变量与常量
常量和变量在编程中的区别和应用

常量和变量在编程中的区别和应用在计算机编程中,常量和变量是两个非常重要的概念。
它们在编程中具有不同的作用和应用。
本文将探讨常量和变量在编程中的区别和应用,并介绍它们在不同编程语言中的使用方式。
首先,我们来了解一下常量和变量的定义。
常量是在程序执行过程中其值不会发生改变的数据,而变量则是可以在程序执行过程中被赋予不同值的数据。
常量在编程中有着广泛的应用。
它们可以用于存储那些在程序中不会发生改变的数据,如数学常数、固定的配置参数等。
常量的值一旦被定义,就无法再被修改。
这种特性使得常量在编程中具有一定的安全性和稳定性。
在许多编程语言中,常量的命名通常采用全大写的方式,以便与变量进行区分。
变量则是在编程中非常灵活和常用的概念。
它们可以用于存储那些在程序执行过程中可能发生变化的数据。
通过给变量赋予不同的值,我们可以在程序中进行各种计算和操作。
变量的使用使得程序具有了更强的适应性和可扩展性。
在编程中,我们可以通过声明变量的类型和名称来定义一个变量,并在需要的时候对其进行赋值和修改。
常量和变量在编程中的区别主要体现在两个方面:值的可变性和内存使用。
常量的值在定义后无法再被修改,而变量的值可以随时被赋予新的值。
此外,常量的值通常在编译时被确定,并且在程序运行时占用固定的内存空间,而变量的值和内存空间在程序执行过程中是动态变化的。
在不同的编程语言中,常量和变量的使用方式略有不同。
在C语言中,我们可以使用关键字const来定义常量,例如:const int MAX_VALUE = 100;。
在Java和Python等高级语言中,常量的定义方式也类似,但通常使用关键字final或者const来声明。
而变量的定义则可以直接使用变量名和类型,例如:int count = 0;。
总结起来,常量和变量在编程中扮演着不同的角色。
常量用于存储那些不会发生改变的数据,具有稳定性和安全性;而变量则用于存储可以发生变化的数据,具有灵活性和适应性。
编程中变量和常量的作用和意义

编程中变量和常量的作用和意义编程是一门创造性的艺术,通过编写代码来实现各种功能。
在编程中,变量和常量是非常重要的概念,它们在程序中扮演着不同的角色和功能。
本文将探讨变量和常量在编程中的作用和意义。
一、变量的作用和意义在编程中,变量是一种用于存储数据的容器。
它可以保存不同类型的数据,比如整数、浮点数、字符串等。
变量的作用主要有以下几个方面:1. 存储数据:变量可以用来存储程序运行过程中需要使用的数据。
通过给变量赋值,可以将数据保存在内存中,方便后续的计算和操作。
2. 数据传递:变量可以作为数据的中转站,将数据从一个地方传递到另一个地方。
在程序中,我们可以通过给变量赋值和读取变量的值来实现数据的传递和共享。
3. 数据处理:变量可以参与各种计算和操作。
通过对变量进行数学运算、逻辑运算和字符串操作等,可以实现复杂的数据处理和算法。
4. 状态管理:变量可以用来管理程序的状态。
通过改变变量的值,我们可以控制程序的流程和行为,实现不同的功能和逻辑。
变量的意义在于它的灵活性和可变性。
通过使用变量,我们可以根据需要存储不同的数据,并在程序运行过程中动态地改变它们的值。
这使得程序具有了更大的适应性和扩展性。
二、常量的作用和意义在编程中,常量是一种固定不变的值。
与变量不同,常量一旦被赋值后就不能再改变。
常量的作用主要有以下几个方面:1. 数据保护:常量可以用来保护数据的完整性和安全性。
通过将敏感数据定义为常量,可以防止它们在程序运行过程中被意外地修改。
2. 代码可读性:常量可以提高代码的可读性和可维护性。
通过使用有意义的常量名称,我们可以更清晰地表达程序中使用的特定值,使代码更易于理解和修改。
3. 代码重用:常量可以用于多个地方共享相同的值。
通过定义常量,我们可以在程序中多次使用相同的值,提高代码的重用性和效率。
4. 程序优化:常量在编译过程中会被直接替换为其具体的值,这可以提高程序的执行效率。
相比于变量,常量的值是固定的,编译器可以在编译阶段对其进行优化。
常量和变量

0~9,+ -, ., E ×10且E的两边必须
或e
有数,E的右边必须
是整数
举例
0.123, .123, 123.0, 0.0, 123. ……
12.3e3 ,123E2, 1.23e4 , e-5 , 1.2E-3.5
例:12.34e3(代表12.34*103,-346.87e-25代表-346.87*10-25) 说明:在计算机输入或输出时,无法表示上角或下角,故规定以字母e或E代表以10 为底的指数;e或E之前必须有数字且后面必须为整数。
#define PI 3.1416 //注意行末没有分号
说明:①从此行开始所有PI都代表3.1416。这种用符号名代表常量的,
