6.3 双曲线的标准方程及性质的应用(课时测试)-2016届高三数学二轮复习(解析版)

合集下载

课时作业2:3.2.2 第2课时 双曲线的标准方程及性质的应用

课时作业2:3.2.2 第2课时 双曲线的标准方程及性质的应用

第2课时 双曲线的标准方程及性质的应用课时对点练1.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 直线与双曲线有唯一交点时,直线与双曲线不一定相切(直线与双曲线的渐近线平行时);直线与双曲线相切时,直线与双曲线一定有唯一交点.2.若直线x =a 与双曲线x 24-y 2=1有两个交点,则a 的值可以是( ) A .4 B .2 C .1 D .-2答案 A解析 因为在双曲线x 24-y 2=1中,x ≥2或x ≤-2, 所以若x =a 与双曲线有两个交点,则a >2或a <-2,故只有A 符合题意.3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A ,B ,点P 为双曲线上除A ,B 外任意一点,且点P 与点A ,B 连线的斜率分别为k 1,k 2,若k 1k 2=3,则双曲线的渐近线方程为( )A .y =±xB .y =±2xC .y =±3xD .y =±2x答案 C解析 设点P (x ,y ),由题意知k 1·k 2=y x -a ·y x +a =y 2x 2-a 2=y 2a 2y 2b 2=b 2a 2=3, 所以其渐近线方程为y =±3x ,故选C.4.设点F 1,F 2分别是双曲线C :x 2a 2-y 22=1(a >0)的左、右焦点,过点F 1且与x 轴垂直的直线l 与双曲线C 交于A ,B 两点.若△ABF 2的面积为26,则该双曲线的渐近线方程为( )A .y =±3xB .y =±33xC .y =±2xD .y =±22x 答案 D解析 设F 1(-c ,0),A (-c ,y 0), 则c 2a 2-y 202=1,∴y 202=c 2a 2-1=c 2-a 2a 2=b 2a 2=2a2, ∴y 20=4a 2, ∴|AB |=2|y 0|=4a. 又2ABF S △=26, ∴12·2c · |AB |=12·2c ·4a =4c a =26,∴c a =62, ∴b a =c 2a 2-1=22. ∴该双曲线的渐近线方程为y =±22x . 5.(多选)已知双曲线C :x 23-y 2m=1过点(3,2),则下列结论正确的是( ) A .C 的焦距为4 B .C 的离心率为 3C .C 的渐近线方程为y =±33x D .直线2x -3y -1=0与C 有两个公共点答案 AC解析 由双曲线C :x 23-y 2m =1过点(3,2),可得m =1,则双曲线C 的标准方程为x 23-y 2=1.所以a =3,b =1,c =a 2+b 2=2,因为双曲线C 的焦距为2c =4,所以选项A 正确; 因为双曲线C 的离心率为c a =23=233,所以选项B 不正确; 因为双曲线C 的渐近线方程为y =±33x ,所以选项C 正确; 将直线2x -3y -1=0与双曲线x 23-y 2=1联立,消去y 可得3x 2-4x +4=0,Δ=()-42-4×3×4=-32<0,所以直线2x -3y -1=0与双曲线C 没有公共点,所以选项D 不正确.6.已知双曲线x 22-y 23=1的左、右焦点分别是F 1,F 2,过F 1的直线l 与双曲线相交于A ,B两点,则满足|AB |=32的直线l 有( ) A .1条B .2条C .3条D .4条答案 C解析 双曲线x 22-y 23=1, 过F 1的直线l 垂直于x 轴时,|AB |=2b 2a =62=32, 双曲线两个顶点的距离为22,∴满足|AB |=32的直线l 有3条,一条是通径所在的直线,另两条与右支相交.7.过点A (3,-1)且被A 点平分的双曲线x 24-y 2=1的弦所在的直线方程是________. 答案 3x +4y -5=0解析 易知所求直线的斜率存在,设为k ,则该直线的方程为y +1=k (x -3),代入x 24-y 2=1, 消去y 得关于x 的一元二次方程(1-4k 2)x 2+(24k 2+8k )x -36k 2-24k -8=0(1-4k 2≠0),∴-24k 2+8k 1-4k 2=6, ∴k =-34(满足Δ>0), ∴所求直线方程为3x +4y -5=0.8.双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________.答案 2解析 设B 为双曲线的右焦点,如图所示.∵四边形OABC 为正方形且边长为2,∴c =|OB |=2 2.又∠AOB =π4,∴b a =tan π4=1,即a =b . 又∵a 2+b 2=c 2=8,∴a =2.9.设A ,B 为双曲线x 2-y 22=1上的两点,线段AB 的中点为M (1,2).求: (1)直线AB 的方程;(2)△OAB 的面积(O 为坐标原点).解 (1)显然直线AB 的斜率存在,设直线AB 的方程为y -2=k (x -1),即y =kx +2-k .由⎩⎪⎨⎪⎧y =kx +2-k ,x 2-y 22=1, 消去y ,整理得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0.设A (x 1,y 1),B (x 2,y 2),则1=x 1+x 22=k (2-k )2-k 2(2-k 2≠0),解得k =1. 当k =1时,满足Δ>0,∴直线AB 的方程为y =x +1.(2)由(1)得x 1+x 2=2,x 1x 2=-3,∴|AB |=2·(x 1+x 2)2-4x 1x 2 =2×4+12=4 2.又点O 到直线AB 的距离d =12=22, ∴S △AOB =12|AB |·d =12×42×22=2. 10.已知双曲线3x 2-y 2=3,直线l 过右焦点F 2,且倾斜角为45°,与双曲线交于A ,B 两点,试问A ,B 两点是否位于双曲线的同一支上?并求弦AB 的长.解 双曲线方程可化为x 2-y 23=1, 故a 2=1,b 2=3,c 2=a 2+b 2=4,∴c =2.∴F 2(2,0),又直线l 的倾斜角为45°,∴直线l 的斜率k =tan 45°=1,∴直线l 的方程为y =x -2,代入双曲线方程,得2x 2+4x -7=0.