九年级数学上册特殊平行四边形练习题
北师大版-九年级-数学-上册-第一章-特殊平行四边形-同步练习(含答案解析)

第一章特殊平行四边形评价检测(45分钟100分)一、选择题(每小题4分,共28分)1.矩形、菱形、正方形都具有的性质是( )A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直2.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是( )A.3B.4C.5D.73.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形4.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是( )A.2B.C.D.【变式训练】如图,在矩形ABCD中,E是BC的中点,∠BAE=30°,AE=2,则矩形ABCD的面积为.5.如图,已知菱形ABCD与△ABE,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.126.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为( )A.15B.20C.25D.307.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC的中点;②FG=FC;③S△FGC=.其中正确的是( )A.①②B.①③C.②③D.①②③二、填空题(每小题5分,共25分)8.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是.【易错提醒】平行四边形是中心对称图形,但不是轴对称图形,本题易误认为平行四边形既是轴对称图形又是中心对称图形.【知识归纳】特殊平行四边形的对称性(1)矩形、菱形、正方形既是轴对称图形又是中心对称图形.(2)矩形与菱形有两条对称轴,正方形有四条对称轴.(3)对角线的交点是它们的对称中心,过对称中心的任一条直线均把原图形分成面积相等的两部分.9.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,试添加一个条件: ,使得平行四边形ABCD是菱形.【解析】添加AC⊥BD,则对角线互相垂直的平行四边形是菱形;添加AD=DC,则一组邻边相等的平行四边形是菱形.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= .【变式训练】如图,顺次连接菱形ABCD的各边中点E,F,G,H.若AC=a,BD=b,则四边形EFGH的面积是.11.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F作FG⊥EF交BC于G,连接GH,当AD,AB满足时,四边形EFGH为矩形.12.如图,四边形ABCD与AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则= .三、解答题(共47分)13.(10分)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF 交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形.(2)若四边形BECF为正方形,求∠A的度数.【互动探究】四边形BECF的面积与△ABC的面积有什么关系?为什么?14.(12分)如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.(1)证明:四边形AECF是矩形.(2)若AB=8,求菱形的面积.15.(12分)(2014·新民市一模)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF.(2)若点O为CD的中点,求证:四边形DECF是矩形.16.(13分)(2013·青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点(1)求证:△ABM≌△DCM.(2)判断四边形MENF是什么特殊四边形,并证明你的结论.明)。
北师大版九年级数学上册第一章特殊平行四边形单元测试

北师大版九年级数学上册第一章特殊平行四边形单元测试(4)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1BC.2D.2.正方形面积为36,则对角线的长为()A.6B.C.9D.3.如图,在矩形ABCD中,对角线BD=8cm,∠AOD=120°,则AB的长为()B.2cm C.D.4cmA4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是().A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB∠CD ,AB =CDB .AD∠BC ,∠A =∠C C .AO =BO =CO =DO ,AC∠BD D .AO =CO ,BO =DO ,AB =BC7.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形8.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3109.图,在∠ABC 中,AB =AC ,四边形ADEF 为菱形,O 为AE ,DF 的交点,S △ABC =,则S 菱形ADEF =( )A .4B .C .D .10.如图,四边形ABCD 中,90BAD C ∠=∠=︒,AB AD =,AH BC ⊥于H ,若线段AH =ABCD 的面积是( ).A .3B .4C .D .6二、填空题11.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离AB=BC=16cm ,则∠1=_______°12.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,相交于点O ,CE 平分∠ACD 交BD 于点E ,则DE =_____.13.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_____________.14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,CE ∠BD ,垂足为点E ,CE =5,EO =2DE ,则DE 的长为________.15.如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为_________.16.将五个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3、A 4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.17.图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点(不与B ,D 重合),PE∥CD 交BC 于点E ,PF ∥BC 交CD 于点F ,连接AP ,EF .给出下列结论:∠PD EC ;∠四边形PECF 的周长为8;∠∠APD 一定是等腰三角形;∠AP =EF .其中正确结论的序号为________.三、解答题18.如图,矩形ABCD 中,AC 与BD 交于点O BE AC CF BD ⊥⊥,,,垂足分别为.E F ,求证:BE CF =.19.如图,在77⨯的正方形网格中,网格线的交点称为格点,B 在格点上,每一个小正方形的边长为1.(1)以AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.20.如图,菱形ABCD的对角线AC,BD交于点O,AB=5,AC=6,DE∠BC的延长线于点E,求OE的长.21.如图,菱形ABCD的对角线AC,BD交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求EO的长.22.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使∠BPE的周长最小(作图说明);(2)求出∠BPE周长的最小值.23.如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.=;(1)求证:AF HG∠=∠;(2)求证:FAE GHC24.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN∠BC,设MN 交∠ACB 的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)若AC 边上存在点O,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.25.有一张矩形纸片ABCD,其中AB=10,AD=6,现将矩形纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形纸片的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图∠).∠当点P与点A重合时,∠DEF=________°,当点E与点A重合时,∠DEF=________°,当点F与点C重合时,AP=________;∠若点P为AB的中点,求AE的长;(2)若点P落在矩形ABCD的外部(如图∠),点F与点C重合,点E在AD上,BA与FP交于点M,当AM=DE时,请求出AE的长;(3)若点E为动点,点F为DC的中点,直接写出AP的最小值.参考答案:1.C【分析】利用菱形的性质以及等边三角形的判定方法得出∠DAB 是等边三角形,进而得出BD 的长,【详解】解:∠菱形ABCD 的边长为2,∠AD =AB =2,又∠∠DAB =60°,∠∠DAB 是等边三角形,∠AD =BD =AB =2,则对角线BD 的长是2.故选C .【点睛】此题主要考查了菱形的性质以及等边三角形的判定,得出∠DAB 是等边三角形是解题关键.2.B【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【详解】设对角线长是x .则有12x 2=36,解得:x故选B .【点睛】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.3.D【分析】根据矩形的性质求出4AO BO cm ==,再根据等边三角形的判定可得AOB 是等边三角形,然后根据等边三角形的性质即可得.【详解】∠120AOD ∠=︒∠18060AOB AOD ∠=︒-∠=︒∠四边形ABCD 是矩形,8BD cm = ∠118,4,422AC BD cm AO AC cm BO BD cm ======∠4AO BO cm ==∠AOB 是等边三角形∠4AB AO cm ==故选:D .【点睛】本题考查了矩形的性质、等边三角形的判定与性质等知识点,熟记矩形的性质是解题关键.4.D【分析】根据菱形的性质和勾股定理求解即可.【详解】解:∠菱形的对角线AC 与BD 相交于点O ,∠AO =OC ,BO =OD ,AC ∠BD ,AB =BC =CD =AD ,∠AC =6cm ,BD =8cm ,∠在Rt∠AOB 中,AO =3cm ,BO =4cm ,∠AOB =90°,由勾股定理得:AB ,∠菱形的周长为4×5=20cm ,故选:D .【点睛】本题考查菱形的性质、勾股定理,熟练掌握菱形的对角线互相垂直且平分是解答的关键.5.C【详解】解:A 、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B 、对角线互相垂直的平行四边形是菱形;故本选项错误;C 、对角线互相平分的四边形是平行四边形;故本选项正确;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C .6.C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A ,不能,只能判定为矩形,不符合题意;B ,不能,只能判定为平行四边形,不符合题意;C ,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.7.D【分析】根据三角形的中位线定理得到EH∠FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∠E,F,G,H分别是边AD,AB,CB,DC的中点,∠EH=12AC,EH∠AC,FG=12AC,FG∠AC,EF=12BD,∠EH∠FG,EF=FG,∠四边形EFGH是平行四边形,假设AC=BD,∠EH=12AC,EF=12BD,则EF=EH,∠平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点睛】题目主要考查中位线的性质及菱形的判定和性质,理解题意,熟练掌握运用三角形中位线的性质是解题关键.8.B【分析】根据矩形的性质,得△EBO∠∠FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的12得出结论.