金融工程学第二章--远期利率和FRA
11.1-远期利率和FRA

3.取出使用。问题:这一段 的利率相当多少? 7
金融工程课程
如何计算远期利率
计算远期利率的依据是无套利原则。计算的基础是现期利率
例1:未来某段时间需要一笔存款
T=0
T=3月
T=6月
1.借一笔款,借入期
存款期,利率?
3.款到帐后还款。问题:这一段的利 率相当多少?
2.存一笔款,存入期 8
金融工程课程
11
金融工程课程
推导:求远期利率
P ( 1 N lr l) P ( 1 N Sr S)1 ((N l N S )r f)
B
B
B
rf
N lrl NSrS
(N l NS)[1(NSrS)/B]
12
金融工程课程
例1 某客户向银行借款100万英镑,借期6个月,借款从6个月以
P -------100万英镑 B -------基础天数(一般一年360天)
rs , Ns
rf ?
rl , Nl
14
金rf融--工--程--远课程期利率? rs -------9.50% Ns ------180天 rl -------9.875% Nl ------360天
P -------100万英镑 B -------基础天数(一般一年360天)
T=0
T=6月
T=12月
+954654×(1+(1/2)9.50%)= +1000000
借款期,利率?
+1000000× (1+(1/2)9.785%) =+1048926
-954654×(1+9.875%)=-1048926
16
金融工程课程
第二章 金融远期价格(金融工程学-中央财大,李磊宁)

CR : 合约汇率,CS:合约差额,SR:结算汇率,SS:结算差额 A和A分别表示到期日和结算日的本金数额 合约规定的结算日汇率:CR 合约规定的到期日汇率:CR CS
SAFE的应用案例
初始市场条件 即期汇率(USD/MK):1.8000-10 1月期:53-56 3月期:212-215 “1*4”远期互换点数:156-162 美圆利率:6.30% 马克利率:9.88%
F 1.8
1 10% 1.8679 1 6%
第二章
金融远期价格
第四节 SAFE
SAFE是交易双方或者为规避利率或外汇价差,或 者是为在二者的波动上进行投机的而达成的协议。
第二章
金融远期价格
在SAFE的条件下:
1)双方只进行名义上的远期-远期外汇互换,并不涉及实 际本金的互换。 2)互换的两种货币分别称为第一货币和第二货币。名义上 两种货币在结算日进行第一次互换,在到期日进行第二 次互换,即兑换成原来的货币。 3)互换的外汇资金额称为名义本金;两次互换的外汇汇率 分别叫做合约汇率和结算汇率。 4)买方在结算日买入第一货币,到期日出售第一货币。卖 方持有相反的头寸。
0.0162 0.0176 DM 1365.85 1 (10% 90 / 360)
FXA USD1000000 DM 1495.2
1.8215 1.8176 USD1000000 (1.8053 1.8000) 1 (10% 90 / 360)
买马克1980000。当前的汇率是1美圆=1.8马克。 两国的利率是:美圆利率=6%,马克利率=10%。 问:银行应该确定的远期汇率是多少?
