2020-2021学年高考数学文科第二次模拟考试试题及答案解析高考模拟题

合集下载

2020-2021学年辽宁省新高考高三(上)第二次调研化学试卷

2020-2021学年辽宁省新高考高三(上)第二次调研化学试卷

2020-2021学年辽宁省新高考高三(上)第二次调研化学试卷一、选择题(本题共10小题,每小题2分,共20分。

每小题只有一个选项符合题目要求)1.下列生活用品中主要由合成纤维制造的是()A.尼龙绳B.宣纸C.羊绒衫D.棉衬衣2.依曲替酯可以由原料X经过多步反应合成得到:下列说法正确的是()A.X与Y互为同分异构体B.X与Y均不能使酸性KMnO4溶液褪色C.在光照条件下,依曲替酯中的苯环能与Cl2发生取代反应D.依曲替酯中所有不饱和键均能与溴发生加成反应3.如图所示的电解装置可实现低电位下高效催化还原CO2.下列说法不正确的是()A.a极连接外接电源的负极B.电解过程中Na+从右池移向左池C.b极的电极反应式为Cl﹣﹣2e﹣+H2O═ClO﹣+2H+D.外电路上每转移1mol电子,理论可催化还原标况下CO2气体11.2L4.一定条件下,用Fe2O3、NiO或Cr2O3作催化剂对燃煤烟气进行回收,使SO2转化生成S.催化剂不同,其他条件相同(浓度、温度、压强)情况下,相同时间内SO2的转化率随反应温度的变化如图,下列说法不正确的是()A.不考虑催化剂价格因素,选择Fe2O3作催化剂可以节约能源B.选择Fe2O3作催化剂,最适宜温度为340℃左右C.a点后SO2的转化率减小的原因可能是温度升高催化剂活性降低了D.其他条件相同的情况下,选择Cr2O3作催化剂,SO2的平衡转化率最小5.25℃时,在25mL c mol/L的一元弱酸(HA)中,加入VmL 0.1mol/L的一元强碱(BOH).下列有关判断一定正确的是()A.当25c=0.1V,c(A﹣)>c(B+)B.当pH>7时,c(A﹣)>c(OH﹣)C.当pH=7,且V=25时,c>0.1D.当pH<7,c(B+)>c(A﹣)6.已知25℃时,二元酸H2X的电离平衡常数K1=5.0×10﹣2,K2=5.4×10﹣3。

此温度下用AgNO3溶液分别滴定浓度均为0.01mol/L的KY和K2X溶液,所得的沉淀(AgY和Ag2X)溶解平衡图象如图所示。

甘肃省嘉峪关市第一中学2020-2021学年高三上学期第二次模拟数学(文科)试卷

甘肃省嘉峪关市第一中学2020-2021学年高三上学期第二次模拟数学(文科)试卷

2020-2021学年甘肃省嘉峪关一中高三(上)第二次模拟数学试卷(文科)一、选择题(共12小题,每小题5分,共60分).1.若集合A={2,3,4},B={x|x2﹣6x+5<0},则A∩B=()A.(1,5)B.{2,3}C.{2,3,4}D.{3,4}2.复数z满足z(2+i)=3﹣i,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30D.7月份的利润最大4.设x∈R,则“1<x<2”是“|x﹣2|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知向量,满足,,且,则m=()A.﹣2B.C.D.26.设S n为等差数列{a n}的前n项和,S8=4a3,a7=﹣2,则a9=()A.﹣6B.﹣4C.﹣2D.27.设l,m是两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l⊥α,l∥β,则α⊥βB.若l∥α,m⊥l,则m⊥αC.若l∥α,m∥α,则l∥m D.若l∥α,α∩β=m,则l∥m8.函数f(x)=的图象可能是()A.B.C.D.9.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,若f(0)=,则函数f(x)图象的对称轴方程为()A.x=kπ+(k∈Z)B.x=+(k∈Z)C.x=+(k∈Z)D.x=kπ+(k∈Z)10.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A.2B.2+4C.4+2D.4+411.已知圆M的圆心为双曲线C:=1(a>0,b>0)虚轴的一个端点,半径为a+b,若圆M截直线l:y=kx所得的弦长的最小值为2b,则C的离心率为()A.B.C.D.212.已知函数f(x)满足f(x+1)=f(x﹣1),且f(x)是偶函数,当x∈[﹣1,0]时,f(x)=x2,若在区间[﹣1,3]内,函数g(x)=f(x)﹣log a(x+2)有4个零点,则实数a的取值范围是()A.(1,5)B.(1,5]C.(5,+∞)D.[5,+∞)二、填空题:本题共4小题,每小题5分,共20分。

极值点不等式构造 高考数学模拟试题与解析

极值点不等式构造 高考数学模拟试题与解析

专题3极值点不等式构造如果函数)(x f 的零点为)321( ,,=i x i ,某个极值点为0x ,如果出现证n x m i <<,我们称之为找点不等式,而一旦出现m x x <+212或者m x x >12之类,我们称之为零点不等式,这个内容我们上一讲已经通过构造比值函数解决,当出现n x f m <<)(0时,我们称之为极值点不等式,本文就介绍这一系列极值点不等式的构造方法.由于此类型题目众多,我们还是以高考题为参考来进行解读.2021年浙江卷,最后一问证明:2212ln e 2e b b x x b>+,这一类问题我们在之前的找点部分已经阐述,无论是极值点的不等式还是零点的不等式,找点就是标配,正应了那句话,“不找点,无导数”。

考点一外争与内斗:如果)(0x f 是函数)(x f y =的极小值,则在证明不等式n x f m <<)(0中,n x f <)(0可以直接从函数中找点获得,这属于函数“内斗”,而)(0x f m <,一个比极小值还要小的值,必须要将0)(0='x f 的关系式做隐零点代换,构造新的函数)(0x g 来最值,这就属于“外争”;同理,)(0x f 是函数)(x f y =的极大值,则在证明不等式n x f m <<)(0中,)(0x f m <属于“内斗”,n x f <)(0则属于“外争”。