【详解】解:∠四边形为矩形,∠OB=OD=OA=OC,在△EBO与△FDO中,∠∠EOB=∠DOF,OB =OD ,∠EBO =∠FDO ,∠∠EBO ∠∠FDO (ASA ),∠阴影部分的面积=S △AEO +S △EBO =S △AOB ,∠∠AOB 与△ABC 同底且△AOB 的高是△ABC 高的12, ∠S △AOB =12S △ABC =14S 矩形ABCD . 故选B【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质9.C【分析】根据菱形的性质,结合AB =AC ,得出DF 为∠ABC 的中位线,DF∥BC ,12DF BC =,从而得出AE 为∠ABC 的高,得出BC AE ⨯=的面积.【详解】解:∠四边形ADEF 为菱形,∠EF∥AB ,DE∥AC ,AF =EF =DE =AD ,AE ∠DF ,∠CEF B ∠=∠,DEB C ∠=∠,AC AB =,B C ∴∠=∠,CEF B C DEB ===∴∠∠∠∠,∠CF =EF ,DE =DB ,CF AF ∴=,AD DB =,∠DF∥BC ,12DF BC =, 90AOD ∠=︒,90AEB AOD ==︒∴∠∠,AE BC ∴⊥,ABC S =∵12BC AE ⨯=∴即BC AE ⨯=1111=2224ADEF S DF AE BC AE ⨯=⨯⨯=⨯菱形∴C 正确. 故选:C .【点睛】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF 为∠ABC 的中位线,是解题的关键.10.D【详解】试题解析:过A 点作CD 的垂线,交CD 的延长线于F 点,如图,则四边形AECF 是矩形90,90DAE BAE DAE DAF ∠+∠=∠+∠=,BAE DAF ∴∠=∠,在∠ABE 和∠DAF 中,{AB ADBAE DAF AEB AFD =∠=∠∠=∠,则(AAS)ABE DAF ≌,,AE AF ∴=又∠四边形AECF 是矩形.∠四边形AECF 为正方形,而四边形ABCD 的面积是6,故选D.11.120【详解】由题意可得AB 与菱形的两邻边组成等边三角形,从而不难求得∠1的度数. 解:由题意可得AB 与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.此题主要考查菱形的性质和等边三角形的判定.12【分析】由正方形对角线相交于点O ,则DO CO ⊥,12DO BD ==,过点E 作EF CD ⊥于F ,设EO EF DF x ===,则DE =,列出方程x =解出x ,最后得出答案. 【详解】解:如图所示,过点E 作EF CD ⊥于F ,∠正方形ABCD 的边长为1,∠AC =BDDO CO ⊥,∠OA =OC =OB =OD =2, ∠CE 平分∠ACD 交BD 于点E ,∠EO =EF ,∠在正方形ABCD 中,∠ADB =∠CDB =45°,∠EF =DF ,设EO EF DF x ===,则DE =,∠OD =OE +DE =x =∠解得x =∠DE =OD -OE 1=,1.【点睛】本题主要考查了正方形的性质与角平分线的性质,解题的关键是根据角平线的性质作出辅助线.13.(4,4)【详解】解:连接AC 、BD 交于点E ,如图所示:∠四边形ABCD 是菱形,∠AC ∠BD ,AE =CE =12AC ,BE =DE =12BD ,∠点B的坐标为(8,2),点D的坐标为(0,2),∠OD=2,BD=8,∠AE=OD=2,DE=4,∠AC=4,∠点C的坐标为:(4,4)故答案为:(4,4)【点睛】本题考查菱形的性质;坐标与图形性质.14【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=12BD,OC=12AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【详解】解:∠四边形ABCD是矩形,∠∠ADC=90°,BD=AC,OD=12BD,OC=12AC,∠OC=OD,∠EO=2DE,∠设DE=x,OE=2x,∠OD=OC=3x,∠CE∠BD,∠∠DEC=∠OEC=90°,在Rt△OCE中,∠OE2+CE2=OC2,∠(2x)2+52=(3x)2,解得:x,∠DE【点睛】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.15.50 13【详解】试题分析:∠四边形ABCD是菱形,AC=24,BD=10,∠AO=12,OD=5,AC∠BD,=13,∠DH∠AB,∠AO×BD=DH×AB,∠12×10=13×DH,∠DH=12013,5013=.考点:1.菱形的性质;2.勾股定理.16.4【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF∠∠NAE,进而可得四边形AENF的面积等于∠NAP的面积,同理可得答案.【详解】如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∠∠PAF+∠FAN=∠FAN+∠NAE=90°,∠∠PAF=∠NAE,∠∠PAF∠∠NAE,∠四边形AENF的面积等于∠NAP的面积,而∠NAP 的面积是正方形的面积的14,而正方形的面积为4, ∠四边形AENF 的面积为1cm 2,四块阴影面积的和为4cm 2.故答案为4.【点睛】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:∠定点-旋转中心;∠旋转方向;∠旋转角度.17.∠∠∠【分析】∠证明PF EC =,PDF ∆是等腰直角三角形,即可说明PD =;∠先证明四边形PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC ,则四边形PECF 的周长为8;∠根据P 的任意性可以判断APD ∆不一定是等腰三角形;∠四边形PECF 为矩形,通过正方形的轴对称性,证明AP EF =.【详解】解:∠PE BC ⊥,PF CD ⊥,90PEC PFC ∴∠=∠=︒,又90C ∠=︒,∴四边形PECF 是矩形,EC PF ∴=.四边形ABCD 是正方形,45PDF ∴∠=︒,PDF ∴∆是等腰直角三角形,PD ∴==,故∠正确;∠PE BC ⊥,PF CD ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴四边形PECF 的周长222228CE PE CE BE BC =+=+==,故∠正确; ∠点P 是正方形ABCD 的对角线BD 上任意一点,45ADP ∠=︒,∴当45PAD ∠=︒或67.5︒或90︒时,APD ∆是等腰三角形,除此之外,APD ∆不是等腰三角形,故∠错误.∠四边形PECF为矩形,∠=∠,∴=,PFE ECPPC EF正方形为轴对称图形,∴=,AP PC∴=,AP EF故∠正确;故答案为∠∠∠.【点睛】本题考查了正方形的性质,等腰三角形的判定与性质,勾股定理的运用等知识;熟练掌握正方形的性质和等腰三角形的性质是解题的关键.18.证明见解析【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【详解】证明:∠四边形ABCD为矩形,∠AC=BD,则BO=CO.∠BE∠AC于E,CF∠BD于F,∠∠BEO=∠CFO=90°.又∠∠BOE=∠COF,∠∠BOE∠∠COF.∠BE=CF.19.(1)答案不唯一,见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意,菱形ABCD即为所求(2)图1中AC =2,BD =6∠图1中菱形面积12662=⨯⨯=.图2中,AC22442,BD =∠图2中菱形面积182=⨯=.图3中,AC BD =∠图3菱形面积1102=⨯=. 【点睛】本题考查菱形的性质,掌握菱形的概念准确作图是关键.20.4【分析】由菱形的性质得出AC BD ⊥,OB OD =,112OA OC AC ===,在Rt AOD ∆中,由勾股定理得:4OD =,得出28BD OD ==,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∠四边形ABCD 是菱形,∠AD =AB =5,AC ∠BD ,AO =12AC =12×6=3,OB =OD . 在Rt∠AOD 中,由勾股定理得OD =4OD ==,∠BD =2OD =8.∠DE ∠BC ,∠∠DEB =90°.又∠OD =OB ,∠OE =12BD =12×8=4. 【点睛】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.21.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∠BE∠AC,AE∠BD,∠四边形AEBO是平行四边形.∠四边形ABCD是菱形,∠AC∠BD,即∠AOB=90°.∠四边形AEBO是矩形.(2)解:∠四边形AEBO是矩形,∠EO=AB,在菱形ABCD中,AB=CD,∠EO=CD=3.【点睛】本题考查菱形的性质、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的性质和矩形的判定与性质是解答的关键.22.(1)见解析(2)12【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:证明∠AB P′∠∠AD P′,即可求解;(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∠AP′=AP′,∠∠ABP′∠∠ADP′,∠BP′=DP′,∠BP+PE= DP′+ P′E≥DE,即当点P位于PP′时,∠BPE的周长PB+EP+BE最小;(2)解:由(1)得:B P ′=DP ′,∠P ′B +P ′E =DE .∠BE =2,AE =3BE ,∠AE =6.∠AD =AB =8.∠DE10.∠PB +PE 的最小值是10.∠∠BPE 周长的最小值为10+BE =10+2=12.【点睛】本题主要考查了正方形的性质,勾股定理,最短距离,全等三角形的判定和性质等,熟练掌握相关知识点是解题的关键.23.(1)详见解析;(2)详见解析.【分析】(1)根据题意可先证明四边形AHCE 为平行四边形,再根据正方形的性质得到∠AH FG =,//AH FG ,故可证明四边形AHGF 是平行四边形,即可求解;(2)根据四边形AHGF 是平行四边形,得180FAH AHG ∠+∠=︒,根据四边形ABCD 是矩形,可得 DAH AHB ∠=∠,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∠四边形ABCD 是矩形,且E 、H 分别为AD 、BC 的中点, ∠AE HC =,//AE HC ,∠四边形AHCE 为平行四边形,∠AH EC =,//AH EC ,又∠四边形ECGF 为正方形,∠EC FG =,//EC FG ,∠AH FG =,//AH FG ,∠四边形AHGF 是平行四边形,∠AH FG =;(2)证明:∠四边形AHGF 是平行四边形,∠180FAH AHG ∠+∠=︒,∠四边形ABCD 是矩形,∠//AD BC ,∠DAH AHB ∠=∠,又∠180AHB AHG GHC ∠+∠+∠=︒,∠FAD GHC ∠=∠;【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.24.(1)见解析;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.见解析;(3)△ABC 是直角三角形,理由见解析.