设A (x 1,y 1),B (x 2,y 2),∵x 1·x 2=-72<0, ∴A ,B 两点不位于双曲线的同一支上.∵x 1+x 2=-2,x 1·x 2=-72, ∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2=2·(-2)2-4×⎝⎛⎭⎫-72=6.11.已知双曲线E 的中心在原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1 答案 B 解析 由已知条件易得直线l 的斜率k =-15-0-12-3=1, 设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),A (x 1,y 1),B (x 2,y 2), 则x 21a 2-y 21b 2=1,① x 22a 2-y 22b2=1,② x 1+x 2=-24,y 1+y 2=-30,由①②得y 1-y 2x 1-x 2=4b 25a 2,从而4b 25a 2=1, 又因为a 2+b 2=c 2=9,故a 2=4,b 2=5,所以E 的方程为x 24-y 25=1. 12.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线方程为( )A .y =±12x B .y =±22x C .y =±xD .y =±2x答案 C解析 设双曲线的半焦距为c ,则F (c ,0),将x =c 代入双曲线x 2a 2-y 2b 2=1, 得y =±b 2a,不妨取C ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a , 又A 1(-a,0),A 2(a ,0),故1A B k =-b 2a c +a =-b 2a (a +c ),2A C k =b 2a c -a =b 2a (c -a ). 因为A 1B ⊥A 2C ,故-b 2a (a +c )×⎣⎡⎦⎤b 2a (c -a )=-1, 即b 4a 2(c 2-a 2)=1,即b 4a 2b 2=1, 所以a =b ,故渐近线方程是y =±b ax =±x . 13.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 作平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.答案 3215解析 双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9, 解得x =175,y =-3215,∴B ⎝⎛⎭⎫175,-3215. ∴S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 14.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =2x ,过其左焦点F (-3,0)作斜率为2的直线l 交双曲线C 于A ,B 两点,则截得的弦长|AB |=____.答案 10解析 ∵双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =2x , ∴b a =2,即b =2a , ∵左焦点F (-3,0),∴c =3,∴c 2=a 2+b 2=3a 2=3,∴a 2=1,b 2=2,∴双曲线方程为x 2-y 22=1,直线l 的方程为y =2(x +3), 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =2(x +3),x 2-y 22=1,消去y 可得x 2+43x +7=0, ∴x 1+x 2=-43,x 1x 2=7,∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+4×48-28=5·20=10.15.已知F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点和右焦点,过F 2的直线l 与双曲线的右支交于A ,B 两点,△AF 1F 2的内切圆半径为r 1,△BF 1F 2的内切圆半径为r 2,若r 1=2r 2,则直线l 的斜率为( )A .1 B. 2 C .2 D .2 2答案 D解析 设△AF 1F 2的内切圆圆心为I 1,△BF 1F 2的内切圆圆心为I 2,边|AF 1|,|AF 2|,|F 1F 2|上的切点分别为M ,N ,E ,易知I 1,E 的横坐标相等,则|AM |=|AN |,|F 1M |=|F 1E |,|F 2N |=|F 2E |,由|AF 1|-|AF 2|=2a ,即|AM |+|MF 1|-(|AN |+|NF 2|)=2a ,得|MF 1|-|NF 2|=2a ,即|F 1E |-|F 2E |=2a , 记I 1的横坐标为x 0,则E (x 0,0),于是x 0+c -(c -x 0)=2a ,得x 0=a ,同理圆心I 2的横坐标也为a ,则有I 1I 2⊥x 轴,设直线l 的倾斜角为θ,则∠OF 2I 2=θ2,∠I 1F 2O =90°-θ2, 则tan θ2=r 2|F 2E |,tan ∠I 1F 2O =tan ⎝⎛⎭⎫90°-θ2=1tan θ2=r 1|F 2E |, ∵r 1=2r 2,∴tan 2θ2=12, 即tan θ2=22.∴tan θ=2tan θ21-tan 2θ2=2 2.16.设A ,B 分别为双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.解 (1)由题意知a =2 3.∴一条渐近线为y =b23x ,即bx -23y =0. ∴|bc |b 2+12= 3. 又c 2=a 2+b 2=12+b 2, ∴b 2=3. ∴双曲线的方程为x 212-y 23=1. (2)设点M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程代入双曲线方程得x 2-163x +84=0.则x 1+x 2=163,y 1+y 2=12.∴⎩⎨⎧ x 0y 0=433,x 2012-y 203=1.∴⎩⎨⎧x 0=43,y 0=3. 由OM →+ON →=tOD →, 得(163,12)=(43t ,3t ).∴t =4,点D 的坐标为(43,3).。