称为符号常量。
②符号常量用大写表示。
③优点:在需要改变一个常量时能做到“一改全改”。
④符号常量不占内存,只是一个临时符号。
例: #define PRICE 30 #include <stdio.h> Main() {
int num,total; num=10; total=num*PRICE; Printf(“total=%d\n”,total); }
作业:
1. 整型常量有
、
、
式、、
。
三种书写形式,写出整数66的三种形
2.实型常量的十进制小数形式要求小数点两边至少一边有数字,而指数形式中e或
E之前必须有 ,其后面的指数必须为 。
2、字符变量
用char来定义,如要定义字符变量ch1和ch2,则是: char ch1,ch2;
说明: ①一个字符变量在内存中占一个字节。一个字符常量放到一个字符常量中, 实际上并不是把该字符本身放到内存单元中去,而是将该字符的相应的ASCII代 码放到存储单元中。
常量与变量

Ccur Cdate Cdbl
Currency Date Double
Cint
Cvar
Integer
Variant
-32768~32767,小数部分四舍五入
若为数值,范围与Double相同;若不为数值,则范围 与String相同
•
日期/时间函数
函数 功能
Now
DateSerial(年,月,日)
返回系统日期和时间(yy-mm-dd hh:mm:ss)
变量强制进行显式声明
可以在每个代码模块前写上 Option Explicit 语句或者选择“工具”菜 单中的“选项”命令,在对话框中打 开“编辑器”选项卡,选中“要求变 量声明”复选框。
注意: • 如果对Variant变量进行算术运算,必须确保变 量中存放的是某种形式的数值,包括整数,浮点 数,定点数等。 • 运算符“+”可以用于数值相加,还可用于字符 串的连接。为了避免运算出错,字符串连接最好 用运算符“&”。
3. 变体类型变量(隐式说明) (1)Variant变量的定义:可以用普通数据类型变量的格式定义,也可以 使用默认定义。 例:Dim SomeValue As Variant Dim SomeValue SomeValue = “100” (存入字符串“100”) SomeValue = SomeValue-10 (SomeValue变为90) SomeValue = “ABC”+ SomeValue (SomeValue变为字符串ABC90)
②Static 用于在过程中定义静态变量及数组变量。 用Static语句定义的变量在该函数或过程执行结束后, 它的值还能保存下来,被下一次执行时所使用。 而Dim定义的变量则会被清空。通常由Dim定义的变量称 为自动变量,而把由Static定义的变量称为静态变量。 【例】 编写一个程序,观察静态变量的特点。在窗体上添加一 个命令按钮,按钮的Caption属性是“执行一次过程”。命令 按钮的名称为Command1,事件过程如下。 Private Sub Command1_Click() Print方法的调用格式和功能。 Static a As Integer ' (Dim a As Integer) 格式:[对象.]Print[表达式表][,l;] Dim b As Integer 功能:Print方法可以在相应的对象上显 Print "a="; a; " "; "b="; b 示文本和表达式的值。 a=a+1 b=b+1 End Sub
常量与变量

常量与变量⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]开区间a<x<b (a,b)半开区间a<x≤b或a≤x<b (a,b]或[a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
常量与变量的定义和使用方法

常量与变量的定义和使用方法常量与变量是编程中不可或缺的一部分,是程序设计语言最基本的元素之一。
在计算机程序中,变量和常量通常承担着存储数据的重要任务。
在本文中,我将讨论常量与变量的定义和使用方法。
常量与变量的定义常量是程序中的固定数值或参数,不可变更,其值在程序执行期间不能改变。
例如,π等数值无法改变的参数,一般会被定义为常量。
变量是程序中一个可变的参数,在程序执行期间可以被重新赋值。
例如,x和y等可以在程序中被改变的参数,一般会被定义为变量。
在编程中,常量和变量都需要进行定义,以便在程序中进行调用。
常量与变量的使用方法常量和变量在程序中具有重要的作用。
让我们来看看如何在程序中使用它们。
常量的使用方法常量一般应该在程序的开始部分进行定义,这样可以方便程序调用。