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO =CO ,EO =FO 可得四边形AECF 平行四边形,再证明∠ECF =90°利用矩形的判定得出即可;(3)利用正方形的性质得出AC ∠EN ,再利用平行线的性质得出∠BCA =90°,即可得出答案;【详解】证明:(1)∠MN 交∠ACB 的平分线于点 E ,交∠ACB 的外角平分线于点 F , ∠∠2=∠5,∠4=∠6,∠MN ∠BC ,∠∠1=∠5,∠3=∠6,∠∠1=∠2,∠3=∠4,∠EO =CO ,FO =CO ,∠OE =OF ;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.证明:当 O 为 AC 的中点时,AO =CO ,∠EO =FO ,∠四边形 AECF 是平行四边形,∠CE 是∠ACB 的平分线,CF 是∠ACD 的平分线,∠∠ECF =12(∠ACB +∠ACD )=90°,∠平行四边形 AECF 是矩形.(3)∠ABC 是直角三角形,理由:∠四边形AECF 是正方形,∠AC∠EN,故∠AOM=90°,∠MN∠BC,∠∠BCA=∠AOM,∠∠BCA=90°,∠∠ABC 是直角三角形.【点睛】此题考查了正方形的判断和矩形的判定,需要知道平行线的特征和角平分线的性质才能解答此题.25.(1)∠ 90,45,2;∠11 12(2)1275【分析】(1)∠分别画出三种情况下的图形即可得到解答;∠连接EP,设AE=x,可以得到关于x的方程,从而得到AE的值;(2)连接EM,设AE=y,根据题意可以得到关于y的方程,解方程即可得到问题解答;(3)画出图形后根据题意可以得到解答.(1)∠如图1所示,点P与点A重合,由题意可知,PD∠EF,所以∠DEF=90°,如图2所示,点E与点A重合,由题意可知,ED=EP,PD∠EF,所以∠DEF=45°,如图3所示,点F与点C重合,连结CP,由题意可知,CP=DF=10,BC=6,∠在RT∠CPB中,PB=8,∠AP=AB-PB=2,故答案为90;45;2;∠如图4所示,连接EP,∠点P为AB的中点,∠AP=BP=5,由折叠知DE=EP,设AE=x,则DE=EP=6-x,在Rt∠AEP中,AE2+AP2=EP2,即x2+52=(6-x)2,解得x=1112,即AE=1112.(2)如图5所示,连接EM,设AE=y,由折叠知PE=DE,∠CDE=∠EPM=90°,CD=CP=AB=10,∠AM=DE,∠AM=PE.在Rt∠AEM和Rt∠PME中,,, AM PE EM ME=⎧⎨=⎩∠Rt∠AEM∠Rt∠PME(HL),∠AE=PM=y,∠CM=10-y,BM=AB-AM=AB-DE=10-(6-y)=4+y.在Rt∠BCM中,BM2+BC2=CM2,∠(4+y)2+62=(10-y)2,解得y=127.∠AE=127.(3)如图6所示,连结AF,在Rt ADF中,∠D=90°,AD=6,DF=CF=5,∠AF∠PF=DF=5,∠5AP AF PF≥-=,∠AP5.【点睛】本题考查矩形的的折叠问题和最短距离问题,正确分类并画出图形是解题的关键.。
九年级数学(上)单元测试卷 第一章《特殊平行四边形》(含答案与解析)

【新北师大版九年级数学(上)单元测试卷】第一章《特殊平行四边形》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 244. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 139.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 1611.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A. 1B.C. 4-2D. 3-4二.填空题:(每小题3分共12分)13.正方形的一条边长是4,则它的对角线长是_________.15.矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为__________.16.如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=_________.三.解答题:(共52分)17.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.18.已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.于点F,且,连接BF.证明:;当满足什么条件时,四边形AFBD是矩形?并说明理由.20.已知中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.21.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.23.如图,F是正方形ABCD的边BC的中点,CG平分∠DCM,交过F点AF的垂线FG于G,求证:AF=FG.一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对角线相等,错误.③菱形也两个角相等,错误.④正确.所以选C.2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°【答案】B【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 24【答案】A【解析】∵菱形的两条对角线长分别为3和4,∴S菱形=.故选A.4. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形【答案】B【解析】如图,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥AC,∴四边形EFGH是平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵HE∥BD,∴EF⊥HE,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选B.5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD【答案】D【解析】A、不能,只能判定出是平行四边形;B、不能,只能判定出是矩形;C、不能,只能判定出是菱形;D、能,由OA=OB=OC=OD可判断出四边形ABCD是矩形,再根据AC⊥BD,可判断出矩形ABCD 又是菱形,所以可判断出四边形ABCD是正方形,故选D.6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等【答案】B【解析】根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对边平行且相等、对角线相等、对角线互相平分,但矩形的对角线不互相垂直,故选B.7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等C. 对角线互相垂直D. 对角线互相垂直且相等【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选:D.8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 13【答案】B【解析】∵四边形ABCD是矩形,∠BOC=120°,∴AO=BO,∠BAD=90°,∠AOB=60°,∴△AOB是等边三角形,∴∠ABD=60°,∴∠BDA=30°,∴BD=2AB=10.故选B.9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.【解析】∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 16【答案】D【解析】试题分析:根据题意可得:AD=2+6=8,根据折叠图形的性质可得:AB=2,然后根据矩形的面积计算公式求出矩形的面积.11.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.【答案】C【解析】DE BF,AF EC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,1∴EGFH是菱形。
(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试(答案解析)

一、选择题1.如图,矩形ABCD 被两条对角线分成4个小三角形OAB ∆、OAD ∆、OBC ∆和OCD ∆,若这4个小三角形的周长之和为68,对角线10AC =,则矩形ABCD 的周长是( )A .14B .18C .21D .282.在一个四边形ABCD 中依次连接各边的中点得到的四边形是矩形,则对角线AC 与BD 需要满足的条件是( )A .垂直B .相等C .垂直且相等D .不再需要条件 3.下列命题是假命题的是( )A .有一组邻边相等的矩形是正方形B .对角线互相垂直的平行四边形是正方形C .对角线相等的平行四边形是矩形D .有三个角是直角的四边形是矩形 4.如图,四边形ABCD 中,90A B ∠=∠=︒,60C ∠=°,2CD AD =,4AB =,点P 是AB 上一动点,则PC PD +的最小值是( )A .4B .6C .8D .105.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .1036.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .47.如图,四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC ,垂足是E ,若线段AE =4,则四边形ABCD 的面积为( )A .12B .16C .20D .248.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ACD △沿AD 翻折,得到ADC ',DC '与AB 交于点E ,连结BC ',若2BD BC ='=,3AD =,则点D 到AC '的距离为( )A .332B .3217C .7D .139.如图,在平行四边形ABCD 中,AD =2AB 、点F 是AD 的中点,作CE ⊥AB 垂足E 在线段AB 上,连接 EF 、CF ,则下列结论:①2BCD DCF ∠=∠;②EF =CF ; ③S △BCE =S △CEF ;④∠DFE =3∠AEF .其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②AD=2AE ;③ACD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤BE=2OG :⑥若1OGF S ∆=,则正方形ABCD 的面积是642+,其中正确的结论个数为( )A .2个B .3个C .4个D .5个11.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =,则AF 的长是( )A 6B 7C .3D .5 12.□ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,可推出□ABCD 是菱形,那么这个条件可以是( )A .AB=CDB .AC=BDC .AC ⊥BD D .AB ⊥BD二、填空题13.如图,把一张长方形的纸沿对角线折叠,若118ABC ∠=︒,则BAC ∠=_______.14.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 重合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =__________时,△DEF 为等腰直角三角形.15.如图,△ABC 中,13AB AC ==,10BC =,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是________.16.如图,在ABC ∆中,AC BC =,点D 、E 分别是边AB 、AC 的中点.延长DE 到点F ,使DE EF =,得四边形ADCF .当ACB =∠________︒时,四边形ADCF 是长方形.17.如图,在ABC 中,90C ∠=︒,60B ∠=︒,AD ,CE 都是ABC 的中线,点M 是CE 的中点,若1CM =,则CD =______.18.如图,四边形ABCD 中,30,120B D ∠=︒∠=︒,且,6AB AC AD CD ⊥+=,则四边形ABCD 周长的最小值是_______________________.19.