高三数学二轮专题复习椭圆双曲线抛物线01含答案

高三数学二轮专题复习椭圆双曲线抛物线01含答案

椭圆、双曲线、抛物线圆锥曲线的定义、标准方程与几何性质名称 椭圆双曲线抛物线定义 PF 1+PF 2=2a (2a > F 1F 2)|PF 1-PF 2|=2a (2a < F 1F 2)PF =PM 点F 不在直线l 上,PM ⊥l 于M标准方程x 2a 2+y 2b 2=1(a >b >0) x 2a 2-y 2b 2=1(a >0,b >0) y 2=2px (p >0)图形几何性质范围 |x |≤a ,|y |≤b |x |≥a x ≥0 顶点 (±a,0),(0,±b )(±a,0)(0,0) 对称性 关于x 轴,y 轴和原点对称关于x 轴对称焦点(±c,0)(p2,0) 轴长轴长2a ,短轴长2b 实轴长2a ,虚轴长2b离心率 e =ca= 1-b 2a 2(0<e <1)e =c a= 1+b 2a 2(e >1) e =1 准线 x =±a 2cx =±a 2cx =-p 2渐近线y =±b ax考点一 圆锥曲线的定义与标准方程例1 (1)设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则PF 1·PF 2的值等于________.(2)已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若F A =2FB ,则k =________. 答案 (1)3 (2)223【详细分析】(1)焦点坐标为(0,±2),由此得m -2=4,故m =6.根据椭圆与双曲线的定义可得PF 1+PF 2=26,PF 1-PF 2=23,两式平方相减得4PF 1PF 2=4×3,所以PF 1·PF 2=3.(2)方法一 抛物线C :y 2=8x 的准线为l :x =-2,直线y =k (x +2)(k >0)恒过定点P (-2,0). 如图,过A 、B 分别作AM ⊥l 于点M , BN ⊥l 于点N .由F A =2FB ,则AM =2BN ,点B 为AP 的中点. 连结OB ,则OB =12AF ,∴OB =BF ,点B 的横坐标为1,故点B 的坐标为(1,22).∴k =22-01-(-2)=223.方法二如图,由图可知,BB ′=BF ,AA ′=AF ,又AF =2BF ,∴BC AC =BB ′AA ′=12,即B 是AC 的中点.∴⎩⎪⎨⎪⎧ 2x B =x A -2,2y B =y A 与⎩⎪⎨⎪⎧y 2A =8x A ,y 2B =8x B ,联立可得A (4,42),B (1,22).∴k AB =42-224-1=223.(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求PF 1+PF 2>F 1F 2,双曲线的定义中要求PF 1-PF 2<F 1F 2,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,提倡画出合理草图.(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为________.(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B , 交其准线l 于点C ,若BC =2BF ,且AF =3,则此抛物线的方程为 ________.答案 (1)x 220+y 25=1 (2)y 2=3x【详细分析】(1)∵椭圆的离心率为32,∴ca =a 2-b 2a =32, ∴a =2b .∴椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20.∴椭圆C 的方程为x 220+y 25=1.(2)如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定 义知,AF =AA 1,BF =BB 1,∵BC =2BF ,∴BC =2BB 1,∴∠BCB 1=30°,∴∠AFx =60°.连结A 1F ,则△AA 1F 为等边三角形, 过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于N ,则NF =A 1F 1=12AA 1=12AF ,即p =32,∴抛物线方程为y 2=3x .考点二 圆锥曲线的几何性质例2 (1)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连结AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.(2)(2013·江苏)在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若d 2=6d 1,则椭圆C 的离心率为________.答案 (1)57 (2)33【详细分析】(1)在△ABF 中,由余弦定理得 AF 2=AB 2+BF 2-2AB ·BF cos ∠ABF , ∴AF 2=100+64-128=36,∴AF =6, 从而AB 2=AF 2+BF 2,则AF ⊥BF . ∴c =OF =12AB =5,利用椭圆的对称性,设F ′为右焦点,则BF ′=AF =6,∴2a =BF +BF ′=14,a =7. 因此椭圆的离心率e =c a =57.(2)如图,F (c,0),B (0,b ),则直线BF 的方程为x c +yb =1,即bx +cy-bc =0,d 1=bcb 2+c 2=bc a d 2=a 2c -c =b 2c , 由已知条件d 2=6d 1 即b 2c =6bca ,整理得:6b 2+ab -6a 2=0解得b a =26,∴e =c 2a 2= 1-b 2a 2=33. 解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.(1)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且B F →=2 F D →,则C 的离心率为________.(2)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________. 答案 (1)33 (2)102【详细分析】(1)设椭圆C 的焦点在x 轴上,如图,B (0,b ),F (c,0),D (x D ,y D ), 则B F →=(c ,-b ),F D →=(x D -c ,y D ),∵B F →=2F D →,∴⎩⎪⎨⎪⎧c =2(x D -c ),-b =2y D ,∴⎩⎨⎧x D =3c2,y D=-b2.