定义常量通常采用以下格式:const 标识符常量名 = 常量值;其中,const是常量关键字,常量名是常量的名称,常量值是常量的具体数值,例如:const float PI = 3.1415926;在程序执行过程中,常量值无法更改,但它可以用在程序的任何部分,比如计算圆的面积:float r = 5.0f; float area = PI * r * r;变量的使用方法变量一般应该在使用前进行定义,变量定义通常包括以下格式:数据类型变量名;然后,在程序中可以改变变量值或变量类型。
例如,在程序中定义一个整数变量并赋值:int number = 5;在程序执行的过程中,可以改变number的值或变量类型,例如:number = 7; float decimalNumber = number /2.0f;在此示例中,我们将变量值改变了一次,还将一个整数转换为一个浮点数,并将其赋给另一个变量。
常量与变量的区别常量和变量之间的主要区别在于其可变性。
常量的值在程序运行过程中是不变的,而变量的值可以波动。
常量的定义通常在程序开始时进行,并且不会在程序运行时更改。
5.4生活中的常量与变量

生活中的常量与变量【要点梳理】要点一:变量、常量的概念★在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. ★常量与变量的判断方法:(1)判断一个量是不是变量,关键看在某个变化过程中,这个量是否可以取不同的数值. (2)常量的变现形式一般有两种,一个具体的数或问题中给定的已知条件.要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t ,速度60千米/时是常量,时间t 和里程s 为变量. 要点二:变量之间的三种表示方法★解析式法:用来表示函数关系的等式叫做函数关系式,也称函数的解析式. ★列表法:函数关系用一个表格表达出来的方法. ★图象法:用图象表达两个变量之间的关系.【例1】从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是( )A 、物体B 、速度C 、时间D 、空气【例1】对于圆的周长公式C=2πR ,下列说法正确的是( )A 、π、R 是变量,2是常量B 、R 是变量,π是常量C 、C 是变量,π、R 是常量D 、R 是变量,2、π是常量【变式】在△ABC 中,它的底边是a ,底边上的高是h ,则三角形面积S=21ah ,当a 为定长时,在此式中( )A 、S ,h 是变量,21,a 是常量 B 、S ,h ,a 是变量,21是常量 C 、S ,h 是变量,21,S 是常量D 、S 是变量,21,a ,h 是常量 【变式】在圆的面积计算公式S=πR 2中,变量是( )A 、SB 、RC 、π,RD 、S ,R【变式】某超市某种商品的单价为70元/件,若买x 件该商品的总价为y 元,则其中的常量是( )A 、70B 、xC 、yD 、不确定【变式】某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中,下列说法正确的是( )A 、数100和η,t 都是变量B 、数100和η都是常量C、η和t是变量D、数100和t都是常量【变式】在公式s=50t中常量是,变量是.【变式】在公式22tt vs+=(v为已知数)中,常量是,变量是.【变式】在圆的周长公式C=2πr中,变量是,,常量是.【变式】在圆的面积公式S=πR2中,常量是.【变式】在匀速运动公式s=vt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是,常量是.【例2】圆柱的高是6cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也随之发生变化.在这个变化过程中,自变量是,因变量是.【变式】多边形内角和α与边数之间的关系是α=(n﹣2)×180゜,这个关系式中的变量是,常量(不变的量)是.【变式】骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是()A、沙漠B、体温C、时间D、骆驼【变式】明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A、明明B、电话费C、时间D、爷爷【变式】在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A、太阳光强弱B、水的温度C、所晒时间D、热水器【变式】重百大楼的销售量随商品价格的高低而变化,在这个变化过程中,自变量是()A、销售量B、顾客C、商品D、商品的价格【变式】小明给在北京的姑姑打电话,电话费随时间的变化而变化,在这个问题中,因变量是()A、时间B、电话费C、电话D、距离【变式】在关系式V=30﹣2t中,V随着t的变化而变化,其中自变量是_________,因变量是_________,当t=_________时,V=0.