如图所示,长方形ABCD由四个等腰直角三角形和一个正方形EFGH构成.若长方形ABCD的面积为6,则三角形ABE的面积为 ______,正方形EFGH的面积为______.20.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.三、解答题21.如图,长方形ABCD中,AD=a cm,AB=b cm,且a、b满足|8-a|+(b-4)2=0.(1)长方形ABCD的面积为;(2)动点P在AD所在直线上,从A出发向左运动,速度为2cm/s,动点Q在DC所在直线上,从D出发向上运动,速度为4cm/s.动点P、Q同时出发,设运动时间为t秒.①当点P在线段AD上运动时,求以D、P、B、Q为顶点的四边形面积;(用含t的式子表示)②求当t为何值时,S△BAP=S△CQB.22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,过点D作AC的垂线,交AC的延长线于点E,连接AD.(1)求证:DE是⊙O的切线;(2)连接CD,若∠CDA=30°,AC=2,求CE的长.23.如图,在ABC 中,,,,AC BC D E F =分别是,,AB AC BC 的中点,连接,DE DF .求证:四边形DFCE 是菱形.24.长方形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,10OA =,6OC =.(1)如图,在AB 上取一点M ,使得CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,求B ′点的坐标.(2)求折痕CM 所在直线的解析式.(3)在x 轴上是否能找到一点P ,使B CP '△的面积为13?若存在,直接写出点P 的坐标?若不存在,请说明理由.25.如图,长方形ABCD 沿着直线DE 和EF 折叠,使得AB 的对应点A′,B′和点E 在同一条直线上.(1)写出∠AEF 的补角和∠ADE 的余角;(2)求∠DEF .26.如图,四边形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.(1)求点E 的坐标;(2)求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】四个小三角形的周长是两条对角线长的2倍与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD,四个小三角形的周长=2AC+2BD+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为28.故选:D.【点睛】本题考查了矩形的性质和矩形的周长,抓住矩形的对角线相等和四个小三角形的周长=4倍的对角线长+矩形的周长是解决本题的关键.2.A解析:A【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC 平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】解:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:A.【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.3.B解析:B【分析】根据特殊平行四边形的判定与性质可以对各选项的正误作出判断.【详解】由平行四边形的性质及特殊平行四边形的判定可以得到:(1)有一组邻边相等的矩形是正方形,故A正确;(2)对角线互相垂直的平行四边形是菱形,故B错误;(3)对角线相等的平行四边形是矩形,故C正确;(4)有三个角是直角的四边形是矩形,故D正确.故选B.【点睛】本题考查特殊平行四边形的应用,熟练掌握特殊平行四边形的判定与性质是解题关键.4.C解析:C【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD 最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=4,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=60°,∴∠D'CE=30°,∴在Rt△D'CE中,D'C=2D'E=2×4=8,∴PC+PD的最小值为8.故选:C.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,含30°角的直角三角形的性质等,确定出P点是解答本题的关键.5.B解析:B【分析】由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=6-x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=6,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10,DE=EF,设EC=x,则DE=EF=6-x.在Rt△ABF中,2222=-=-=,BF AF AB1068∴CF=BC-BF=10-8=2,在Rt△EFC中,EF2=CE2+CF2,∴(6-x)2=x2+22,∴x=8,3∴EC=8.3故选:B.【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.6.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.7.B解析:B【分析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积.【详解】解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒,∵AF CD ⊥,∴90AFC ∠=︒,∵90C ∠=︒,∴四边形AECF 是矩形,∴90EAF ∠=︒,∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠,在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形,∵ABE ADF S S ,∴216ABCD AECF S S AE ===.故选:B .【点睛】本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.8.B解析:B【分析】过点D 作DF ⊥BC',垂足为F ,过点A 作AG ⊥BC',交BC'的延长线于G ,则四边形ADFG 是矩形,计算AC '的长,后利用三角形ADC 'M 面积 的不同计算方法计算即可.【详解】如图,过点D 作DF ⊥BC',垂足为F ,过点A 作AG ⊥BC',交BC'的延长线于G ,∵把ACD △沿AD 翻折,得到ADC ',∴DC=DC ',∠ADC=∠A DC ',∵D 是BC 边上的中点,∴DC=BD ,∵2BD BC ='=,∴DC '=2BD BC ='=,∴BDC '是等边三角形,∴∠ADC=∠A DC '=∠B DC '=∠DC 'B=60°,∵DF ⊥BC',AG ⊥BC',∴四边形ADFG 是矩形,∴BF=FC'=1,FG=AD=3,=,∴GC '=2,∴AC '=,设点D 到AC '的距离为h , ∴1122AC h AD DF '=,∴11322h =⨯,∴h=7, 故选B.【点睛】 本题考查了三角形的折叠问题,等边三角形的判定和性质,平行线的判定,矩形的判定,勾股定理,三角形的面积,熟练掌握折叠的性质,矩形的判定,三角形面积不同表示方法是解题的关键.9.C解析:C【分析】由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,证明AF=FD=CD ,继而证得①2BCD DCF ∠=∠;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),可得EF MF =,再证明90ECM ∠=︒,从而可判断②;由,CBE CEF S S =可得:13CBE ABCD S S =,可得:2,3BE AB =与已知不符,从而可判断③;设∠FEC=x ,则∠FCE=x ,再分别表示∠EFD=9018022703x x x ︒-+︒-=︒-,∠AEF=90,M FCM x ∠=∠=︒-从而可判断④.【详解】解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠BCD 2DCF =∠,故①正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴EF=CF ,故②正确;③∵EF=FM ,EFC CFM S S ∴=,若,CBE CEF SS = 则13CBE ABCD S S = 11,23BE EC AB EC ∴= 32,BE AB ∴=2,3BE AB ∴= 与已知条件不符, 故CBE CEFS S =不一定成立,故③错误; ④设∠FEC=x ,,EF CF =∴∠FCE=x ,∴∠DCF=∠DFC=90x ︒-,∠EFC=1802x ︒-,∴∠EFD=9018022703x x x ︒-+︒-=︒-,∵∠AEF=90,M FCM x ∠=∠=︒-∴∠DFE=3∠AEF ,故④正确.故选:C .【点睛】本题考查的是平行四边形的性质,三角形全等的判定与性质,平行线的性质,三角形的内角和定理,直角三角形斜边上的中线的性质,等腰三角形的性质,掌握以上知识是解题关键.10.B解析:B【分析】由题意易得AC ⊥BD ,OA=OC=OB=OD ,∠ADO=∠ABD=45°,AD=AB ,△ADE ≌△FDE ,则有BE =,进而可得四边形AEFG 是平行四边形,然后根据等腰直角三角形的性质及线段的等量关系可求解.【详解】解:∵四边形ABCD 是正方形,∴AC ⊥BD ,OA=OC=OB=OD ,∠ADO=∠ABD=45°,AD=AB ,∵折叠正方形ABCD ,∴△ADE ≌△FDE ,∴∠ADE=∠FDE=22.5°,AD=DF ,AE=FE ,∠EFD=∠DAE=90°,故①正确;∴△EFB 是等腰直角三角形, ∴BE =, ∴AD AB AE ==+,故②错误; 由图可直接判定③错误;∵∠EFB=∠AOB=90°,∴OA ∥EF ,由折叠的性质可得:∠GFO=∠DAO=45°,∴∠GFO=∠ABO=45°,∴GF ∥AE ,∴四边形AEFG 是平行四边形,∵AE=AF ,∴四边形AEFG 是菱形,故④正确;∵∠GFO=45°,∠AOB=90°,∴△GOF 是等腰直角三角形, ∴EF GF ==,∴2BE OG =,故⑤正确; ∵2112OGF S OG ∆==, ∴OG =∴2BE EF AE ===, ∴2AB =, ∴()22212ABCD S AB ===+正方形⑥错误;∴正确的有三个;故选B .【点睛】本题主要考查正方形的性质、菱形的判定及等腰直角三角形的性质与判定,熟练掌握正方形的性质、菱形的判定及等腰直角三角形的性质与判定是解题的关键.11.C解析:C【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB ⊥AF ,∴∠FAB=90°,∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B , ∴∠ADE=∠B+∠BAD=2∠B ,∵∠AEB=2∠B ,∴∠AED=∠ADE ,∴AE=AD ,∴AE=AD=4,∵,EF ⊥AF ,∴==3,故选:C .【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.12.C解析:C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD ,无法判断四边形ABCD 是菱形,不合题意;B. AC=BD ,根据对角线相等的平行四边形是矩形可以判断□ABCD 是矩形,不合题意;C. AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD 是菱形,符合题意;D. AB ⊥BD ,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD 是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.二、填空题13.