又∵点D 在椭圆C 上,∴⎝⎛⎭⎫3c 22a 2+⎝⎛⎭⎫-b 22b 2=1,即e 2=13.∴e =33.(2)设c =a 2+b 2,双曲线的右焦点为F ′.则PF -PF ′=2a ,FF ′=2c .∵E 为PF 的中点,O 为FF ′的中点,∴OE ∥PF ′,且PF ′=2OE . ∵OE ⊥PF ,OE =a2,∴PF ⊥PF ′,PF ′=a ,∴PF =PF ′+2a =3a . ∵PF 2+PF ′2=FF ′2,即9a 2+a 2=4c 2,∴c a =102.∴双曲线的离心率为102.考点三 圆锥曲线的综合问题例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,点F 为椭圆的右焦点,点A 、B 分别为椭圆的左、右顶点,点M 为椭 圆的上顶点,且满足MF →·FB →=2-1. (1)求椭圆C 的方程;(2)是否存在直线l ,当直线l 交椭圆于P 、Q 两点时,使点F 恰为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)根据题意得,F (c,0)(c >0),A (-a,0),B (a,0),M (0,b ), ∴MF →=(c ,-b ),FB →=(a -c,0),∴MF →·FB →=ac -c 2=2-1.又e =c a =22,∴a =2c ,∴2c 2-c 2=2-1,∴c 2=1,a 2=2,b 2=1,∴椭圆C 的方程为x 22+y 2=1.(2)假设存在满足条件的直线l .∵k MF =-1,且MF ⊥l ,∴k l =1.设直线l 的方程为y =x +m ,P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1消去y 得3x 2+4mx +2m 2-2=0,则有Δ=16m 2-12(2m 2-2)>0,即m 2<3, 又x 1+x 2=-4m3,x 1x 2=2m 2-23,∴y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=2m 2-23-4m 23+m 2=m 2-23.又F 为△MPQ 的垂心,连结PF ,则PF ⊥MQ ,∴PF →·MQ →=0, 又PF →=(1-x 1,-y 1),MQ →=(x 2,y 2-1),∴PF →·MQ →=x 2+y 1-x 1x 2-y 1y 2=x 2+x 1+m -x 1x 2-y 1y 2 =-43m +m -2m 2-23-m 2-23=-m 2-m 3+43=-13(3m 2+m -4)=-13(3m +4)(m -1)=0,∴m =-43或m =1(舍去),经检验m =-43符合条件,∴存在满足条件的直线l ,其方程为3x -3y -4=0.(1)对于弦中点问题常用“根与系数的关系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件Δ≥0,在用“点差法”时,要检验直线与圆锥曲线是否相交.(2)涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 解 (1)由椭圆W :x 24+y 2=1,知B (2,0)∴线段OB 的垂直平分线x =1.在菱形OABC 中,AC ⊥OB ,将x =1代入x 24+y 2=1,得y =±32.∴AC =|y 2-y 1|= 3.因此菱形的面积S =12OB ·AC =12×2×3= 3.(2)假设四边形OABC 为菱形.因点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. ∴线段AC 中点M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2,∵M 为AC 和OB 交点,∴k OB =-14k .又k ·⎝⎛⎭⎫-14k =-14≠-1,∴AC 与OB 不垂直. 故OABC 不是菱形,这与假设矛盾.综上,四边形OABC 不是菱形.1. 对涉及圆锥曲线上点到焦点距离或焦点弦问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.2. 椭圆、双曲线的方程形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的常数,A >B >0时,表示焦点在y轴上的椭圆;B >A >0时,表示焦点在x 轴上的椭圆;AB <0时表示双曲线.3. 求双曲线、椭圆的离心率的方法:方法一:直接求出a ,c ,计算e =ca;方法二:根据已知条件确定a ,b ,c 的等量关系,然后把b 用a ,c 代换,求ca.4. 通径:过双曲线、椭圆、抛物线的焦点垂直于对称轴的弦称为通径,双曲线、椭圆的通径长为2b 2a ,过椭圆焦点的弦中通径最短;抛物线通径长是2p ,过抛物线焦点的弦中通径最短. 椭圆上点到焦点的最长距离为a +c ,最短距离为a -c . 5. 抛物线焦点弦性质:已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1)、B (x 2,y 2).(1)y 1y 2=-p 2,x 1x 2=p 24;(2)AB =x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角);(3)S △AOB =p 22sin α;(4)1F A +1FB 为定值2p; (5)以AB 为直径的圆与抛物线的准线相切.1. 已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是________. 答案 (1,2)【详细分析】由AB ⊥x 轴,可知△ABE 为等腰三角形,又△ABE 是锐角三角形,所以∠AEB 为锐角,即∠AEF <45°,于是AF <EF ,b 2a<a +c ,于是c 2-a 2<a 2+ac ,即e 2-e -2<0,解得-1<e <2.又双曲线的离心率e >1,从而1<e <2.2. 设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)必在圆x 2+y 2=2________.(填“内”“外”“上”) 答案 内【详细分析】∵x 1+x 2=-b a ,x 1x 2=-c a .