【例1】(2017•新课标II)已知函数2()ln f x ax ax x x =--,且()0f x .(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.【例2】(2023•哈尔滨模拟)已知223()(1),042x f x x lnx a x a =--->.(1)若()f x 在区间(1,)+∞上有且仅有一个极值点m ,求实数a 的取值范围;(2)在(1)的条件下,证明:23()44e f m <<.【例3】(2023•山东模拟)已知函数2()(1)()x f x a x e a R =+-∈.(1)当12a =时,判断函数()f x 的单调性;(2)若()f x 有两个极值点1x ,212()x x x <,证明:111()2f x e -<<-.【例4】(2022•5月份模拟)已知函数()(1)x f x x a e =--,其中e 为自然对数的底数,a R ∈.(1)求函数()f x 的单调区间;(2)设()()x g x e f x =,当1a =时,证明:函数()g x 有且仅有一个极小值点0x ,且0211()4g x e-<<-.【例5】(2022•南充模拟)已知()x f x e ax =-,()cos g x ax x =-.(1)当0a >时,求()f x 在[1,2]上的最小值;(2)若()()()()2F x f x g x x π=+-,证明:()F x 存在唯一的极值点0x 且01()1F x -<<.【例6】(2022•炎德英才模拟)已知函数21()2x f x ax x e =+-.(1)若1a =,求不等式()1f lnx >-的解集;(2)当1a >时,求证函数()f x 在(0,)+∞上存在极值点m ,且3()2m f m ->.注意:涉及3()2m f m ->这一类()()f m g m >的,只能外争,所以我们再看下一题.【例7】(2023•浙江期末)已知函数2()2()f x xlnx ax x a R =--∈.(Ⅰ)求证:2()(2)3f x a x x --;(Ⅱ)若0x 为函数()f x 的极值点,①求实数a 的取值范围;②求证:02012x e ax >+.注意:本题似乎就是找点有一点技术含量,这也是为什么,模拟题技术含量不如高考真题的原因.考点二极值点外争不等式的放缩选取方案我们会发现,当关于极值点0x 不等式出现涉及00()()f x g x >的,只能外争,因为0)(0='x f ,能得出隐零点关系式后代入不等式00()()f x g x >,这里就会涉及隐零点关系式选取问题,以及不等式放缩问题,那么这个问题本质是什么呢?我们通过例题来说明.【例8】(2023•长沙县月考)已知函数()ln()1x f x ae x a =-+-.(1)若()f x 的极小值为0,求实数a 的值;(2)当0a >时,证明:()f x 存在唯一极值点0x ,且00()2||0f x x +.注意:双变量问题一直是一个难点,因为不知道抓哪一个,本题我们需要根据参数的范围来判断,发现目标式012)ln(000>-++-x a x ae x 当中,由于a 的范围决定了0x 范围,故我们应该把0x 作为参数,隐零点代换的本质除了替换函数,还有一个更重要的就是单调性替换,我们分析原函数,0x ae 单调递增,)ln(0a x +-单调递减,所以原函数无法直接参与放缩构造,①当01a <<时,极值点01(0,x a ∈,我们通过ax ae x +=010一替换,就能发现000001()2||()21()f x x ln x a x h a x a+=-++-=+,这样就能形成关于a 的单调递减函数)(a h ,从而得到一个放缩式0001()(1)ln(1)2101h a h x x x >=-++->+;②当1a >时,极值点01(0)x a a ∈-,,由于)(a h 递减,我们不可能采用0001()ln()210h a x x x >-+∞-->+∞,只能寻找另外的隐零点代换形式,根据001x ae x a=⇒+00ln )ln(x a a x --=+,所以00()ln 1x h a ae a x =+--,这里就是一个关于a 的单调增函数,即000000()2||ln 110x x f x x e a x e x +>+-->-->.如果回头来看这题解析,我们能发现两种构造的区别就是利用⎪⎩⎪⎨⎧>><<+>+=)1()10(11100000a e ae a x a x ae x x x 不同放缩式,决定采用不同代换的,其本质其实是隐零点代换后关于参数a 的新函数)(a h 单调性来决定的.问题探讨到了这个深度,我们可以来还原一下浙江高考题的庐山真面目了.【例9】(2020•浙江)已知12a <,函数()x f x e x a =--,其中 2.71828e =⋯为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点;(Ⅱ)记0x 为函数()y f x =在(0,)+∞上的零点,证明:0x ;(ⅱ)00()(1)(1)x x f e e a a --.看了此题我们才能明白,高考真题的含金量确实是远超平常模考题,因为模考题都是按照高考真题的套路来的,接下来我们走近极值点和零点的双变量不等式内容的研究,还是那句,找点先行,构造单调放缩函数在后,把握变量主元.考点三极值点和零点混合双变量不等式问题极值点和零点混合双变量不等式问题,本质还是找点,我们来看看这道经典的天津高考题.【例10】(2019•天津文)设函数()ln (1)e x f x x a x =--,其中a R ∈.(I)若0a ,讨论()f x 的单调性;(II)若10ea <<,(i)证明()f x 恰有两个零点;(ⅱ)设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明:0132x x ->.注意:方案一显然更简单,但是必须建立在11(1ln )x a∈,和10x x >基础之上,这里三变量,参数是纽带,但也做不了主元,这也是上一问找点所给我们带来的提示,方案二就适合那些直接用无穷大而绕开找点的同学们提供的方案,这些极值点和零点的不等式充分说明了,找点永远是导数的重要支柱.【例11】(2022•南昌三模)已知函数21()1(0,)2x f x e ax x x a R =--->∈.(1)当1a =时,判断()f x 的单调性;(2)若1a >时,设1x 是函数()f x 的零点,0x 为函数()f x 极值点,求证:1020x x -<.注意:一道极值点与零点不等式问题,硬是活生生变成了找点的题,其实也是逼着大家不能用极限去避开找点,我们来看一下导数和三角综合的零点不等式问题.【例12】(2023•广东月考)已知函数2()x f x ae x -=-,()sin x g x xe a x =-,其中a R ∈.(1)若0a >,证明()f x 在(0,)+∞上存在唯一的零点;(2)若1a e <,设1x 为()f x 在(0,)+∞上的零点,证明:()g x 在(0,)π上有唯一的零点2x ,且1232x x ->.注意:选择方案一的是真正做明白了这类题,一个好的找点方案决定一道压轴问的走向.考点四找点之双参数问题双参数问题,基本上涉及切线找点和主元选取,不同主元选取导致问题的难度有着天壤之别,限于篇幅,此类问题我们会在《高中数学新思路》系列3中再来详细叙述,本文我们仅以2018年浙江高考题来呈现此类问题.【例13】(2018•浙江)已知函数()ln f x x =-.(1)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln 2f x f x +>-;(2)若34ln 2a ≤-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.注意:一道高考好题,将数形结合体现得淋漓尽致,这个双变量,k 一直为主体,a 为辅助,隐零点代换也是将k 换成了1x ,最后还是需要找点,综合来看,单调性极值得分析,隐零点代换+找点,这条主线才是双变量导数的核心,我们后面将讲到极值点偏移了,这个内容本质也跟找点有关联吗?达标训练1.(2023•广东月考)已知函数()f x lnx ax a =-+.(1)若函数()f x 的最大值是f (1),求实数a 的值;(2)设函数()()h x xf x =,在(1)的条件下,证明:()h x 存在唯一的极小值点0x ,且01()4h x >-.2.(2022•上杭县开学)已知曲线()(3)(2)x f x x e a lnx x =-+-(其中e 为自然对数的底数)在1x =处切线方程为(1)y e x b =-+.(Ⅰ)求a ,b 值;(Ⅱ)证明:()f x 存在唯一的极大值点0x ,且021()5e f x --<<-.3.(2022•贵阳模拟)已知函数()sin (0)x f x e a x a =->,曲线()y f x =在(0,(0))f 处的切线也与曲线22y x x =-相切.(1)求实数a 的值;(2)若0x 是()f x 的最大的极大值点,求证:0131()2f x <<.4.(2022•东区月考)已知()(1)()(1)1x f x x e a aln x =+--++,a R ∈.(1)若1a =,判断()f x 的单调性;(2)若1a >,且()f x 的极值点为0x ,求证:0()()f x f x 且0()1f x <.5.(2022•成都期中)已知函数()()x a f x lnx e +=-(其中 2.718e = 为自然对数的底数).(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴交于点(2,0),求a 的值;(Ⅱ)求证:11a e >-时,()f x 存在唯一极值点0x ,且010x e<<.6.(2022•长沙模拟)已知112b <<,函数()2x f x e x b =--,其中 2.71828e =⋯为自然对数的底数.(1)求函数()y f x =的单调区间;(2)记0x 为函数()y f x =在(0,)+∞0x <<7.(2022•南京三模)已知函数2()(1)3x f x x x e =-+-,()()x f x g x xe x=-,e 为自然对数的底数.(1)求函数()f x 的单调区间;(2)记函数()g x 在(0,)+∞上的最小值为m ,证明:3e m <<.8.(2022•北碚区期中)已知函数()21()f x lnx ax a R =--∈.(1)讨论()f x 的单调性;(2)若函数()()F x xf x =存在极值点0x ,求证:02021x e ax ->.9.(2022•浙江模拟)已知函数()()x f x ln x a ae =+-.(1)当1a =时,求()f x 极值;(2)设0x 为()f x 的极值点,证明:001()2||1f x x --.10.(2022•日照期末)设函数()(1)x f x lnx a x e =--,其中a R ∈.(1)若1a =,求曲线()y f x =在点(1,f (1))处的切线方程;(2)若10a e <<.①证明:函数()f x 恰有两个零点;②设0x 为函数()f x 的极值点,1x 为函数()f x 的零点,且10x x >,证明:1002x x lnx <+.11.(2022•西城区三模)已知函数()(1)x f x e mlnx =+,其中0m >,()f x '为()f x 的导函数.(1)当1m =,求()f x 在点(1,f (1))处的切线方程;(2)设函数()()x f x h x e '=,且5()2h x 恒成立.①求m 的取值范围;②设函数()f x 的零点为0x ,()f x '的极小值点为1x ,求证:01x x >.12.(2019•天津理)设函数()cos x f x e x =,()g x 为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当[4x π∈,]2π时,证明()()()02f x g x x π+-;(Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明:20022sin cos n n e n x x x πππ-+-<-.。