【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵四边形ADCF 是矩形三角形ACE 是由三角形ACF 翻折得到的∴∠D=∠解析:31︒【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形,继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵ 四边形ADCF 是矩形,三角形ACE 是由三角形ACF 翻折得到的,∴ ∠D=∠E=90°,AD=CE在△ABD 和△BCE 中:AD CE D EABD CBE =⎧⎪⎨⎪=⎩∠=∠∠∠ ∴△ABD ≌△BCE (AAS )∴AB=BC∵∠ABC=118°,∴∠BAC=∠BCA=()11180118=62=3122︒-︒⨯︒︒ , 故答案为:31°.【点睛】本题考查了矩形的性质,全等三角形的判定,以及等腰三角形的性质,正确理解知识点是解题的关键;14.或1【分析】分两种情况①当∠DEF=90°时由题意得出EF∥BC作FG⊥BC 于G证出△CFG△BDE是等腰直角三角形四边形EFGD是正方形得出BD=DE=EF=DG=FG=CG继而可得结果;②当∠E解析:12或1【分析】分两种情况①当∠DEF=90°时,由题意得出EF∥BC,作FG⊥BC于G,证出△CFG、△BDE 是等腰直角三角形,四边形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,继而可得结果;②当∠EFD=90°时,求出∠DEF=45°,得出E与A重合,D是BC的中点,BD=CD,即可得出结果.【详解】解:分两种情况:①当∠DEF=90°时,如图1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=12CD,∴n=12;②当∠EFD=90°时,如图2所示:∵∠EDF=45°,∴∠DEF=45°,此时E与A重合,D是BC的中点,∴BD=CD,∴n=1.综上所述:n=12或1,故答案为:12或1【点睛】本题主要考查等腰直角三角形的判定与性质、平行线的判定、正方形的判定与性质;熟练掌握等腰直角三角形的性质,分两种情况讨论是解题的关键.15.18【详解】根据等腰三角形三线合一的性质可得AD⊥BCDC=BC再根据直角三角形的性质可得DE=EC=AC=65然后可得答案【解答】解:∵AB=ACAD平分∠BAC∴AD⊥BCDC=BC∵BC=10解析:18【详解】根据等腰三角形三线合一的性质可得AD⊥BC,DC=12BC,再根据直角三角形的性质可得DE=EC=12AC=6.5,然后可得答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=12BC,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC=1AC=6.5,2∴△CDE的周长为:DC+EC+DE=13+5=18,故答案为:18.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.16.60【分析】由E是AC中点且DE=EF据对角线互相平分的四边形是平行四边形知四边形ADCF是平行四边形因此只需DF和AC相等据对角线相等的平行四边形是矩形就得四边形ADCF是矩形所以只需∠ACB的大解析:60【分析】由E是AC中点且DE=EF,据“对角线互相平分的四边形是平行四边形”知四边形ADCF是平行四边形.因此只需DF和AC相等据“对角线相等的平行四边形是矩形”就得四边形ADCF 是矩形,所以只需∠ACB的大小能使DF=AC就行了.【详解】当∠ACB=60°时,四边形ADCF是矩形.理由如下:∵AB=AC,∠ACB=60°∴△ABC为正三角形∴AC=BC∵D、E是AB、AC的中点∴DE=1BC(三角形中位线定理)2又∵DE=EF∴DF=BC=AC①∵E是AC中点且DE=EF∴四边形ADCF是平行四边形(对角线互相平分的四边形是平行四边形)又由①知DF=AC∴四边形ADCF是矩形即长方形.(对角线相等的平行四边形是矩形)故答案为:60.【点睛】本题综合考查平行四边形、矩形的判定,也运用了三角形中位线定理.其中关键是结合图形和题目所给条件选择合适判定方法.17.1【分析】证明△BCE是等边三角形求出BE=CE=BC=2由D是BC的中点可得结论【详解】解:在中∵是的中线∴∵∴是等边三角形∴∵点是的中点且∴∵是边上的中线∴故答案为:1【点睛】此题主要考查了等边解析:1【分析】证明△BCE是等边三角形,求出BE=CE=BC=2,由D是BC的中点可得结论.【详解】解:在ABC 中,90C ∠=︒,∵CE 是ABC 的中线, ∴12==CE BE AB ∵60B ∠=︒, ∴BCE ∆是等边三角形∴BC CE =∵点M 是CE 的中点,且1CM =,∴22CE CM BC ===∵AD 是BC 边上的中线, ∴112122CD BC ==⨯= 故答案为:1.【点睛】 此题主要考查了等边三角形的判定和三角形中线的性质,证明BCE ∆是等边三角形是解答此题的关键.18.【分析】延长AD 至点E 使得连接CE 过点C 作证明△CDE 为等边三角形分别求出四边形ABCD 的边长判断即可;【详解】如图所示延长AD 至点E 使得连接CE 过点C 作∵∴又∵∴△CDE 为等边三角形∴设则∵∴则∴解析:15+【分析】延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,证明△CDE 为等边三角形,分别求出四边形ABCD 的边长判断即可;【详解】如图所示,延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,∵120ADC =∠︒,∴180********EDC ADC ∠=︒-∠=︒-︒=︒,又∵DE CD =,∴△CDE 为等边三角形,∴CD DE CE ==,60E ∠=︒,设CE x =,则CD DE x ==,∵CH DE ⊥,∴9030ECH E ∠=︒-∠=︒, 则1122EH CE x ==, ∴=+-=+-=-11622AH AD DE EH AD CD x x , 22221342CH CE EH x x x =-=-=, ∴()⎛⎫=+=-+=-+≥ ⎪⎝⎭222221363273324AC AH CH x x x , ∴当3x =时,AC 取得最小值为33 此时,3AD CD x ===,∵AB AC ⊥,∴90BAC =︒,又30B ∠=︒,∴12AC BC =,即2BC AC =,AB ===,∴四边形ABCD 周长AD CD AB BC=+++, ()2AD CD AC =+++, ))626215AC =++≥++⨯=+; ∴四边形ABCD 的最小值为15+故答案是15+【点睛】本题主要考查了四边形综合,等边三角形的判定和性质,含30度角的直角三角形的性质,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.19.【分析】设EH =x 由等腰直角三角形的性质得AB =AE =BEEH =HDGC =GDFB =CF ∠CGD =∠BFC =90°则HD =xGC =GD =GH +HD =2xFB =CF =3xCD =CG =2xBC =FB =3 解析:12【分析】设EH =x ,由等腰直角三角形的性质得AB =AE =2BE ,EH =HD ,GC =GD ,FB =CF .∠CGD =∠BFC =90°,则HD =x ,GC =GD =GH +HD =2x ,FB =CF =3x ,CD CG =x ,BC FB =x ,由矩形ABCD 的面积得出方程,得出x 2=12,x =2,进而得出答案.【详解】解:设EH =x ,∵四边形EFGH 是正方形,∴EF =FG =GH =EH =x ,∵△ABE 、△EHD 、△CGD 、△BCF 是等腰直角三角形,∴AB =AE =2BE ,EH =HD ,GC =GD ,FB =CF .∠CGD =∠BFC =90°, ∴HD =x ,∴GC =GD =GH +HD =2x ,∴FB =CF =3x ,在等腰Rt △CGD 和等腰Rt △BCF 中,CD CG =x ,BC =x , ∴x =6,则x 2=12,解得:x =±2(负值舍去),∴x =2,∴EF =2,FB =2, ∴BE =FB +EF =,∴AB =2BE =2, ∴△ABE 的面积=12AB×AE =12×2×2=2; 正方形EFGH 的面积=x 2=12; 故答案为:2;12. 【点睛】 本题考查了矩形的性质、正方形的性质、等腰直角三角形的性质、勾股定理等知识;熟练掌握矩形的性质、正方形的性质和勾股定理是解题的关键.20.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°再根据折叠的性质可得答案【详解】∵四边形ABCD 是矩形∴AD ∥BC ∴∠B′FC=∠2=70°∴∠1+∠B′FE=180°-∠B解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE ,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.三、解答题21.(1)32cm 2;(2)①四边形的面积为S =12t +16(cm 2);②当t =43或45时,S △BAP =S △CQB .【分析】 (1) 由|8-a|+(b -4)2=0.可求=8=4a b ,,可求长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,可求S 四边形BPDQ =S △BDP +S △BDQ =12t +16(cm 2);②由S △BAP =S △CQB ,可列方程12×2t×4=12×|4t -4|×8,化去绝对值44t t -=±分类解方程即可.【详解】解:(1) a 、b 满足|8-a|+(b -4)2=0.∵()28-0,40a b ≥-≥, ∴8-=04=0a b -,,∴=8=4a b ,,∴AD =8cm ,AB =4cm ,∴长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,S 四边形BPDQ =S △BDP +S △BDQ ,=12(8-2t)×4+12×4t×8, =12t +16(cm 2); ②由S △BAP =S △CQB ,得:12×2t×4=12×|4t -4|×8, 即|4t -4|=t ,44t t -=±,44t t -=或44t t -=-,解得:t =43或45, 当t =43或45时,S △BAP =S △CQB . 【点睛】本题考查非负数和的性质,矩形面积,四边形面积,一元一次方程,掌握非负数的性质,利用非负数求出AD,AB,会求矩形面积,以及四边形面积,会利用三角形面积列方程解决问题是解题关键.22.(1)见解析;(2)1.【分析】(1)连接OD,由D为弧BC的中点,得到CD BD=,求得∠BAD=∠CAD,根据等腰三角形的性质得到∠BAD=∠ADO,推出AC∥OD,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)连接OC,易得△AOC是等边三角形,继而证得四边形ACDO是菱形,根据菱形的性质可得CD=AC=2,∠CDE=30°,继而即可求解.【详解】(1)证明:如下图所示,连接OD,∵D是弧BC的中点,即CD BD=∴∠BAD=∠CAD,∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD//AE,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.;(2)解:如下图所示,连接OC,∵∠CDA=30°,∴∠AOC=2∠CDA=60°,∴△AOC是等边三角形,∴AC=AO=OD由(1)可得,AC∥OD,∴四边形ACDO既是平行四边形,也是菱形,∴CD=AC=2,∠CDO=∠CAO=60°,∠CDE=90°-60°=30°,∵DE⊥AE, ∠CED=90°∴CE=1.【点睛】本题考查了切线的判定和性质,等边对等角、平行线的判定及其性质,等边三角形的判定和性质,菱形的判定及性质,正确的作出辅助线是解题的关键.23.证明见解析【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【详解】证明:,,D E F 分别是,,AB AC BC 的中点,11//,,//,22DE CF DE BC DF CE DF AC ∴==, ∴四边形DECF 是平行四边形.AC BC =,DE DF ∴=,∴四边形DFCE 是菱形.【点睛】本题考查了菱形的判定和性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.24.