∴x 21+x 22=(x 1+x 2)2-2x 1x 2=b 2a 2+2c a =b 2+2ac a 2. ∵e =c a =12,∴c =12a ,∴b 2=a 2-c 2=a 2-⎝⎛⎭⎫12a 2=34a 2. ∴x 21+x 22=34a 2+2a ×12a a 2=74<2.∴P (x 1,x 2)在圆x 2+y 2=2内. 3. 过抛物线y 2=2px (p >0)的对称轴上一点A (a,0)(a >0)的直线与抛物线相交于M 、N 两点,自M 、N 向直线l :x =-a 作垂线,垂足分别为M 1、N 1. (1)当a =p2时,求证:AM 1⊥AN 1;(2)记△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3.是否存在λ,使得对任意的a >0,都有S 22=λS 1S 3成立?若存在,求出λ的值;若不存在,说明理由.(1)证明 当a =p 2时,A (p2,0)为该抛物线的焦点,而l :x =-a 为准线,由抛物线的定义知MA =MM 1,NA =NN 1, 则∠NN 1A =∠NAN 1,∠MM 1A =∠MAM 1. 又∠NN 1A =∠BAN 1,∠MM 1A =∠BAM 1, 则∠BAN 1+∠BAM 1=∠NAN 1+∠MAM 1, 而∠BAN 1+∠BAM 1+∠NAN 1+∠MAM 1=180°, 则∠N 1AM 1=∠BAN 1+∠BAM 1=90°, 所以AM 1⊥AN 1.(2)解 可设直线MN 的方程为x =my +a ,由⎩⎪⎨⎪⎧x =my +a ,y 2=2px 得y 2-2pmy -2pa =0.设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-2pa . S 1=12(x 1+a )|y 1|,S 2=12(2a )|y 1-y 2|,S 3=12(x 2+a )|y 2|,由已知S 22=λS 1S 3恒成立,则4a 2(y 1-y 2)2=λ(x 1+a )(x 2+a )|y 1y 2|.(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=4p 2m 2+8pa ,(x 1+a )(x 2+a )=(my 1+2a )(my 2+2a )=m 2y 1y 2+2ma (y 1+y 2)+4a 2 =m 2(-2pa )+2ma ×2pm +4a 2=4a 2+2pam 2.则得4a 2(4p 2m 2+8pa )=2pa λ(4a 2+2pam 2),解得λ=4, 即当λ=4时,对任意的a >0,都有S 22=λS 1S 3成立.(推荐时间:70分钟)一、填空题1. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为________________. 答案 y 2=4x 或y 2=16x【详细分析】由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x .2. 与椭圆x 212+y 216=1共焦点,离心率互为倒数的双曲线方程是____________.答案y 2-x 23=1 【详细分析】椭圆x 212+y 216=1的离心率为16-1216=12,且焦点为(0,±2),所以所求双曲线的焦点为(0,±2)且离心率为2,所以c =2,2a =2得a =1,b 2=c 2-a 2=3,故所求双曲线方程是y 2-x 23=1.3. 已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,则FM ∶MN =________. 答案 1∶ 5【详细分析】由抛物线定义知M 到F 的距离等于M 到准线l 的距离MH . 即FM ∶MN =MH ∶MN =FO ∶AF =1∶ 5.4. 过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F ,作圆x 2+y 2=a 2的切线FM 交y 轴于点P ,切圆于点M,2OM →=OF →+OP →,则双曲线的离心率是________. 答案2【详细分析】由已知条件知,点M 为直三角形OFP 斜边PF 的中点,故OF =2OM ,即c =2a ,所以双曲线的离心率为 2.5. 抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p 等于________. 答案433【详细分析】抛物线C 1的标准方程为x 2=2py ,其焦点F 为⎝⎛⎭⎫0,p2,双曲线C 2的右焦点F ′为(2,0),渐近线方程为y =±33x .由y ′=1p x =33得x =33p ,故M ⎝⎛⎭⎫33p ,p6.由F 、F ′、M 三点共线得p =433.6. 在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.答案 2【详细分析】建立关于m 的方程求解.∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m=5,∴m 2-4m +4=0,∴m =2.7. 椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且PF →1·PF →2的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是________. 答案 [12,22]【详细分析】设P (x ,y ),F 1(-c,0),F 2(c,0),则PF →1=(-c -x ,-y ),PF →2=(c -x ,-y ),PF →1·PF →2=x 2+y 2-c 2. 又x 2+y 2可看作P (x ,y )到原点的距离的平方,所以(x 2+y 2)max =a 2,所以(PF 1→·PF 2→)max =b 2,所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12,所以12≤e ≤22.8. 椭圆Г:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Г的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 答案3-1 【详细分析】由直线方程为y =3(x +c ),知∠MF 1F 2=60°, 又∠MF 1F 2=2∠MF 2F 1,所以∠MF 2F 1=30°, MF 1⊥MF 2,所以MF 1=c ,MF 2=3c , 所以MF 1+MF 2=c +3c =2a .即e =ca=3-1.9. 