2+b2+b2+c2+c2+a2≥2(a+b+c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+b+c的正方形来研究.
解:如图①,设正方形的边长为a+b+c,
则AB=a2+b2,BC=b2+c2,CD=a2+c2,
显然AB+BC+CD≥AD,
∴a2+b2+b2+c2+c2+a2≥2(a+b+c).
探究一:已知两个正数x,y,满足x+y=12,求x2+4+y2+9的最小值(图②仅供参考);
探究二:若a,b为正数,求以a2+b2,4a2+b2,a2+4b2为边的三角形的面积.
第4题图
答案
1. 解:(1)108-45=63
63-45=18
45-18=27
27-18=9
18-9=9
所以,108与45的最大公约数是9; (2)①先求104与78的最大公约数, 104-78=26 78-26=52 52-26=26
所以,104与78的最大公约数是26; ②再求26与143的最大公约数, 143-26=117 117-26=91 91-26=65 65-26=39 39-26=13 26-13=13
所以,26与143的最大公约数是13. 综上所述,78、104、143的最大公约数是13. 2. 解:在数轴上表示如解图所示.
第2题解图
所以,不等式的|x -1|<2的解集为-1<x <3.
3. 解:(1)∵∠C =90°,BC =a 2
,AC =b ,
∴AB =
b 2
+a 2
4

∴AD =
b 2
+a 2
4-a 2

4b 2+a 2
-a
2; (2)用求根公式求得: x 1=-4b 2
+a 2
-a 2

x 2=4b 2+a 2
-a 2
故AD 的长就是方程的正根,
遗憾之处:图解法不能表示方程的负根.
4. 解:探究一:如解图①,构造矩形AECF ,并设矩形的两边长分别为12,5,
第4题解图①
则x +y =12,AB =x 2
+4,
BC =y 2+9,
显然AB +BC ≥AC ,
当A ,B ,C 三点共线时,AB +BC 最小, 即x 2
+4+y 2
+9的最小值为AC , ∵AC =122
+52
=13,
∴x 2
+4+y 2+9的最小值为13;
第4题解图②
探究二:如解图②,设矩形ABCD 的两边长分别为2a ,2b ,E ,F 分别为AB ,AD 的中点, 则CF =4a 2
+b 2
,CE =a 2
+4b 2

EF =a 2+b 2,
设以a 2
+b 2
,4a 2
+b 2
,a 2
+4b 2
为边的三角形的面积为S △CEF , ∴S △CEF =S 矩形ABCD -S △C DF -S △AEF -S △BCE =4ab -12×2a ×b -12ab -1
2
a ×2b
=3
2
ab , ∴以a 2+b 2,4a 2+b 2,a 2+4b 2
为边的三角形的面积为32
ab .。

相关文档
最新文档