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。

2020届高考数学陕西省文数试题含解析

2020届高考数学陕西省文数试题含解析

陕西省高考文科数试模拟题一一、选择题(每题一个选项,每题5分共60分)1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆B B.C⊆B C.D⊆C D.A⊆D2.设z是复数z的共轭复数,且(1﹣2i)z=5i,则|z|=()A.3 B.5 C.√3D.√53.一个体积可忽略不计的小球在边长为2的正方形区域内随机滚动,则它在离4个顶点距离都大于1的区域内的概率为()A.π4B.1−π4C.π2−1D.2π4.在△ABC中,角A,B,C的对边分别为a,b,c,则“a=2b cos C”是“△ABC是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.如图,在底面边长为1,高为2的正四棱柱ABCD﹣A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P﹣BCD的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.56.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.12D.17.已知两个非零单位向量e1→,e2→的夹角为θ,则下列结论不正确的是()A.∀θ∈R,(e1→+e2→)⊥(e1→−e2→)B.e1→在e2→方向上的投影为sinθC.e1→2=e2→2D.不存在θ,使e1→•e2→=√28.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是()A.p∧q B.p∨(非q)C.(非p)∧q D.p∧(非q)9.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是()A.(x﹣2)2+(y﹣1)2=1 B.(x﹣2)2+(y+1)2=1C.(x+2)2+(y﹣1)2=1 D.(x﹣3)2+(y﹣1)2=110.抛物线y2=ax(a>0)的准线与双曲线C:x28−y24=1的两条渐近线所围成的三角形面积为2√2,则a的值为()A.8 B.6 C.4 D.211.函数y=sin(2x+π3)的图象经下列怎样的平移后所得的图象关于点(−π12,0)中心对称()A.向左平移π12B.向右平移π12C.向左平移π6D.向右平移π612.已知定义在R上的函数f(x)满足f(3﹣x)=f(3+x),且对任意x1,x2∈(0,3)都有f(x2)−f(x1)x2−x1<0,若a=2−√3,b=log23,c=e ln4,则下面结论正确的是()A.f(a)<f(b)<f(c)B.f(c)<f(a)<f(b)C.f(c)<f(b)<f(a)D.f(a)<f(c)<f(b)二、填空题(每小题5分,每题5分共20分)13.若sin(π2+α)=−35,α∈(0,π),则sinα=.14.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为.15.已知正方体内切球的体积为36π,则正方体的体对角线长为.16.已知椭圆x2a12+y2b12=1(a1>b1>0)与双曲线x2a22−y2b22=1(a2>0,b2>0)有公共的左、右焦点F1,F2,它们在第一象限交于点P,其离心率分别为e1,e2,以F1,F2为直径的圆恰好过点P,则1e12+1e22=.三.解答题:(共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项等比数列{a n}满足a1+a2=6,a3﹣a2=4.(1)求数列{a n}的通项公式;(2)记b n=1log2a n log2a n+1,求数列{b n}的前n项和T n.18.(12分)销售某种活海鲜,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为Y元.(Ⅰ)求Y关于x的函数关系式;(Ⅱ)结合直方图估计利润Y不小于800元的概率.19.(12分)如图1,在平面多边形BCDEF中,四边形ABCD为正方形,EF∥AB,AB=2EF=2,沿着AB 将图形折成图2,其中∠AED=90°,AE=ED,H为AD的中点.(1)求证:EH⊥BD;(2)求四棱锥D﹣ABFE的体积.20.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)上的点到两个焦点的距离之和为23,短轴长为12,直线l与椭圆C交于M、N两点.(I)求椭圆C的方程;(II)若直线l与圆O:x2+y2=125相切,证明:∠MON为定值.21.(12分)已知函数f(x)=lnx+a(1﹣x).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a ﹣2时,求a 的取值范围.选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:{x =tcosαy =1+tsinα(t 为参数,α∈[0,π)),曲线C 的极坐标方程为:ρ=4sinα. (1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于P ,Q 两点,若|PQ|=√15,求直线l 的斜率. [选修4-5:不等式选讲]23.设函数f (x )=|x +1|+|x ﹣2|. (1)求不等式f (x )≤3 的解集;(2)当x ∈[2,3]时,f (x )≥﹣x 2+2x +m 恒成立,求m 的取值范围.一、选择题(每题一个选项,每题5分共60分)1.【详解详析】因为菱形是平行四边形的特殊情形,所以D ⊂A , 矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A , 正方形是矩形,所以C ⊆B . 故选:B .2.【详解详析】由(1﹣2i )z =5i ,得z =5i1−2i =5i(1+2i)(1−2i)(1+2i)=−2+i , ∴|z |=|z |=√5. 故选:D .3.【详解详析】以四个顶点为圆心,1为半径作圆,当小球在边长为2的正方形区域内随机滚动,离顶点的距离不大于1,其面积为π, ∵边长为2的正方形的面积为4,∴它在离4个顶点距离都大于1的区域内的概率为P =4−π4=1−π4.故选:B .4.【详解详析】∵当a =2b cos C 时, ∴cos C =a2b ∵cos C =a 2+b 2−c 22ab∴a2b =a 2+b 2−c 22ab,化简整理得b =c∴△ABC 为等腰三角形.反之,“△ABC 是等腰三角形,不一定有b =c , 从而a =2b cos C 不一定成立.则“a =2b cos C ”是“△ABC 是等腰三角形”的充分不必要条件. 故选:A .5.【详解详析】三棱锥P ﹣BCD 的正视图是底面边长为1,高为2的三角形,面积为:1; 三棱锥P ﹣BCD 的假视图也是底面边长为1,高为2的三角形,面积为:1; 故三棱锥P ﹣BCD 的正视图与侧视图的面积之和为2, 故选:A .6.【详解详析】由题设知,所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,∴这组样本数据完全正相关,故其相关系数为1, 故选:D .7.【详解详析】∵|e 1→|=|e 2→|=1,∴(e 1→+e 2→)⋅(e 1→−e 2→)=e 1→2−e 2→2=1−1=0,∴(e 1→+e 2→)⊥(e 1→−e 2→),∴A 正确;e 1→在e 2→方向上的投影为|e 1→|cosθ=cosθ,∴B 错误;显然e 1→2=e 2→2,∴C正确;e 1→⋅e 2→=cosθ<√2,∴不存在θ,使e 1→•e 2→=√2,∴D 正确. 故选:B .8.【详解详析】根据线面平行的判定,我们易得命题p :若直线a ∥b ,直线b ⊂平面α,则直线a ∥平面α或直线a 在平面α内,命题p 为假命题;根据线面垂直的定义,我们易得命题q :若直线l ⊥平面α,则若直线l 与平面α内的任意直线都垂直,命题q 为真命题;故:A 命题“p ∧q ”为假命题; B 命题“p ∨(¬q )”为假命题; C 命题“(¬p )∧q ”为真命题; D 命题“p ∧(¬q )”为假命题.故选:C .9.【详解详析】设圆心坐标为(a ,b )(a >0,b >0), 由圆与直线4x ﹣3y =0相切,可得圆心到直线的距离d =|4a−3b|5=r =1,化简得:|4a ﹣3b |=5①,又圆与x 轴相切,可得|b |=r =1,解得b =1或b =﹣1(舍去),把b =1代入①得:4a ﹣3=5或4a ﹣3=﹣5,解得a =2或a =−12(舍去), ∴圆心坐标为(2,1),则圆的标准方程为:(x ﹣2)2+(y ﹣1)2=1. 故选:A .10.【详解详析】抛物线y 2=ax 的准线为x =−a4, 双曲线C :x 28−y 24=1的两条渐近线为y =±√22x ,可得两交点为(−a 4,√28a ),(−a 4,−√28a ), 即有三角形的面积为12•a 4•√24a =2√2, 解得a =8, 故选:A .11.【详解详析】假设将函数y =sin (2x +π3)的图象平移ρ个单位得到:y =sin (2x +2ρ+π3)关于点(−π12,0)中心对称∴将x =−π12代入得到:sin (−π6+2ρ+π3)=sin (π6+2ρ)=0 ∴π6+2ρ=k π,∴ρ=−π12+kπ2,当k =0时,ρ=−π12 故选:B .12.【详解详析】根据题意,定义在R 上的函数f (x )满足f (3﹣x )=f (3+x ),则函数f (x )关于直线x =3对称,c =e ln 4=4,f (c )=f (4)=f (2), 又由对任意x 1,x 2∈(0,3)都有f(x 2)−f(x 1)x 2−x 1<0,则函数f (x )在(0,3)上为减函数,若a =2−√3=3,b =log 23,则有0<a <1<b <2,则f (c )<f (b )<f (a ),。