已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________. 答案 44【详细分析】由双曲线C 的方程,知a =3,b =4,c =5, ∴点A (5,0)是双曲线C 的右焦点,且PQ =QA +P A =4b =16,由双曲线定义,PF -P A =6,QF -QA =6.∴PF +QF =12+P A +QA =28,因此△PQF 的周长为PF +QF +PQ =28+16=44.10.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________. 答案 7【详细分析】由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7. 二、解答题11.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 解 (1)设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1①x 22a 2+y 22b2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6,所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0,所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33,所以可得AB =463; 将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0,设C (x 3,y 3),D (x 4,y 4),则CD =2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,CD 取得最大值4,所以四边形ACBD 面积的最大值为12AB ·CD =863.12.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A 、PB 、PM 的斜率分别为k 1、k 2、k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由. 解 (1)由P ⎝⎛⎭⎫1,32在椭圆x 2a 2+y 2b 2=1上,得1a 2+94b2=1,① 又e =c a =12,得a 2=4c 2,b 2=3c 2,②②代入①得,c 2=1,a 2=4,b 2=3. 故椭圆方程为x 24+y 23=1.(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1)x 24+y 23=1得,(4k 2+3)x 2-8k 2x +4k 2-12=0, x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3.k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=k (x 1-1)-32x 1-1+k (x 2-1)-32x 2-1=2k -32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1=2k -32·8k 24k 2+3-24k 2-124k 2+3-8k24k 2+3+1=2k -1.又将x =4代入y =k (x -1)得M (4,3k ), ∴k 3=3k -323=k -12,∴k 1+k 2=2k 3.故存在常数λ=2符合题意.13.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其一个顶点的抛物线x 2=-43y 的焦点.(1)求椭圆C 的标准方程;(2)若过点P (2,1)的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标;(3)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点A ,B ,且满足P A →·PB →=PM →2?若存在,求出直线l 1的方程;若不存在,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1 (a >b >0),由题意得b =3,c a =12,解得a =2,c =1.故椭圆C 的标准方程为x 24+y 23=1.(2)因为过点P (2,1)的直线l 与椭圆C 在第一象限相切,所以直线l 的斜率存在,故可设直线l 的方程为y =k (x -2)+1 (k ≠0).由⎩⎪⎨⎪⎧x 24+y 23=1y =k (x -2)+1得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0. ①因为直线l 与椭圆C 相切,所以Δ=[-8k (2k -1)]2-4(3+4k 2)(16k 2-16k -8)=0. 整理,得32(6k +3)=0,解得k =-12.所以直线l 的方程为y =-12(x -2)+1=-12x +2.将k =-12代入①式,可以解得M 点的横坐标为1,故切点M 的坐标为⎝⎛⎭⎫1,32. (3)若存在直线l 1满足条件,则直线l 1的斜率存在,设其方程为y =k 1(x -2)+1,代入椭圆C 的方程得(3+4k 21)x 2-8k 1(2k 1-1)x +16k 21-16k 1-8=0.设A (x 1,y 1),B (x 2,y 2),因为直线l 1与椭圆C 相交于不同的两点A ,B , 所以Δ=[-8k 1(2k 1-1)]2-4(3+4k 21)(16k 21-16k 1-8)=32(6k 1+3)>0.所以k 1>-12. x 1+x 2=8k 1(2k 1-1)3+4k 21,x 1x 2=16k 21-16k 1-83+4k 21. 因为P A →·PB →=PM →2,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54,所以(x 1-2)(x 2-2)(1+k 21)=54,即[x 1x 2-2(x 1+x 2)+4](1+k 21)=54. 所以⎣⎢⎡⎦⎥⎤16k 21-16k 1-83+4k 21-2·8k 1(2k 1-1)3+4k 21+4(1+k 21)=4+4k 213+4k 21=54, 解得k 1=±12.因为A ,B 为不同的两点,所以k 1=12.于是存在直线l 1满足条件,其方程为y =12x .。