完全避险的远期交易
美圆 +1000000 -1000000
金融工程详解51远期利率协议

金融工程详解51远期利率协议远期利率协议是金融工程领域中的一种交易工具,旨在通过锁定未来某一时期的利率来管理利率风险。
本文将详解远期利率协议的定义、特点、应用以及风险管理等方面内容。
一、远期利率协议的定义远期利率协议(Forward Rate Agreement,FRA)指的是一种合约,买方同意在未来某一约定的时期内以固定利率向卖方支付利息,而卖方则同意按浮动利率支付给买方相应的利息差额。
远期利率协议通常用于管理利率风险,为投资者提供了一种固定收益的方式。
二、远期利率协议的特点1. 时间点和利率:远期利率协议的买卖双方约定了未来的时间点和利率,通常在合约签订之日起,到期日之间的特定时期内。
2. 利息差额:买方向卖方支付利息差额,即固定利率与浮动利率之间的差额。
这个差额是根据市场上的即期利率与远期利率的预测之间的差异来确定的。
3. 货币本金:远期利率协议的交易不涉及货币本金的交换,只是通过利率差额的支付来进行。
三、远期利率协议的应用1. 对冲利率风险:远期利率协议可以用于对冲因市场利率波动导致的利率风险。
比如,如果一个投资者预期未来利率会上升,他可以购买远期利率协议以锁定一个较低的利率,从而减少他在未来支付的利息。
2. 利差交易:投资者可以利用远期利率协议进行利差交易,即利用市场上预测的利率差异来获取收益。
比如,投资者可以购买一个认为利差会收窄的远期利率协议,在到期日时将其卖出,获取利差收益。
3. 利率曲线的建立:远期利率协议的交易活动可以为市场提供重要的信息,帮助建立市场利率曲线。
这对其他金融工具的定价和风险管理至关重要。
四、远期利率协议的风险管理1. 利率波动风险:如果市场利率与预期的利率变动方向不一致,投资者可能会面临利率波动风险。
这可能导致未来支付的利息与预期不符,造成损失。
2. 信用风险:远期利率协议是一种场外衍生品,交易对手风险是必须考虑的因素。
如果卖方无法按约定支付利息,买方可能会遭受损失。
第2章-远期利率与FRA

11
+954,654
借入12月期资金 r=9.875%
2.1.2 远期利率
• 以上,银行通过“借长贷短”,创造出了一个合成的远期借 款,使得银行能够对“远期对远期贷款”作出报价,在不承 担利率风险的情况下,完成这笔贷款交易。不必关心6个月后
开辟了一种新的方式,有利于回避期货合约交易的风险。
6
2.1.2
远期价格
• “远期”是金融市场现在确定所要交易的某种金融产 品的价格,但交易要在未来甚至非常远的未来才履 行。 • 远期交易中最常见的是: 远期汇率 远期利率
7
2.1.2 远期-----远期
• 远期利率:未来某个时间的利率。 • 银行是如何估算远期利率的呢? • 假设客户在3月之后有一笔款项需使用6个月,到时,他需要 从银行借入美元。为此他要求银行报出一年以后交割的美元 的利率,即美元的远期利率。(银行的做法) • 例子
17
2.2 远期利率协议概述
• 合同利率(contract rate):在远期利率协议条件下商定的固定利率 • 参考利率(reference rate):在基准日用以确定交割额的以市场为基础的利 率 • 交割额(settlement sum):在交割日,根据合同利率和参考利率之间的差额, 由交易一方付给另一方的金额。 • 以上这些重要概念我们可以用图示形式加深读者对它们的理解。远期利率 协议的时间流程见下图(见P31说明)
芝加哥商业交易所(Chicago Mercantile Exchange),简写为
金融工程学之远期知识讲解

第二讲 远 期
远期——远期交易原理
远期——远期交易是一种现货市场的交 易活动,是防范利率风险而构造的现货 市场头寸。
融资需求 在未来某一时期内需要借入一笔资金 使用 已知将来某一时期会有一笔资金到位, 并希望到时将这笔资金用于投资、贷 款或存款
远期利率
例:某银行按10%的年利率借入100万美 元的资金,借期为30天;同时按15%的 年利率进行贷款,贷款期限为60天。
银行面临的问题是:第二个30天的借款 利率是多少才能确保这笔交易没有风险?