2020-2021学年上海市华东师范大学第二附属中学高三下学期5月高考模拟测试数学试卷含详解

2020-2021学年上海市华东师范大学第二附属中学高三下学期5月高考模拟测试数学试卷含详解

上海市华东师范大学第二附属中学2020-2021年高三下学期5月高考模拟测试数学试卷(最后一卷)2021.5.31一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.若集合{}12,A x x x R =-<∈,则A Z = _________.2.方程33log 1log (2)x x =-+的解集为_________.3.已知a R ∈,复数()(1)a i i z i-+=,若z 的虚部为1,则a =_________.4.已知cos 5cos(2),sin 32θππθθθ=-<,则sin 2θ=_________.5.若二项式21()n x x-的展开式共有6项,则此展开式中含4x 的项的系数是_________.6.若抛物线228x y =上一点00(,)x y 到焦点的距离是该点到x 轴距离的3倍,则0y =______.7.袋中有大小相同的黑球和白球各1个,每次从袋中抽取1个,有放回的随机抽取3次,则至少抽到1个黑球的概率是_________.8.设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,若254a a +=,则8a 的值为_________.9.已知球O 的半径是1,,,A B C 三点都在球面上,若A 和B 的球面距离、A 和C 的球面距离都是4π,B 和C 的球面距离是3π,则二面角B OA C --的大小是_________.10.已知实数,x y 满足不等式组2040250x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,若目标函数(10)z y ax a =+-<<最大值为8,则a 的值为_________.11.在平面直角坐标系xOy 中,已知点(2,2)A ,,E F 为圆22:(1)(1)4C x y -+-=上的两动点,且EF =,若圆C 上存在点P ,使得,0AE AF mCP m +=>,则m 的取值范围为_________.12.已知0,0a b ≠>,若222()2f x b ax b a x b b =+-+-有两零点12,x x ,且120x x +<,则ab的取值范围上_________.二、选择题(本大题共有4小题,满分20分,每题5分)13.关于“若4a b +=,则,a b 至少有一个等于2”及其逆命题的说法正确的是()A.原命题为真,逆命题为假B.原命题为假,逆命题为真C.原命题为真,逆命题为真D.原命题为假,逆命题为假14.设34:02x xp x-≤,22:(21)0q x m x m m -+++≤,若p 是q 的必要不充分条件,则实数m 的取值范围为()A.[]2,1- B.[]31-, C.[)(]2,00,1- D.[)(]2,10,1-- 15.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是()A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定16.已知梯形CEPD 如图(1)所示,其中8,6PD CE ==,A 为线段PD 的中点,四边形ABCD 为正方形,现沿AB 进行折叠,使得平面PABE ⊥平面ABCD ,得到如图(2)所示的几何体.已知当AB 上一点F 满足(01)AF AB λλ=<<时,平面DEF ⊥平面PCE ,则λ的值为()A.12B.23C.35D.45三、解答题(本题共5小题,满分76分)17.(7分+7分)已知关于x 得二次方程:2(2)4(2)0(,)x i x ab a b i a b R ++++-=∈.(1)当方程有实数根时,求点(,)a b 的轨迹方程;(2)求方程实数根的取值范围.18.(7分+7分)已知函数23()sin 3sin cos (,,0)2f x a x a x x a b a b a =+-+<,(1)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域为[]5,1-,求实数,a b 的值;(2)在(1)条件下,求函数()f x 图像的对称中心和单调区间.19.(3分+4分+7分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(按30天计),每件的销售价格()P x (单位:元)与时间x (单位:天)(130,x x N *≤≤∈)的函数关系满足()10kP x x=+(k 为常数,且>0k ),日销售量()Q x (单位:件)与时间x 的部分数据如下表所示:x15202530()Q x 55605550设该工艺品的日销售收入为()f x (单位:元),且第20天的日销售收入为603元.(1)求k 的值;(2)给出以下四种函数模型:①()Q x ax b =+;②()||Q x a x m b =-+;③()xQ x ab =;④()log b Q x a x =.请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量()Q x 与时间x 的变化关系,并求出该函数的解析式;(3)利用问题(2)中的函数()Q x ,求()f x 的最小值.20.(4分+6分+6分)如图,已知双曲线C 的方程为22221x y a b-=(0a b >>),两条渐近线的夹角为3arccos5,焦点到渐近线的距离为1.M 、N 两动点在双曲线C 的两条渐近线上,且分别位于第一象限和第四象限,P 是直线MN 与双曲线右支的一个公共点,MP PN λ= .(1)求双曲线C 的方程;(2)当=1λ时,求PM PN ⋅的取值范围;(3)试用λ表示MON △的面积S ,设双曲线C 上的点到其焦点的距离的取值范围为集合Ω,若5λ∈Ω,求S 的取值范围.21.已知数列{}n a :1,2-,2-,3,3,3,4-,4-,4-,4-,⋅⋅⋅,11(1),,(1)k k k k k ---⋅⋅⋅-个,即当1)(122k k k k n -+<≤()(*k ∈N )时,1(1)k n a k -=-,记12n n S a a a =++⋅⋅⋅+(*n ∈N ).(1)求2020S 的值;(2)求当(1)(1)(2)22k k k k n +++<≤(*k ∈N ),试用n 、k 的代数式表示n S (*n ∈N );(3)对于*t ∈N ,定义集合{|t n P n S =是n a 的整数倍,*n ∈N ,且1}n t ≤≤,求集合2020P 中元素的个数.上海市华东师范大学第二附属中学2020-2021年高三下学期5月高考模拟测试数学试卷(最后一卷)2021.5.31一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.若集合{}12,A x x x R =-<∈,则A Z = _________.【答案】{0,1,2}【解析】:13A x -<<,{}0,1,2A Z ∴= 。

2021届全国新高考仿真模拟试题(二)数学(文)(解析版)


∴CD⊥平面
ABD,∴CD
是三棱锥
C
­
ABD
的高,∴VC
­
ABD=13×12×2×2×sin
60°×2=2 3, 3
故选 A.
8.答案:C
解析:由射线测厚技术原理公式得I20=I0e-7.6×0.8μ,∴12=e-6.08μ,-ln 2=-6.08μ,μ≈0.114,
故选 C.
9.答案:C
解析:从题图(1)可以看出,该品牌汽车在 1 月份所对应的条形图最高,即销售量最多,
商品销售 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y10
额 y/万元
且已知 错误!i=380.0
(1)求第 10 年的年收入 x10. (2)若该城市居民年收入 x 与该种商品的销售额 y 之间满足线性回归方程y^=363x+^a,
254 (ⅰ)求该种商品第 10 年的销售额 y10; (ⅱ)若该城市居民年收入为 40.0 亿元,估计这种商品的销售额是多少?(精确到 0.01) 附:①在线性回归方程y^=b^x+^a中,b^=错误!,^a=-y -b^-x ;
(1)求轨迹Γ的方程; (2)过点 F 作互相垂直的直线 AB 与 CD,其中直线 AB 与轨迹Γ交于点 A,B,直线 CD 与轨迹Γ交于点 C,D,设点 M,N 分别是 AB 和 CD 的中点,求△FMN 的面积的最小值.
-5-
21.(12 分)[2020·安徽省示范高中名校高三联考]函数 f(x)=aex+x2-ln x(e 为自然对数的底数,a 为常 数),曲线 f(x)在 x=1 处的切线方程为(e+1)x-y=0.
于 8 月份,所以该公司 7 月份汽车的总销售量比 8 月份少,所以选项 C 是错误的;从题图(1)

2020-2021学年山西省太原市高三文综模拟试题(二)试题(Word版含答案)

本文提供的是2020-2021学年山西省太原市高三文综模拟试题,主要考察学生的文科综合能力,包括政治、历史和地理等多个学科领域。试题内容涵盖了各个学科的基础知识和应用能力,旨在检验学生的综合素质和应对高考的能力。然而,这份试题并不符合用户搜索的文品文化2024-2025山西高一第一学期期中考试政治试能具有一定的参考价值,但并不能完全满足其对特定学期和年级政治试题的需求。因此,建议用户继续寻找更符合其要求的试题资源,以便更好地进行备考和复习。