【变式】圆的面积S与半径R之间的关系式是S=πR2,其中自变量是_________.【变式】在y=ax2+h(a、h是常量)中,因变量是_________.典型例题题型一:常量与变量【练习】某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表): 温度/℃ ﹣20 ﹣10 0 10 20 30 声速/m /s318324330336342348下列说法错误的是( )A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20℃时,声音5s 可以传播1740mD .当温度每升高10℃,声速增加6m /s【练习】李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是( )A .金额B .数量C .单价D .金额和数量【练习】在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( ) A .太阳光强弱B .水的温度C .所晒时间D .热水器【练习】在圆的面积公式S =πR 2中,常量与变量分别是( ) A .2是常量,S 、π、R 是变量 B .π是常量,S 、R 是变量 C .2是常量,R 是变量D .2是常量,S 、R 是变量【练习】在球的体积公式V =43πR 3中,下列说法正确的是( ) A .V 、π、R 是变量,43为常量B .V 、π是变量,R 为常量C .V 、R 是变量,43、π为常量D .以上都不对【练习】一本笔记本5元,买x 本共付y 元,则5和y 分别是( ) A .常量,常量B .变量,变量C .常量,变量D .变量,常量【练习】弹簧挂重物会伸长,测得弹簧长度y (cm )最长为20cm ,与所挂物体重量x (kg )间有下面的关系.x01234…y88.599.510…下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm【练习】骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温【练习】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间【练习】在圆的面积计算公式S=πR2中,变量是()A.S B.R C.π,R D.S,R【练习】在圆面积公式S=πR2中,变量是()A.S B.S与πC.S与R2D.S与R【练习】2018年10月,历时九年建设的港珠澳大桥正式通车,住在珠海的小亮一家,决定自驾去香港旅游,经港珠澳大桥去香港全程108千米,汽车行进速度v为110千米/时,若用s(千米)表示小亮家汽车行驶的路程,行驶时间用t(小时)表示,下列说法正确的是()A.s是自变量,t是因变量B.s是自变量,v是因变量C.t是自变量,s是因变量D.v是自变量,t是因变量【练习】在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.变量是速度vB.变量是时间tC.速度v和时间t都是变量D.速度v、时间t、路程s都是常量【练习】半径是r 的圆的周长为C =2πr ,下列说法正确的是( ) A .C ,r 是变量,2π是常量 B .C 是变量,2,r 是常量C .C 是变量,π,r 是常量D .C ,π是变量,2是常量【练习】在进行路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是( ) A .s 、v 是变量 B .s 、t 是变量 C .v 、t 是变量D .s 、v 、t 都是变量【练习】小丽的微信红包原有100元钱,她在新年一周里抢红包,红包里的钱随着时间的变化而变化,在上述过程中,自变量是( ) A .时间B .小丽C .80元D .红包里的钱【练习】在圆锥体积公式V =13πr 2ℎ中(其中,r 表示圆锥底面半径,h 表示圆锥的高),常量与变量分别是( ) A .常量是13,π,变量是V ,hB .常量是13,π,变量是h ,rC .常量是13,π,变量是V ,h ,rD .常量是13,变量是V ,h ,π,r【练习】某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 是自变量, 是因变量.【练习】我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t 表示某高空中的温度,h 表示距地面的高度,则 是自变量.【练习】弹簧挂重物后会伸长,测得弹簧长度y (cm )与所挂物体质量x (kg )间有下面的关系: x (kg ) 1 2 3 4 5 … y (cm )8.599.51010.5…现测得弹簧长度为14.5cm ,所挂重物的质量为 kg .。