第二讲 远 期
远期利率
具体运用:借短贷长 确定第二个30天的远期利率的推导过程为:
A. 支付的借款利息: 1 000 000×30/360 ×10%=8 333.33 B. 收入的贷款利息: 1 000 000 ×60/360 ×15%=25 000 C. 银行为偿还第一个30天借款必须借入资金: 1 000 000+8 333.33=1 008 333.33 D. 银行的利差收入为: 25 000-8 333.33=16 666.67 E. 这笔利差收入应该等于第二笔借款的利息支出: 16 666.67=1 008 333.33 ×30/360 ×?(19.83%)
第二讲 远 期
远期——远期交易
0
3月
6月
使用期
贷款期 借入期
图2-1(a) 借长贷短的远期金融结构
0
3月
6月
投资期
借入期
存款期
图2-1(b) 借短贷长的远期金融结构
第二讲 远 期
远期——远期交易
例:某客户要求银行提供100万英镑的 贷款,期限为6个月,贷款从6个月之后开 始执行,该客户要求银行确定这笔贷款的 固定利率。 已知银行对6月期的贷款利率 标价为9.500%,12月期贷款利率为9.875%, 6个月以后开始的6月期远期利率如何确定?
金融工程学第二章--远期利率和FRA

例2-4、某公司3个月后要借入一笔100 万美元的资金,借期6个月。以LIBOR 计息。现LIBOR为6%,但公司担心未 来利率上升。希望用FRA进行保值。 于是,该公司向银行买了一份 3×9FRA,ic=6.25%。3个月后,市 场利率ir=7%。则该公司在结算日是收 到还是支付多少结算金?其综合借款 成本是多少?
作业:已知某金融市场相关信息如下 :6个月即期利率6.5%,12个月即期 利率7.5%.某银行6×12FRA报价是 8.5%,问:
(1)是否存在套利机会?
(2)如有:按100万美元的规模可套
利多少?
(1381.25)
通常情况下,银行在与银行或客户交 易时,需同时报出FRA的买入价和卖 出价,同时市场上的利率也分为拆入 利率和拆出利率。这样,上述远期利 率的公式就需要作适当的调整。
用图2-1表示: “放短”(6个月)
is
自己使用6个 月
if
现在借 100万
il “借长”(12个月)
解:借12个月的利息支出为: 1000000×9.875%×1=9.875万 前6个月放贷100万的利息收入为: 1000000×9.5%×1/2=4.75万 后6个月借用100万+4.75万=104.75万资 金利息为:
i=19.83% 即这笔交易要确保没有风险,后30天银行必
须低于19.83%借入资金。
作业:1、某银行按10%的年利率借入
100万资金一年。然后按12%的利率立即
贷款出去2年。问:第二年银行按什么利
率融入资金才能保证全部交易不亏损?
(12.73%)
2、某客户3个月后又一笔钱需要投资6个
月,目前市场上3个月、6个月、9个月期
第二章 远期利率和FRA
第二章 远期合约、远期利率和FRA 《金融工程学》PPT课件

➢ 假定S为标的资产价格,S0为标的资产初始价格,ST为合约到期时 资产的即期价格,K为交割价格,理论上,交割价格的计算公式为:
K S 0ert
(2—1)
➢ 一单位资产远期合约多头的损益为ST-K;这项资产远期
合约空头的损益为K-ST
2.1 远期合约
➢ 2.1.2远期合约价格的确定
➢ 1)远期合约存续期间不支付收益的资产的远期价格
F0g S 0e( r g )T
(2—4)
式(2—4)中,g为基础资产已知收益率
2.1 远期合约
➢ 2.1.3金融远期合约 ➢ 1)金融远期合约的定义
➢ 金融远期合约是指双方约定在未来的某一确定时间,按确定的价 格买卖一定数量的某种金融资产的合约。
➢ 使得远期合约价值为零的交割价格称为远期价格(forward pric e)。远期价格与远期价值是有区别的