2021届高考数学(文)二轮专题闯关导练(统考版):热点(十三) 数学文化

热点(十三) 数学文化1.[2020·山东菏泽期中](数列中的文化)南北朝时期的数学古籍《张丘建算经》中有如下一道题:“今有十等人,大官甲等十人官赐金,依等次差(即等差)降之,上三人先入,得金四斤持出;下四人后入,得金三斤持出;中央三人未到者,亦依等次更给.”问:每一等人比下一等人多得几斤金?( ) A.439斤 B.778斤 C.776斤 D.581斤 2.[2020·福建莆田模拟](程序框图中的文化)将元代著名数学家朱世杰的《四元玉鉴》中的一首诗改编如下:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表示如图,用x 表示壶中原有酒的量,可知最终输出的x =0,则一开始输入的x 的值为( )A.34B.1516C .4 D.783.[2020·河南商丘月考](生活中的文化)我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问三女几何日相会?”大致意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数为( )A .58B .59C .60D .614.[2020·重庆七校联考](推理与证明中的文化)某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A ,B ,C ,D ,E 五辆车,每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可知下列推测一定正确的是( )A .今天是周四B .今天是周六C .A 车周三限行D .C 车周五限行5.[2020·福建泉州两校联考](函数中的文化)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为:“今有人持金出五关,第1关所收税金为持金的12,第2关所收税金为剩余持金的13,第3关所收税金为剩余持金的14,第4关所收税金为剩余持金的15,第5关所收税金为剩余持金的16,5关所收税金之和恰好重1斤.”则在此问题中,第5关所收税金为( )A.136斤B.130斤 C.125斤 D.120斤 6.[2020·惠州市考试试题](线性规划中的文化)关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对(x ,y ),再统计其中x ,y 能与1构成钝角三角形三边的数对(x ,y )的个数m ,最后根据统计个数m 估计π的值.如果统计结果是m =34,那么可以估计π的值为( )A.237B.4715C.1715D.53177.[2020·四川达州模拟](生活中的文化)里氏震级是由古登堡和里克特制定的一种表明地震能量大小的标度,用来表示测震仪衡量的地震能量的等级,地震能量越大,地震仪记录的震波的振幅就越大,其计算公式为M =lg A -lg A 0,其中A ,A 0分别是距震中100公里处接收到的所关注的这个地震和0级地震的震波的最大振幅,则7级地震震波的最大振幅是5级地震震波的最大振幅的( )A .10倍B .20倍C .50倍D .100倍8.[2020·江淮十校第二次联考](立体几何中的文化)长方、堑堵、阳马、鳖臑出自中国古代名著《九章算术·商功》,其中阳马、鳖臑是我国古代对一些特殊锥体的称呼.取一长方,如图(1)中的长方体ABCD - A 1B 1C 1D 1,沿平面ABC 1D 1斜切,一分为二,得到两个一模一样的三棱柱,称该三棱柱为堑堵,如图(2),再沿平面D 1BC 切开,得四棱锥和三棱锥各一个,其中四棱锥D 1 - ABCD 以矩形ABCD 为底,棱DD 1与底面垂直,称为阳马,余下的三棱锥D 1 - BCC 1是四个面均为直角三角形的四面体,称为鳖臑.已知长方体ABCD - A 1B 1C 1D 1中,AB =4,BC =3,AA 1=2,按以上操作得到阳马,则该阳马的最长棱长为( )A .2 5B .5C.29 D .4 29.[2020·福建师大附中期中](三角函数中的文化)17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一件是勾股定理,另一件是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形).如图所示的五角星由五个黄金三角形与一个正五边形组成,在其中一个黄金三角形ABC 中,BC AC =5-12.根据这些信息,可得sin 234°=( ) A.1-254 B .-3+58C .-5+14D .-4+5810.[2020·湖南衡阳八中第四次月考](数列中的文化)元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两,令甲、乙、丙从上作折半差分之.其意思是:现有银一秤一斤十两,将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给5个人,则得银最少的3个人一共得银(规定:1秤=10斤,1斤=10两)( )A.266127两B.889127两 C.84031两 D.1 11131两 11.[2020·吉林长春外国语学校期中](统计中的文化)中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代用算筹(即几寸长的小棍)摆在平面上进行运算,算筹的摆放形式有纵、横两种形式,如图所示.当表示一个多位数时,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万位上的数用纵式表示,十位、千位、十万位上的数用横式表示,以此类推.例如3 266用算筹表示就是,则8 771用算筹可表示为( )A. B.C. D.12.[2020·安徽省高三联考](生活中的文化)某校高一组织五个班的学生参加学农活动,每班从“农耕”“采摘”“酿酒”“野炊”“饲养”五项活动中选择一项进行实践,且各班的选择互不相同,已知1班不选“农耕”“采摘”;2班不选“农耕”“酿酒”;3班既不选“野炊”,也不选“农耕”;5班选择“采摘”或“酿酒”.如果1班不选“酿酒”,那么4班不选“农耕”.则选择“饲养”的班级是( )A .2班B .3班C .4班D .5班13.[2020·湖北八校联考](三角函数中的文化)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可表示为m =2sin 18°.若m 2+n =4,则1-2cos 227°3m n=________. 14.[2020·江苏南京高三联合体调研](概率中的文化)欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技术让人叹为观止.若铜钱是直径为4 cm 的圆,中间有边长为a cm 的正方形孔,若随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为14π,则a =________.15.