(1)B ′点的坐标为(8,0);(2)163y x =-+;(3)存在,点P 的坐标为37,03⎛⎫ ⎪⎝⎭或11,03⎛⎫ ⎪⎝⎭. 【分析】(1)折叠的性质得到CB′=CB=10,B′M=BM ,在Rt △OCB′中,利用勾股定理易得OB′=8,即可得到B′点的坐标;(2)设AM=t ,则BM=B′M=6-t ,而AB′=OA -OB′=2,在Rt △AB′M 中,利用勾股定理求出t 的值,确定M 点的坐标,然后利用待定系数法求直线CM 的解析式即可;(3)由△B′CP 的面积11|8|61322PB OC x '=⨯=-⨯=,即可求解. 【详解】解:(1)∵四边形ABCO 为矩形,∴10CB OA ==,6AB OC ==, ∵CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,∴10CB CB '==,B M BM '=,在Rt OCB '△中,6OC =,10CB '=,∴8OB '=,∴B ′点的坐标为(8,0);(2)设AM t =,则6BM B M t ='=-,而2AB OA OB '=-'=,在Rt AB M '△中,222B M B A AM '='+,即222(6)2t t -=+, 解得83t =,∴M 点的坐标为810,3⎛⎫ ⎪⎝⎭,设直线CM 的解析式为y kx b =+,把(0,6)C 和810,3M ⎛⎫ ⎪⎝⎭代入得,68103b k b =⎧⎪⎨+=⎪⎩,解得136k b ⎧=-⎪⎨⎪=⎩, ∴直线CM 的解析式为163y x =-+; (3)存在,理由:设点P 的坐标为(,0)x ,则B CP '△的面积11|8|61322PB OC x '=⨯=-⨯=, 解得373x =或113, 故点P 的坐标为37,03⎛⎫ ⎪⎝⎭或11,03⎛⎫ ⎪⎝⎭. 【点睛】本题考查的是一次函数和几何的综合运用,涉及到一次函数的性质、图形的翻折、勾股定理的运用、面积的计算等,综合性较强,熟练掌握相关知识是解题的关键.25.(1)∠AEF 的补角有∠BEF 和∠B′EF ,∠ADE 的余角有∠AED 、∠A′ED 和∠CDE ;(2)∠DEF=90°【分析】(1)根据折叠的性质以及补角的定义和余角的定义即可写出;(2)由折叠的性质得到∠AED=∠A′ED ,∠BEF=∠B′EF ,根据平角的定义即可得到结论;【详解】(1)根据折叠的性质知:∠AED=∠A′ED ,∠BEF=∠B′EF ,∵四边形ABCD 是长方形,∴∠ADC=∠A=90︒,∴∠AEF+∠BEF=180︒,∴∠AEF 的补角有∠BEF 和∠B′EF ,∠ADE+∠CDE=90︒,∠ADE+∠AED =90︒,∠ADE 的余角有∠AED 、∠A′ED 和∠CDE ;(2)由折叠可知∠AED=∠A′ED ,∠BEF=∠B′EF ,∵∠AED+∠A′ED+∠BEF+∠B′EF=180°,∴∠D EA′+∠B′EF=12⨯180°=90°,∴∠DEF=90°;【点睛】本题考查了折叠的性质,补角和余角的定义,正确的识别图形解题的关键.26.(1)()4,8E ;(2)()0,5D【分析】(1)由折叠的性质得10AO AE ==,利用勾股定理求出BE 长,得到CE 的长,就可以得到点E 的坐标;(2)设OD x =,8CD x =-,由折叠的性质得OD DE x ==,再在Rt CDE △中利用勾股定理列式求出x 的值,就可以得到点D 的坐标.【详解】解:(1)∵折叠,∴10AO AE ==,在Rt ABE △中,6BE ===, ∴1064CE BC BE =-=-=, ∴()4,8E ;(2)设OD x =,则8CD x =-,∵折叠,∴OD DE x ==,在Rt CDE △中,222CD CE DE +=,即()22284x x -+=,解得5x =,∴()0,5D .【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质,并结合勾股定理进行边长的求解.。
北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)

北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)北师大版九年级数学上册第一章特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B..D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A′B′D′,分别连接A′C,A′D,B′C,则A′C+B′C5.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =1,在运动过程中,点D 到点O8.如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A ′处.在EF 上任取一点G ,连接GC ,GA ′,CA ′,则△CGA ′周长的最小值为9.如图,在△ABC 中,∠ABC =90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF.(1)求证:四边形BDFG 为菱形;(2)若AG =13,CF =6,则四边形BDFG 的周长为20.证明:∵∠ABC =90°,BD 为AC 的中线,∴BD =12AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF.∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC. (1)求证:AE =DC ; (2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°. ∵EF ⊥EC ,∴∠FEC =90°. ∴∠AEF +∠CED =90°. ∴∠EFA =∠CED. 在△AEF 和△DCE 中,∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F. (1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC. ∴∠ABE =∠CDF. ∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF. (2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD .12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD.∵BC =12AD ,∴AE =BC.∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE. ∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.2AE=2.∴当PA+PF最小时,△PAF的周长最小,即点P为CF与BE的交点时,△PAF的周长最小.此时△PAF的周长为PA+PF+AF=CF+AF.∵CE=DE,∴∠ECD=∠D=30°,∠ACE=90°-30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,∴CF⊥AE.∴CF=AC2-AF2=2 3.△PAF周长的最小值为CF+AF=23+2.13.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,垂足为F,交直线MN于点E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC≌△EPC.∴BE=PE.∴∠EBP=∠EPB.∵E为AB的中点,∴BE=AE.∴AE=PE.∴∠EPA=∠EAP.∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°. ∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE. ∵四边形ABCD 是矩形,∴AE ∥CF. ∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MNDN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM. ∵四边形ABCD 是矩形,∴AD ∥BC. ∴∠ANM =∠CMN. ∴∠CMN =∠CNM. ∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形,∴HC =DN ,NH =DC. ∵S △CMN S △CDN =12MC ·NH12ND ·NH =MC ND=3,∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x. ∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x. ∴MN DN =23x x=2 3. 16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°. ∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF. ∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°. ∴∠DGA +∠AFH =180°. ∵∠AFH +∠EFD =180°,∴∠DGA =∠EFD =∠DEC. 在△DAG 和△DCE 中,∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°. ∵QO ⊥BD ,∴∠BOQ =90°. ∴∠BQO =∠CBD =45°.∴OB =OQ. ∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ. ∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°. ∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。
新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)

新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)特殊平行四边形》试卷一、填空题1、如图,将△ABC绕AC的中点O按顺时针旋转180°得到△CDA,添加一个条件使四边形ABCD为矩形.条件:AB=CD2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.四边形EFGH的面积为24.3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________.DQ+PQ的最小值为√10.二、选择题4、矩形具有而菱形不具有的性质是() A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等答案:D5、如图,菱形ABCD的两条对角线相交于点O,若AC =6,BD=4,则菱形ABCD的周长是()。
A.24B.16C.413D.213答案:B6、如图,将△XXX沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是() A.AB =XXX.∠B=60°D.∠ACB=60°答案:C7、如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABDC与S四边形ECDF的大小关系是() A.S四边形ABDC=S四边形ECDFB.S四边形ABDC<S四边形ECDFC.S四边形ABDC=S四边形ECDF+1D.S四边形ABDC=S四边形ECDF+2答案:A8、如图,菱形ABCD中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF的周长为() A.14B.15C.16D.17答案:C9、如图,把矩形ABCD沿EF翻折,点B恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是() A.12B.24C.123D.163答案:B三、XXX10、如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F。
(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)