初中数学教案变量与常量

初中数学教案变量与常量初中数学教案:变量与常量引言:数学是一门严谨而有趣的学科,而初中数学作为数学学习的基础课程,需培养学生的逻辑思维和问题解决能力。
其中,理解和掌握变量与常量的概念至关重要。
本教案旨在通过寓教于乐的方式帮助学生深入理解变量与常量的含义、作用以及它们在数学问题中的应用。
一、背景知识的概述1. 变量与常量的定义在数学中,变量是指可改变的量,常用字母表示;而常量是指固定不变的量,常用数字或字母表示。
2. 变量与常量的作用变量与常量在数学问题中起着不同的作用。
学生需要理解这两个概念的区别,以及它们在算术、代数以及其他实际问题中的应用。
二、教学目标在本课中,学生将能够:1. 定义变量与常量的概念;2. 区分变量与常量,并举例说明;3. 运用变量与常量解决实际问题。
三、教学内容和方法1. 引入利用一个有趣的情境或问题,引起学生的兴趣,并提出相关问题,如:在一次志愿者活动中,有多少人愿意为植树活动做贡献?请你们想一想,这个数字应该是一个变量还是一个常量?2. 讲解变量与常量的概念通过示意图、实例等方式,清晰地解释变量与常量的定义,并与学生进行互动讨论。
3. 变量与常量的区分通过多个实例,与学生一起分析问题,并要求他们判断出变量与常量在不同情景中的应用与区别。
4. 变量与常量的应用数学中变量与常量的应用非常广泛,可以引导学生在解决实际问题中灵活运用这两个概念。
可以设计实际问题,要求学生在解决问题时运用变量与常量,并进行解答。
5. 知识总结综合归纳变量与常量的定义及其应用,并通过提问和讨论的形式巩固学生的理解。
四、教学辅助工具和评估方式1. 辅助工具课件、黑板、粉笔、实物物品等。
2. 评估方式可以设计小组活动、个人作业或小测验等方式对学生对变量与常量的理解进行评估。
五、课堂延伸1. 拓展思维鼓励学生思考变量与常量的应用在其他学科和实际生活中的重要性,如化学中化学方程式中的变量、经济学中的变量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省邻水中学实验学校·三分课堂学导练
1
第十四章 一次函数
14.1.1 变量与函数 课时1: 常量与变量
学习目标:
1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;
2、学会用含一个变量的代数式表示另一个变量。
(一)自主学习:
1.阅读教材第94-95页练习以前的内容,请根据题意独立填写下表(8分钟):
用含一个变量的式子
表示另一个变量 常量 变量
问题(1) 问题(2) 问题(3) 问题(4) 问题(5)
(二)小组交流
请各小组统一更正所填答案,并交流这5个式子所依据的数量关系和蕴含的变化规律,3分钟后展示汇报。
例1:指出下列关系式中的变量与常量:
(1) y = 5x -6 (2) x
y 6=
(3) 7542
-+=x x y (4) s=π2r
例2:有人说:“常量与变量不是绝对的,而是相对于一个变化过程而言的。
”你认为这种说法正确吗?结合生活中的例子,和同学交流一下看法。
1、在圆的周长公式 C= 2R 中,常量是_________,变量是____________.
2.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x 之间的关系是 _____________.常量是_________,变量是_________.
3.长方形相邻两边长分别为x 、•y•,周长为30,则用含x 的式子表示y 为__ ___,在这个问题中,____常量;______是变量.
4.若球体的体积为V ,半径为R ,则
V= , 用含V 的式子表示R 为__ _____.
5.在△ABC 中,已知底边是a ,底边上的
高是h ,则△ABC 的面积是 ah s 2
1
=,当a
为定长时,在此式子中( )
A. s 、h 是变量,a 与21
是常量;
B. s 、h 、a 是变量,21
是常量;
C. a 、h 是变量,s 与2
1
是常量;
D. s 是变量,2
1
、a 、h 是常量;
4、甲乙两地相距s 千米,某人行完全程所用时间t (时)与他的速度v (千米/时)满足vt=s,在这个变化过程中,下列判断错误的是( )
A.S 是变量
B.t 是变量
C.v 是变量
D.s 是常量 课后拓展: 1、《学导练》第55页课后拓展第2、3题。
2、瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式.
x 1 2 3 … x y
…。