新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)

新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)

新高考数学复习考点知识讲解与专题训练专题31、 双曲线的方程及几何性质一、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ⎪⎪⎪⎪| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 二 、双曲线的标准方程和几何性质一、常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2、与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b2=t (t ≠0).3、双曲线的焦点到其渐近线的距离为b .4、若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .题型一、双曲线的方程与渐近线的方程例1、【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -=D .221x y -=【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a=±,所以b b a-=-,1b b a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .变式、【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得:2b y a=±, 不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=.本题选择C 选项.例2、【2018年高考全国Ⅱ理数】双曲线22221(0,0)x y a b a b-=>>的离心率A.y =B.y =C.2y x =±D.2y x =±【答案】A【解析】因为c e a ==,所以2222221312b c a e a a-==-=-=,所以b a =因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 变式、(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .y =C .y =D .y x =±【答案】B【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF FO c ==, 故而由几何性质可得160AFO ∠=,即260MOF ∠=,故渐近线方程为y =, 故选B.题型二、双曲线的离心率例3、【2018年高考全国III 理数】设1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD 【答案】C【解析】由题可知2PF b =,2OF c =,PO a ∴=,在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F △中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即223c a =,e ∴=C .变式1、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b -=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()a y x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= ,解得:53e = ,或1e =-(舍)故选:C变式2、【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =,因此,双曲线C 的离心率为2. 故答案为:2.变式3、【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________.【答案】2 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120FB F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠, 又OA 与OB 都是渐近线,∴21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB 的斜率为tan 60ba=︒=,∴该双曲线的离心率为2c e a ====. 题型三、双曲线的综合问题例4、【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>,∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8.故选:B .变式1、(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6【解析】2214y x -=1222A A a ∴==,1224B B b ==,12A A ,12B B ,1PF 成等比数列212112A A PFB B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:6变式2、【2020年高考全国Ⅲ卷理数】.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A . 1B . 2C . 4D . 8【答案】A【解析】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .1、【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c =,所以双曲线的离心率ce a==故选C. 2、【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(0),0) B .(−2,0),(2,0) C .(0,,(0 D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =, 所以焦点坐标为(2,0)±,故选B .3、(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>的,则其渐近线方程为( )A .230x y ±=B .320x y ±=C .20x y ±=D .230x y ±=【答案】C【解析】由题,离心率c e a ===,解得12b a =,因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±=故选:C4、【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .【答案】A【解析】由2,,a b c ====,2P PO PF x =∴=, 又P 在C 的一条渐近线上,不妨设为在by x a=上,则P P b y x a =⋅==1122PFO P S OF y ∴=⋅==△,故选A . 5、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN =A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为3±,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y x =和y x =联立,求得M ,3(,2N ,所以||3MN ==,故选B .6、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2 D .【答案】D【解析】如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+,当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为e == 故选:D.7、【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C=.故答案为:()3,08、【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =,因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.9、【2020年高考江苏】在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 【答案】32【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =⇒=,所以3c ==,所以双曲线的离心率为32c a =.故答案为:3221/ 21。