➢ 【例2—2】某银行按10%的年利率借入100万美元的资金,借期为 30天;同时要按11%的年利率进行投资,投资期限为60天,则银 行需要确定第二个30天的借款利率是多少,才能确保这笔交易没 有风险
2.2 远期利率
➢ 按照【例2—1】的思路,同样可以得出: ➢ (1)0时刻时: ①借入30天期限资金100万美元,借款成本为10%; ②将借入的100万美元资金进行投资,期限为60天,收益率 为11%。 可以看出,在0时刻,客户总的净现金流为零,如果按照无 套利均衡原理,此时无净投资
第2章 远期合约、远期利率和FRA
2.1远期合约 2.2远期利率 2.3远期利率协议
2.1 远期合约
➢ 即期合约是就某种资产在今天进行买/卖的协定,意味着 在今天“一手交钱,一手交货”。相反的,远期(forwar d)合约与期货(futures)合约是在未来某特定日期就某 资产进行交易的协定,所交易资产的价格在今天已经决定, 但现金与资产的交换则发生在未来。
第二章 远期利率协议

银行需要将未来的融资成本固定下来。银行借入2 笔短期的利息支出,能够与它贷出长期贷款的利 息收入持平。推导银行远期借款利率的步骤是: A 银行支付的短期借款(30天)利息是: 1 000 000 × 30/360 ×10% = 8333.33 B 银行收入的长期贷款(60天)的利息是: 1 000 000 × 60 /360 ×15% = 25 000 C 为了对第二个30天的借款进行融资,并偿还第 一个30天借款的本金和利息,银行还必须借入期 限为30天的短期资金; 1 000 000 + 8 333.33 = 1 008 333.33 D 借款的本利支出 = 贷款的本利收入 1 008 333.33 ×(1 + 30/360 ×rf) = 1 025 000 rf = 19.83%
借入长期 贷出短期
2)借入短期、贷出长期
如果已知将来某一时期会收入一笔资金,并希望将来的 这笔资金能够用来投资、贷款或存款。投资者可以借入短期 资金,并立即进行长期投资、贷款或存款,从而保证将来投 资的收益。
0 3月
借入期
6月 保值期(使用期)
(贷) 存款期
例2 某银行按10%的年利率借入100万 美元的资金,借期为30天;同时要按 15%的年利率进行贷款,贷款期限为 60天。银行需要确定第二个30天的借 款利率是多少,才能确保这笔交易没 有风险。
三、FRA的定价
FRA的定价实质是研究如何确定FRA的合约利 率,而合约利率就是远期利率。所以, FRA 的定价就是运用即期利率与远期利率的关系 求出远期利率的过程。
案例2:假设3个月期的即期年利率为5.25%,再 假设12个月期的即期年利率为5.75%,那么3个月 后执行的9个月期的远期利率( 3 12 )为多少 是合理的呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的即期利率分别是6%、6.25%、6.5%,
请问该客户现在能锁定的3个月后投资6
个月的远期利率是多少?
(6.65%)
根据以上两例,可以得出以下普通公 式:
P(1+rl×tl)=P(1+rs×ts) ×(1+rf×tf) 式中:P——本金
is——短期利率 il——长期利率 if——远期利率 ts——短期期限(以年表示) tl——长期期限(以年表示) tf——远期期限(以年表示)
法锁定远期利率。(假设存贷利率 一致)
例2-1、某客户6个月后需要借用一笔 钱,使用期6个月。已知现在市场上6 个月期的利率是9.5%,12个月期的利 率是9.875%,该客户担心到时利率上 升,于是现在立即向银行借100万资金 ,期限12个月,然后立即放出去,期 限是6个月,利率是9.5%。请问该客 户锁定的未来利率是多少?