一、选择题1.菱形ABCD 中,60D ∠=︒.点E 、F 分别在边BC 、CD 上,且BE CF =.若2EF =,则AEF 的面积为( ).A .43B .33C .23D .32.如图,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平,再一次折叠,使点D 落到EF 上的点G 处,并使折痕经过点A ,已知2BC =,则线段EG 的长度为( )A .1B .3C .5D .23.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE SS 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶24.如图,在长方形ABCD 中,AE 平分∠BAD 交BC 于点E ,连接ED ,若ED =5,EC =3,则长方形的周长为( )A .20B .22C .24D .265.如图,已知菱形OABC 的顶点()0,0O ,()2,0C 且60AOC ∠=︒,若菱形绕点O 逆时针旋转,每秒旋转45︒,则第2020秒时,菱形的对角线交点D 的坐标为( )A .()3,3-B .()1,3--C .()2,3D .33,22⎛⎫-- ⎪ ⎪⎝⎭6.如图,边长为22+的正方形,剪去四个角后成为一个正八边形,则这个正八边形的边长为( )A .0.5B .2C .1D .27.如图,以ABC 的每一条边为边作三个正方形.正方形ABIH 的顶点H 恰好在ED 边上,记DHK △的面积为1S ,AHE 的面积为2S ,ABC 的面积为3S ,四边形CJIK 的面积为4S ,四边形BFGJ 的面积为5S .若12534S S S S S ++=+,则3S 与4S 的大小关系式成立的是( )A .34S S >B .34S S =C .34S S <D .无法判断 8.如图,矩形ABCD 中,22BC =,42AB =,点P 是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A .8105B .855C .25D .210 9.如图,在正方形ABCD 的边AB 上取一点E ,连接CE ,将BCE 沿CE 翻折,点B 恰好与对角线AC 上的点F 重合,连接DF ,若1BE =,则CDF 的面积是( )A .3214+B .628+C .324+D .32210.下列四个命题中真命题是( )A .对角线互相垂直平分的四边形是正方形B .对角线垂直且相等的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .四边都相等的四边形是正方形 11.如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A .2B .2.4C .2.6D .312.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .23C .33D .6二、填空题13.在平面直角坐标系中,菱形ABCD 的对角线交于原点O ,点A 的坐标为()23,2-,点B 的坐标为()1,3--,则点D 的坐标为______.14.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 重合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =__________时,△DEF 为等腰直角三角形.15.如图,点H 在菱形ABCD 的边BC 上,连结AH ,把菱形ABCD 沿AH 折叠,使B 点落在边BC 上的点E 处,若∠B=70°,则∠AED 的度数为_____.16.如图,边长为1的菱形ABCD 中,∠DAB=60°.连接对角线AC ,以AC 为边作第二个菱形AC C 1D 1,使∠D 1AC=60°;连接AC 1,再以A C 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°;……按此规律所作的第n 个菱形的边长为___________.17.如图,长方形ABCD 中,AD =8,AB =4,BQ =5,点P 在AD 边上运动,当BPQ 为等腰三角形时,AP 的长为_____.18.如图,在ABC 中,90C ∠=︒,60B ∠=︒,AD ,CE 都是ABC 的中线,点M 是CE 的中点,若1CM =,则CD =______.19.如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),以AB为边作正方形ABCD,连接OD,DB.则△DOB的面积是_____.20.如图所示,长方形ABCD由四个等腰直角三角形和一个正方形EFGH构成.若长方形ABCD的面积为6,则三角形ABE的面积为 ______,正方形EFGH的面积为______.三、解答题21.如图,BD是△ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.∆顺时针旋转22.如图,E是正方形ABCD中CD边上一点,以点A为中心把ADE90︒.(1)在图中画出旋转后的图形;(2)若旋转后E 点的对应点记为M ,点F 在BC 上,且45EAF ︒∠=,连接EF . ①求证:AMF AEF ∆≅∆;②若正方形的边长为6,35AE =,求EF .23.如图,在△ABC 中,AB =AC ,AD 为∠BAC 的平分线,AN 为△ABC 的外角∠BAM 的平分线,BE ⊥AN ,垂足为点E .(1)求证:四边形ADBE 是矩形.(2)连接DE ,试判断四边形ACDE 的形状,并证明你的结论.24.如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB ,交MN 于点E ,连接AE 、CD .(1)求证:OD =OE ;(2)请判断四边形ADCE 的形状,并说明理由.25.如图,矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC ,CF ⊥BD ,垂足分别为E , F .(1)求证:BE=CF .(2)若∠AOB=60°,AB=8,求矩形的面积.26.如图,在长方形ABCD 中,4AB =,5AD =,点E 为BC 上一点,将ABE △沿AE 折叠,使点B 落在长方形内点F 处,连接DF ,且3DF =,求AFD ∠的度数和BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先证明△ABE ≌△ACF ,推出AF =AE ,∠EAF =60°,得到△AEF 是等边三角形,即可解决问题.【详解】解:∵四边形ABCD 是菱形,∴∠D=∠B =60°,AB =BC ,∴△ABC 是等边三角形,∴AB =AC ,∵AC 是菱形的对角线,∴∠ACF 12=∠DCB =60°, ∴∠B =∠ACF ,∵AB =AC ,BE =CF ,∴△ABE ≌△ACF ,∴AF =AE ,∠BAE =∠CAF ,∴∠BAE +∠EAC =∠CAF +∠EAC ,即∠EAF =∠BAC =60°,∴△AEF 是等边三角形,∵EF =2,∴S △AEF 3=×223=, 故选:D .【点睛】 本题考查了菱形的性质、等边三角形的判定与性质等知识,解题的关键是证明全等三角形得到△AEF 是等边三角形,牢记等边三角形面积公式是解题关键.2.B解析:B【分析】由折叠的性质可得AE=12AD=12BC=1,AG=AD=2,由勾股定理得出EG 即可. 【详解】解:如图所示:∵四边形ABCD 是矩形,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,∴AE=12AD=12BC=1,EF ⊥AD , ∴∠AEF=90°,∵再一次折叠,使点D 落到EF 上点G 处∴AG=AD=2,∴22213-=, 故选:B .【点睛】此题主要考查了翻折变换的性质以及矩形的性质,熟练掌握折叠的性质是解题关键. 3.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.4.B解析:B【分析】直接利用勾股定理得出DC 的长,再利用角平分线的定义以及等腰三角形的性质得出BE 的长,进而得出答案.【详解】解:∵四边形ABCD 是长方形,∴∠B =∠C =90°,AB =DC ,∵ED =5,EC =3,∴DC 4==,则AB =4,∵AE 平分∠BAD 交BC 于点E ,∴∠BAE =∠DAE ,∵AD ∥BC ,∴∠DAE =∠AEB ,∴∠BAE =∠BEA ,∴AB =BE =4,∴长方形的周长为:2×(4+4+3)=22.故选:B .【点睛】本题考查了矩形的性质、等腰三角形的判定、勾股定理等,解题关键是把握已知,整合已知得出等腰三角形,依据勾股定理求出线段长.5.D解析:D【分析】过A 作AE ⊥OC 于E ,由菱形OABC 的顶点()0,0O ,()2,0C 且60AOC ∠=︒,求出A(1,3)坐标,由点D 为AC 中点,可求D (132,),由458=360︒⨯︒,转8次回到原位置,菱形绕点O 逆时针旋转,每秒旋转45︒,则第2020秒时,2020445=45252+88⎛⎫︒⨯︒ ⎪⎝⎭,相当于旋转454=180︒⨯︒,菱形旋转180°。
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合练习题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合练习题(附答案)一.选择题1.正方形具有而菱形不具有的性质是()A.四边相等B.四角相等C.对角线互相平分D.对角线互相垂直2.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE =2.若∠EOF=45°,则F点的纵坐标是()A.1B.C.D.﹣13.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.184.关于平行四边形ABCD的叙述,正确的是()A.若AB⊥BC,则平行四边形ABCD是菱形B.若AC⊥BD,则平行四边形ABCD是正方形C.若AC=BD,则平行四边形ABCD是矩形D.若AB=AD,则平行四边形ABCD是正方形5.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.46.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A.96cm2B.48cm2C.24cm2D.12cm27.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长等于()A.5B.C.D.8.已知菱形的两条对角线的长分别是6和8,则菱形的周长是()A.36B.30C.24D.209.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192 C.20 D.以上答案都不对10.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD中点,若AB=6,BC=8,则△AEF的周长为()A.6B.8C.9D.1011.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3B.4C.5D.6二.填空题12.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.13.如图,四边形ABCD是平行四边形,补充一个条件使其成为菱形,你补充条件是(只需填一个即可).14.如图所示,四边形ABCD为矩形,AE⊥EG,已知∠1=25°,则∠2=15.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠BEC的度数是度.16.已知正方形的对角线长为2,则它的面积.17.如图,两个正方形边长分别为2、a(a>2),图中阴影部分的面积为.18.如图,P为菱形ABCD的对角线上一点,PF⊥AD于F,PF=3cm,点E为AB边上一动点,则PE的最小值为cm.三.解答题19.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.21.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.22.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?23.