[2020·陕西西安期中](数列中的文化)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ;正方形数 N (n,4)=n 2;五边形数 N (n,5)=32n 2-12n ; 六边形数 N (n,6)=2n 2-n ;……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.16.[2020·合肥市高三第二次教学质量检测](推理中的文化)为了考查考生对于数学知识形成过程的掌握情况,某高校自主招生考试面试中的一个问题是:写出对数的换底公式,并加以证明.甲、乙、丙三名考生分别写出了不同的★答案★.公布他们的★答案★后,三名考生之间有如下对话.甲说:“我答错了.”乙说:“我答对了.”丙说:“乙答错了.”评委看了他们的★答案★,听了他们之间的对话后说:“你们三人的★答案★中只有一人是正确的,你们三人的对话中只有一人说对了.”根据以上信息,面试问题★答案★正确的考生为________.热点(十三) 数学文化1.★答案★:B解析:设第十等人得金a 1斤,第九等人得金a 2斤,以此类推,第一等人得金a 10斤,则数列{a n }构成等差数列,设公差为d (d >0),则每一等人比下一等人多得d 斤金,由题意得{ a 1+a 2+a 3+a 4=3,a 8+a 9+a 10=4,即{ 4a 1+6d =3,3a 1+24d =4,解得⎩⎨⎧a 1=813,d =778, 所以每一等人比下一等人多得778斤金.故选B. 2.★答案★:D解析:这是一道函数与程序框图相结合的题.当i =1时,酒量为2x -1;当i =2时,酒量为2(2x -1)-1=4x -3;当i =3时,酒量为2(4x -3)-1=8x -7;当i =4时,酒量为0,即2(4x -3)-1=0,解得x =78. 故选D. 3.★答案★: C 解析:由题意知,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家,当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,小女儿和二女儿、小女儿和大女儿、二女儿和大女儿同时回娘家的天数分别为8,6,5,三个女儿同一天回娘家的天数为1,因此,从正月初三算起的一百天内,有女儿回娘家的天数为33+25+20-(8+6+5)+1=60.故选C.4.★答案★:A解析:在限行政策下,要保证每天至少有四辆车可以上路行驶,周一至周五每天只能有一辆车限行.由周末不限行,B 车昨天限行知,今天不是周一,也不是周日;由E 车周四限行且明天可以上路可知,今天不是周三;由E 车周四限行,B 车昨天限行知,今天不是周五;从今天算起,A ,C 两车连续四天都能上路行驶,如果今天是周二,A ,C 两车连续上路行驶到周五,只能同时在周一限行,不符合题意;如果今天是周六,则B 车周五限行,又E 车周四限行,所以A ,C 两车连续上路行驶到周二,只能同时在周三限行,不符合题意.所以今天是周四.故选A.5.★答案★:C解析:设此人持金x 斤,根据题意知第1关所收税金为x 2斤;第2关所收税金为x 6斤;第3关所收税金为x 12斤;第4关所收税金为x 20斤;第5关所收税金为x 30斤,易知x 2+x 6+x 12+x 20+x 30=1,解得x =65.则第5关所收税金为125斤.故选C. 6.★答案★:B解析:由题意,120对正实数对(x ,y )中的x ,y 满足{ 0<x <10<y <1,该不等式组表示的平面区域的面积为1.正实数对(x ,y )中的x ,y 能与1构成钝角三角形的三边,则x ,y 需满足{ x +y >1x 2+y 2-1<00<x <10<y <1,该不等式组表示的平面区域的面积为π4-12,则π4-12≈34120,π4≈94120,π≈4715,故选B. 7.★答案★:D解析:对公式M =lg A -lg A 0进行转化得M =lg A A 0,即A A 0=10M ,A =A 0·10M , 当M =7时,地震震波的最大振幅为A 7=A 0·107,当M =5时,地震震波的最大振幅为A 5=A 0·104,则A 7A 5=A 0·107A 0·105=100.故选D. 8.★答案★:C解析:根据题意得,该阳马的最长棱长为D 1B =4+9+16=29.故选C.9.★答案★:C解析:由题意可知∠ACB =72°,且cos 72°=12BC AC =5-14, 所以cos 144°=2cos 272°-1=-5+14, 所以sin 234°=sin(144°+90°)=cos 144°=-5+14.故选C. 10.★答案★:C解析:一秤一斤十两共120两,将这5人所得银的数量由小到大排列,记为数列{a n },则{a n }是公比q =2的等比数列,于是得S 5=a 1(1-q 5)1-q =a 1(1-25)1-2=120,解得a 1=12031. 故得银最少的3个人一共得银的数量为a 1+a 2+a 3=12031×(1+2+22)=84031(两).故选C. 11.★答案★:A解析:根据题意得,个位、百位、万位上的数用纵式表示,十位、千位、十万位上的数用横式表示,所以8 771用算筹可表示为.故选A.12.★答案★:B解析:通解 由题意可知五个班级和五项活动一一对应,作出如下表格(不选活动项目打“×”,选择活动项目打“√”),当5班选“采摘”时,则4班选“农耕”,根据如果1班不选“酿酒”,那么4班不选“农耕”,得1班选“酿酒”,再根据五个班级和五项活动一一对应,易得选“饲养”的是3班.农耕 采摘 酿酒 野炊 饲养1班 × × √2班 × × √3班 × × √4班 √5班 √ 当5班选“”,那么4班不选“农耕”,得1班选“酿酒”,则1班和5班都选“酿酒”,与题意矛盾,舍去这种情况.综上可知,选B.优解 由题意知,1班、2班、3班、5班均不选“农耕”,所以4班选“农耕”,根据如果1班不选“酿酒”,那么4班不选“农耕”,得1班选“酿酒”,则5班选“采摘”,又3班不选“野炊”,所以2班选“野炊”,3班选“饲养”.故选B.13.★答案★:-16解析:由m 2+n =4得n =4-m 2=4-4sin 218°=4cos 218°,代入所求表达式,可得1-2cos 227°3·2sin 18°·2cos 18°=-cos 54°6sin 36°=-sin 36°6sin 36°=-16. 14.★答案★:1解析:由题可知,油(油滴的大小忽略不计)正好落入孔中的概率是P =a 2π×⎝⎛⎭⎫422=14π,解得a =1.15.★答案★:1 000解析:观察n 2和n 前面的系数,可知一个成递增的等差数列,另一个成递减的等差数列.易知n 2前的系数为12(k -2),而n 前的系数为12(4-k ). 则N (n ,k )=12(k -2)n 2+12(4-k )n , 故N (10,24)=12×(24-2)×102+12×(4-24)×10=1 000. 16.★答案★:甲解析:①当甲的★答案★正确时,甲的说法错误,乙、丙的说法中有一个正确,符合题意.故甲的★答案★正确.②当乙的★答案★正确时,乙的说法正确,甲的说法正确,丙的说法不正确,与题意矛盾.故乙的★答案★不正确.③当丙的★答案★正确时,丙的说法正确,甲的说法正确,乙的说法不正确,与题意矛盾.故丙的★答案★不正确.综上,甲的★答案★正确.。