以上的期限若遇到某日是节假日则往 后顺延但不跨月。
三、常用术语: 1、买方和卖方: (1)买方,即名义上答应未来借款的一方 作为保值者,是担心利率上涨的一方。 作为投机者,是预测利率上涨的一方。 (2)卖方,即名义上答应未来供给资金的
一方。 作为保值者,是担心利率下跌的一方。 作为投机者,是预测利率下降的一方。
9.875万-4.75万=5.125万 后6个月借用104.75万资金锁定的利率i 则为: 1047500×i×1/2=51250
i=9.785%
思考题:某客户现在起准备6个月后向银行借款
100万,借期6个月,假定市场信息如下:
6个月期利率9.5%,12个月期利率9.875%。
那么,该客户能锁定的利率是多少? 图示如
。
2、功能: 保值、套利、投机
3、交易: FRA是一种由银行提供的场外交易金
融产品。
在FRA市场上,银行主要起交易媒介 ;在控制风险前提下也自营。
4、品种:
美元标价的FRA常见品种有3月、 6月、9月、12月、最长达2年;
其他货币标价的FRA期限一般在一 年以内。
非标准期限的和不固定日期的FRA 品种,银行也会按需求定制。
定割
期
日日
日日
日
(3×6FRA时间流程)
图中涉及的各个日期的含义分别如下:
交易日(dealing day)(签约日)—— FRA交易合约达成或签定日;
起算日(spot day)(起息日 value day )------- 递延期限开始日;
确定日(fixing day)(基准日)--------确定FRA的市场参考利率日;
用图2-2表示
is 借30天
if 再借30天
放出去60天 il
解: 前30天借款的利息支出是: 1000000×10%×30/360=25000/3 放60天的利息收入: 1000000×15%×60/360=25000 后30天的借款利息支出为:
25000-25000/3=50000/3 后30天应借资金1000000+25000/3 后30天锁定的利率i为: (1000000+25000/3)×i×30/360=50000/3
第二章 远期利率和FRA
远期交易→远期价格:远期利率和远 期汇率
第一节 远期利率
20世纪70年代,西方国家金融管理 当局实行利率自由化政策,利率波动 大。因而产生了防范利率波动风险的 金融工具,如远期利率交易;FRA; 利率期货;利率期权;利率互换等。 本节主要介绍远期利率交易。
1、未来需要借用资金,担心到时利 率上升,可通过“借长放短”的办
i=19.83% 即这笔交易要确保没有风险,后30天银行必
须低于19.83%借入资金。
作业:1、某银行按10%的年利率借入
100万资金一年。然后按12%的利率立即
贷款出去2年。问:第二年银行按什么利
率融入资金才能保证全部交易不亏损?
(12.73%)
2、某客户3个月后又一笔钱需要投资6个
月,目前市场上3个月、6个月、9个月期
用图2-1表示: “放短”(6个月)
is
自己使用6个 月
if
现在借 100利息支出为: 1000000×9.875%×1=9.875万 前6个月放贷100万的利息收入为: 1000000×9.5%×1/2=4.75万 后6个月借用100万+4.75万=104.75万资 金利息为:
下: “放短”(6个月)
is
自己使用6个月
if
现在 借多 少万?
100万
il
“借长”(12个月)
2、未来有资金需要投资,担心到时利率 下降。可通过“借短放长”的办法锁定 远期利率。
例2-2、某银行按10%的年利率借入资 金100万,借期30天。然后立即以15% 的年利率放出去60天。问后30天银行 以什么利率借入资金才能确保这笔交 易没有风险?
第二节 远期利率协议(FRA)
FRA诞生于1983年瑞士的金融市场。 现在FRA在全球交易十分活跃。
一、FRA的定义及基本功能: 1、定义:FRA(forward rate
agreement)是银行与客户之间或银行 与银行之间对未来利率变动进行保值 或投机而签订的一种远期合约。
在这份协议中: 买方名义上答应去借款。 卖方名义上答应去贷款。 有特定数额的名义上的本金。 以某一特定货币标价。 固定的利率。 有特定的期限。 在未来某一双方约定的日期开始执行
结算日(settlement day)(交割日)— —FRA合约开始执行日;FRA结算金支付 日。
到期日(maturity day)-------FRA合 约终结日;
合约期(contract period)--------从 FRA结算日至到期日的时间;
递延期(deferred period)--------从 FRA起算日至结算日的时间;
二、FRA的表示方法:
写成“1×4FRA”, “3×6FRA”,“3×9FRA”, “6×12FRA”等等,
念作:“3对6FRA”。其中的乘 号在英语中的译文是 versus/against/on
1×4这笔交易叫做“1月对4月远 期利率协议”。
递延期3个月
合约期6个月
2天
2天
交起
确交
到
易算