如图,已知正方形ABCD,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN.24.如图所示,四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是36,求DP的长.25.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)写出线段AE、DF的数量和位置关系,并说明理由.参考答案一.选择题1.解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选:B.2.解:如图,连接EF,延长BA,使得AM=CE,∵OA=OC,∠OCE=∠AOM,∴△OCE≌△OAM(SAS).∴OE=OM,∠COE=∠MOA,∵∠EOF=45°,∴∠COE+∠AOF=45°,∴∠MOA+∠AOF=45°,∴∠EOF=∠MOF,在△OFE和△OFM中,,∴△OFE≌△FOM(SAS),∴EF=FM=AF+AM=AF+CE,设AF=x,∵CE===2,∴EF=2+x,EB=2,FB=4﹣x,∴(2+x)2=22+(4﹣x)2,∴x=,∴点F的纵坐标为,故选:B.3.解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.4.解:A、错误.若AB⊥BC,则平行四边形ABCD是矩形;B、错误.若AC⊥BD,则平行四边形ABCD是菱形;C、正确.D、错误.若AB=AD,则平行四边形ABCD是菱形;故选:C.5.解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.6.解:设菱形的对角线分别为3a,4a,∵菱形的周长为40,∴菱形的边长为10,∴()2+(2a)2=102,∴a2=16,∴菱形的面积=×3a×4a=6a2=96.故选:A.7.解:∵四边形ABCD是菱形,BD=8,∴BO=DO=4,∠BOC=90°,在Rt△OBC中,OC===3,∴AC=2OC=6,∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.8.解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=20.故选:D.9.解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=4,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=192.故选:B.10.解:∵四边形ABCD是矩形,∴AD=BC=8,∠BAD=90°,OB=OD=OA=OC,在Rt△BAD中,∵BD===10,∴OD=OA=OB=5,∵E.F分别是AO.AD中点,∴EF=OD=,AE=,AF=4,∴△AEF的周长为9,故选:C.11.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.二.填空题12.解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,∴S四边形ABCD=AB×3=BC×3,∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,∴S四边形ABCD=BC•AE=2×3=6.故答案是:6.13.解:∵AB=BC,且四边形ABCD为平行四边形∴四边形ABCD是菱形故答案为:AB=BC(答案不唯一)14.解:∵四边形ABCD是矩形∴AD∥BC∴∠DFE=∠2∵∠DFE=∠1+∠E=115°∴∠2=115°故答案为:115°15.解:在正方形ABCD中,AC平分∠BAD,∴∠BAE=45°而AB=AE∴∠ABE=∠AEB==67.5°又∵∠AEB+∠BEC=180°∴∠BEC=180°﹣67.5°=112.5°故答案为112.5.16.解:∵正方形的一条对角线的长2,∴这个正方形的面积==4,故答案为417.解:阴影部分的面积=18.解:∵四边形ABCD是菱形∴AC为∠DAB的角平分线∵PF⊥AD于点F,PF=3cm.∴PE最短时PE=PF=3cm.故答案为3.三.解答题19.解:菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE的长为cm.20.证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.21.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.22.解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴∠BFE=90°,∠BGE=90°.又∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.23.解:(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∵PM=PN,∴四边形PMAN是正方形;(2)证明:∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN.24.解:作DE⊥BC,交BC延长线于E,如图,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,∴DP2=36,∴DP=6.25.解:(1)∵四边形ABCD是正方形,∴DA=AB,∠DAF=∠ABE=90°,∵AF=BE,∴△DAF≌△ABE(SAS);(2)AE=DF,AE⊥DF,理由如下:由(1)得:△DAF≌△ABE,∴DF=AE,∠ADF=∠BEA,∵∠DAO+∠EAB=∠DAF=90°,∴∠DAO+∠ADF=90°,∴∠DOA=90°,∴AE⊥DF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册《特殊平行四边形》练习题
一、填空题:
1.判定一个四边形是矩形,可以先判定它是__________,再判定这个四边形有一个__________或再判定这个四边形的两条对角线__________.
2.菱形的面积为24cm 2
,边长为5cm
,则该菱形的对角线长分别为 。
3.正方形以对角线的交点为中心,在平面上旋转最少_______度可以与原图形重合.
4.正方形的对角线长为10 cm ,则正方形的边长是_________.
5.矩形的两条对角线的一个交角是60°,一条对角线与较短边 的和是12 cm ,则对角线长是_ __.
6.如图,矩形ABCD 沿AF 折叠,使点D 落在BC 边上,如果 ∠BAE=50°,则∠DAF=_______.
7.顺次连接四边形各边中点,所得的图形是 ;顺次连接平行四边形各边中点,所得的图形是 ;顺次连结矩形四边中点所得四边形是_________;顺次连结菱形四边中点所得四边形是_________;顺次连结等腰梯形四边中点所得四边形是_________。
由此猜想:顺次连结___ ____的四边形四边中点所得四边形是矩形,顺次连结_ _ _______的四边形四边中点所得四边形是菱形。
即新四边形的形状与原四边形的____ _____有关。
8.已知菱形ABCD 的两条对角线长分别是6 cm 和8 cm ,则菱形的周长是_________.
9.如图,正方形ABCD ,以AB 为边分别在正方形内、外作等边△ABE 、△ABF ,则∠CFB=_______,若AB=4,则AFBE 四边形S =_________.
10.如图,E 为正方形ABCD 边BC 延长线上一点,且CE=BD ,AE 交DC 于F ,则∠AFC=________.
11.如图,把两个大小完全相同的矩形拼成“L ”型图案, 则FAC ∠= ,FCA ∠= 。
12.边长为a 的正方形,在一个角剪掉一个边长为的b 正方形, 则所剩余图形的周长为 。
13.已知菱形一个内角为120,且平分这个内角的一条对角线 长为8cm ,则这个菱形的周长为 。
14.如图,矩形纸片ABCD ,长AD =9cm ,宽AB =3 cm ,将其折
叠,使点D 与点B 重合,那么折叠后DE 的长为 ,折痕EF 的长为 。
二、选择题:
1.能判定一个四边形是菱形的题设是( )
A.有一组邻边相等
B.对角线互相垂直
C.有三边相等
D.四条边都相等 2.□ABCD 是正方形需增加的条件是( )
A.邻边相等
B.邻角相等
C.对角线互相垂直
D.对角线互相垂直且相等
3.矩形边长为10cm 和15cm ,其中一个内角的角平分线分长边为两部份,这两部份的长为( ) A.6cm 和9cm B. 5cm 和10cm C. 4cm 和11cm D. 7cm 和8cm
4.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,
则菱形的内角中钝角的度数是( ) A.150 B. 135 C. 120 D.100 5.如图,在矩形ABCD 中,O 是BC 的中点,∠AOD=90°, 若矩形ABCD 的周长为30 cm ,则AB 的长为( ) A.5 cm
B.10 cm
C.15 cm
D.7.5 cm
6.矩形各内角的平分线若能围成一个四边形,则这个四边形一定是( ) A.平行四边形 B.矩形 C.正方形 D.菱形
7.若菱形ABCD 的周长为16,∠A ∶∠B=1∶2,则菱形的面积为( )
A.23
B.33
C.43
D.83 8.在平行四边形、菱形、矩形、正方形中,能够找到一个点, 使该点到各顶点距离相等的图形是( )
A.平行四边形和菱形
B.菱形和矩形
C.矩形和正方形
D.菱形和正方形
9.如图,过矩形ABCD 的顶点A 作对角线BD 的平行线交CD 的延长线于E ,则△AEC 是( ) A.等边三角形 B.等腰三角形 C.不等边三角形 D.等腰直角三角形 10.矩形的对角线长10 cm ,顺次连结矩形四边中点所得四边形的周长为( ) A.40 cm B.10 cm C.5 cm D.20 cm 11.如图,正方形ABCD 的对角线AC 是菱形AEFC 的一边, 则∠FAB 等于( )
A.135°
B.45°
C.22.5°
D.30°
12.如图矩形ABCD 中,AB=2AD,E 是CD 上一点,AE=AB,则∠CBE 等于( ) A.30° B.22.5° C.15° D.以上答案都不对 13.下列命题中正确的是( )
A.有一个角是直角的四边形是矩形
B.三个角是直角的多边形是矩形
C.两条对角线相等的四边形是矩形
D.两条对角线相等的平行四边形是矩形
14.如图,点E 是正方形ABCD 对角线AC 上一点,AF ⊥BE 于点F , 交BD 于点G ,则下述结论中不成立的是( )
A. AG=BE
B. △ABG ≌△BCE
C. AE=DG
D. ∠AGD=∠DAG
三、解答与证明
1.已知,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F 。
A F E
D
C B
E
B C D A F 9题图 E
B C
D A F 10题图
E B C
D A
G F 11题图 14题图
D
C
B
A
F E
G 5题图
A C B
D
O
A
D C
B
E 9题图
11题图
12题图 A
E O
D C B
F G
求证:四边形AEDF是菱形。
2.已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC
于点F。
求证:四边形CEDF是正方形。
3.如图,已知点F是正方形ABCD的边BC的中点,CG平分∠DCE,GF⊥AF。
求证:AF=FG。
4.已知菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF。
求证:⑴△ABE≌△ADF;⑵∠AEF=∠AFE。
5.如图,四边形ACDE、BAFG是以△ABC的边AC、
AB为边向△ABC外所作的正方形.
求证:(1)EB=FC. (2)EB⊥FC. 6.如图,正方形ABCD中,点E、F分别是AB和AD上的点。
已知CE⊥BF,垂足为点M。
求证:⑴∠EBM=∠ECB;⑵EB=AF。
7.如图,已知正方形ABCD的对角线AC、BD于点O,
点E在AC的延长线上,AG⊥BE交EB的延长线于
点G,延长AG交DB的延长线于点F.求证:OA=OE.
8.如图,已知AE是正方形ABCD中∠BAC的平分线,AE交BD、BC
于点E、F,AC、BD相交于点O。
求证:OF=
1
2
CE。
四、附加题:如图,点E、F分别是正方形ABCD的边CD和
AD的中点,BE和CF交于点P。
求证:AP=AB。
C
C B
D
E E B。