2023年新高考数学临考题号押题第2题 复数(新高考)(解析版)

押新高考卷2题


考点3年考题
考情分析
复数
2022年新高考Ⅰ卷第2题2022年新高考Ⅱ卷第2题
2021年新高考Ⅰ卷第2题2021年新高考Ⅱ卷第1题2020年新高考Ⅰ卷第2题2020年新高考Ⅱ卷第2题
高考对复数知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练复数基础知识点,包括复数的代数形式,复数的实部与虚部,共轭复数,复数模长,复数的几何意义及四则运算.纵观近几年的新高考试题,均以复数的四则运算为切入点,考查复数的四则运算、共轭复数及几何意义.可以预测2023年新高考命题方向将继续围绕复数的四则运算为背景展开命题.
1.虚数单位:i ,规定12-=i
2.虚数单位的周期4
=T 3.复数的代数形式:Z=(),a bi a b R +∈,a 叫实部,b 叫虚部4.复数的分类
⎪⎪⎪⎩
⎪⎪⎪⎨
⎧⎩⎨⎧=≠≠⎩⎨⎧===+=000
00
00
a b b b a b bi a z 纯虚数:虚数::实数:5.复数相等:,,21di c Z bi a Z +=+=若则,21Z Z =d
b c a ==,6.共轭复数:若两个复数的实部相等,而虚部是互为相反数时,这两个复数叫互为共轭复数;
(),,z a bi z a bi a b R =+=-∈,
()()()2
22
22
2b a z z b a bi a bi a bi a z z +=⋅+=-=-+=⋅结论:推广:7.复数的几何意义:复数(),z a bi a b R =+∈←−−−→一一对应
复平面内的点(,)
Z a b
8.复数的模:()R b a bi a Z ∈+=,,
则||z a bi =+=;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
③已知直线 l1:ax+3y-1=0 , l2:x+by+1=0,则 l1 l 2 的充要条件是 a
3;
b
④已知 a>0,b>0,函数 y
2ae x
b 的图象过点 ( 0,1),则 1
1
的最小值是
4
2 ,其中正确命题的序号是。
ab
三.解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤。 17. (本小题满分 12 分)
( I) 求 a, b 的值;
(Ⅱ)若当 x∈ [0,+ ∞ )是,恒有 f x ≥ k g x 成立,求 k 的取值范围;
若要功夫深,铁杵磨成针!
(Ⅲ)若
5 =2.2361,试估计
5 ln 的值(精确到
0.001)
4
请考生在第 22、 23、 24 三题中任选一题作答,如果多做,则按所做的第一题记分。答题时用
若要功夫深,铁杵磨成针!
最新 高三第二次模 拟考试
数学试题(文)
本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共
150 分,考试时间 120 分钟。
第 I 卷(选择题 共 60 分)
注意事项: 1. 答第 I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。 2. 每题选出答案后,用 2B 铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在改涂
在其他答案标号。 一.选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题 目要求的。
1.集合 U= x Z | x( x 7) 0 , A={1,4,5} , B={2,3,5},则 A (CU B) =
A.{1,5}B{1,4,6}
C.{1,4}D. {1,4,5}
5.已知“ p q ”是假命题,则下列选项中一定为真命题的是
A. p q B(. p)( q)C(. p) q D(. p)( q)
6. sin 80 sin 40 cos80 cos 40 的值为( )
若要功夫深,铁杵磨成针!
A.
3
B.
1 C. 1 D.
3
2
22 2
7. 如图, B,D 是以 AC 为直径的圆上的两点,其中 AB= t 1 , AD= t 2 ,则 AC BD =

A.48B. 36
C.30D. 24
12. 已知函数 f x = ex ax 1, g x = ln( ex 1) ,若 x0 0, ,使得 f lg x0 f x0 成立,则 a
的取值范围是 A. ( 0, +∞)
B.( 0,1) C.( 1, +∞) D.[1,+ ∞)
第 II 卷 (非选择题 共 90 分)
为。
15.三棱锥 P-ABC 中, ABC 为等边三角形, PA=PB=PC=2,PA⊥ PB,三棱锥 P-ABC 的外接球的表面积为。
16.给出下列命题:①若 | a b =| a |-| b |,则存在实数 ,使得 b a ;
② a log 1 2 , b log 1 3 , c
3
2
0 .5
1
大小关系是 c>a>b;
2B 铅笔在答
题卡上把所选题目的题号涂黑。
22.(本小题满分 10 分)选修 4-1 :几何证明选讲
如图,过圆 E 外一点 A 作一条直线与圆 E 交 B,C 两点,且 AB= 1 AC,作直线 AF 与圆 E 相切于点 F,连接 EF 3
交 BC 于点 D,已知圆 E 的半径为 2,∠ EBC=30 .
设 |OM|=|MQ|。 ( I) 求点 Q 轨迹的直角坐标方程; (Ⅱ)若直线 l 与点 Q 轨迹相交于 A,B 两点,点 P 的直角坐标为( 0,2),求 |PA|+|PB|的值。
若要功夫深,铁杵磨成针!
24.(本小题满分 10 分)选修 4-5 :不等式选讲
已知函数 f x =|x-1| ( I) 解不等式 f x + f x - 4 ≥ 8; (Ⅱ)若 |a|<1,|b|<1,且 a≠ 0,求证: f ab >|a| f b .
已知 an 为等差数列,且满足 a1 a3 8 , a2 a4 12 。 ( I) 求数列 an 的通项公式; (Ⅱ)记 an 的前 n 项和为 Sn ,若 a3 , ak 1, Sk 成等比数列,求正整数 k 的值。
18. (本小题满分 12 分) 某中学高三年级从甲、乙两个班各选出
7 名学生参加数学竞赛,他们取得的成绩(满分
( I) 求 AF 的长; (Ⅱ)求证: AD=3ED.
23.(本小题满分 10 分)选修 4-4 :坐标系与参数方程
在直角坐标系 xOy 中,直线 l 的参数方程为
1
x
t
2
( t 为参数),若以原点 O 为极点, x 轴正半轴为
y 2 3t
2
极轴建立极坐标系,已知圆 C 的极坐标方程为
4cos ,设 M 是圆 C 上任一点,连结 OM 并延长到 Q,
面 ABCD, MA//NC, MA=NC= 3 .
( I) 设 AC BD=O,P 为 NC 上一点,若 OP//平面 NEF,求 NP:PC; (Ⅱ)证明:平面 MEF⊥平面 NEF
20. (本小题满分 12 分)
已知 P( 1,-1 )在抛物线 C; y ax 2 上,过点 P 作两条斜率为互为相反数的直线分别交抛物线
100 分)的茎叶图
如图,其中甲班学生的平均分是 85.
( I) 计算甲班 7 位学生成绩的方程 s2 ;
(Ⅱ)从成绩在 90 分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率。
若要功夫深,铁杵磨成针!
19. (本小题满分 12 分)
如图,张方形 ABCD的边长为 2 2 , E,F 分别是 AB,AD 的中点, M,N 是平面 ABCD 同一侧的两点, MA⊥平
z re i 的形式,我们把这种形式叫做复数的指数形式,若复数
复平面内对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限
z1
i
2e 3 , z2
i
2e 2 ,则复数 z
z1

z2
4.等差数列 an 的前 n 项和为 Sn , S5 15 , S9 63 ,则 a4 =
A.3B.4C.5D.7
a
若要功夫深,铁杵磨成针!
若要功夫深,铁杵磨成针!
若要功夫深,铁杵磨成针!
若要功夫深,铁杵磨成针!
若要功夫深,铁杵磨成针!
若要功夫深,铁杵磨成针!
A.1B. 2
C. t
D. 2t
8. 已知双曲线
x2
2
y2
2
1( a 0, b 0) ,若焦点 F(c, 0) 关于渐近线 y
b x 的对称点在另一条渐近线离心率为
a
A. 2 B. 2
C. 3 D.3
9.函数 f x =| lg x | cos x 的零点个数为
A. 3
B.4C. 5
注意事项:第 II 卷所有题目的答案考生需用黑色签字笔答在“数学”答题卡指定的位置。 二.填空题(本大题共 4 个小题,每小题 5 分,共 20 分。) 13.如图,圆中有一内接等腰三角形,且三角形底边经过圆心,假设在图中随机撒一把黄豆,则它落在阴影
若要功夫深,铁杵磨成针!
部分的概率为。
14.P 为抛物线 y2 4 x 上任意一点, P 在 y 轴上的射影为 Q,点 M(7,8),则 |PM|与 |PQ|长度之和的最小值
2.平面向量 a,b 的夹角为 30 , a =( 1,0), | b |= 3 ,则 | a b | =
A. 2 3 B.1C. 5 D. 2 2
3. 欧拉在 1748 年给出了著名公式 ei cos i sin (欧拉公式)是数学中最卓越的公式之一,其中,底
数 e=2.71828…,根据欧拉公式 ei cos i sin ,任何一个复数 z= r (cos i sin ) ,都可以表示成
(异于点 P)。 ( I) 求抛物线 C 的焦点坐标。
(Ⅱ)记直线 AB 交 y 轴于点( 0, y 0 ),求 y0 的取值范围。
C 于点 A,B
21.(本小题满分 12 分)
已知函数
f
x
ax 2
=
bx , g x
x1
ln( x 1) ,曲线 y= f x 在点( 1, f 1 )处的切线方程是 5x-4y+1=0.
D. 6
10.已知圆 C: x2 y2 1 ,点 P 在直线 l :y=x+2 上,若圆 C 上存在两点 A,B 使得 PA 3 PB ,则点 P 的横
坐标的取值范围为(

A.[-1, 1 ]B.[-2, 1 ]C.[-1,0]D.[-2,0]
2
2
11. 四棱锥 M-ABCD 的底面 ABCD 是边长为的正方形,若 |MA|+|MB|=10,则三棱锥 A-BCM 的体积的最大值
相关文档
最新文档