高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件

高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件
答案 6
抛物线的方程及几何性质
(5分)(2011·山东)设M(x0,y0)为抛物线C: x2=8y上一点,F为抛物线C的焦点,以F为 圆心、|FM|为半径的圆和抛物线C的准线相交, 则y0的取值范围是
A.(0,2)
B.[0,2]
C.(2,+∞)
D.[2,+∞)
【标准解答】 ∵x2=8y, ∴焦点F的坐标为 (0,2), 准线方程为y=-2.
∴c2=a2-b2=8.∴e=ac=2 4 2=
2 2.
答案 D
4.(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该
抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的 距离为
3 A.4
B.1
5
7
C.4
D.4
解析 ∵|AF|+|BF|=xA+xB+12=3,∴xA+xB=52.
解析 由于直线AB的斜率为-ba,故OP的斜率为-ba,
直线OP的方程为y=-bax.
与椭圆方程ax22+by22=1联立,解得x=±
2 2 a.
因为PF1⊥x轴,所以x=- 22a,
从而- 22a=-c,即a= 2c. 又|F1A|=a+c= 10+ 5, 故 2c+c= 10+ 5,解得c= 5, 从而a= 10.所以所求的椭圆方程为1x02 +y52=1. 答案 1x02 +y52=1
又双曲线的离心率e= a2a+b2= a7,所以 a7=247, 所以a=2,b2=c2-a2=3, 故双曲线的方程为x42-y32=1.
答案 x42-y32=1
圆锥曲线是高考考查的重点,一般会涉及到 圆锥曲线的定义、离心率、圆锥曲线的几何 性质及直线与圆锥曲线的位置关系等. 在命题 中体现知识与能力的综合,一般地,选择题、 填空题的难度属中档偏下,解答题综合性较 强,能力要求较高,故在复习的过程中,注 重基础的同时,要兼顾直线与圆锥曲线的综 合问题的强化训练,尤其是对推理、运算能 力的训练.

双曲线方程及其性质(学生版)-高中数学

双曲线方程及其性质(学生版)-高中数学

双曲线方程及其性质1.5年真题考点分布5年考情考题示例考点分析关联考点2024年新I卷,第12题,5分求双曲线的离心率无2024年新Ⅱ卷,第19题,17分求直线与双曲线的交点坐标由递推关系证明等比数列向量夹角的坐标表示2023年新I卷,第16题,5分利用定义解决双曲线中集点三角形问题求双曲线的离心率或离心率的取值范围无2023年新Ⅱ卷,第21题,12分根据a、b、c求双曲线的标准方程直线的点斜式方程及辨析双曲线中的定直线问题2022年新I卷,第21题,12分求双曲线标准方程求双曲线中三角形(四边形)的面积问题根据韦达定理求参数2022年新Ⅱ卷,第21题,12分根据双曲线的渐近线求标准方程求双曲线中的弦长由中点弦坐标或中点弦方程、斜率求参数根据韦达定理求参数2021年新I卷,第21题,12分求双曲线的标准方程双曲线中的轨迹方程双曲线中的定值问题2021年新Ⅱ卷,第13题,5分根据a,b,c齐次式关系求渐近线方程由双曲线的离心率求参数的取值范围2020年新I卷,第9题,5分判断方程是否表示双曲线二元二次方程表示的曲线与圆的关系判断方程是否表示椭圆2020年新Ⅱ卷,第10题,5分判断方程是否表示双曲线二元二次方程表示的曲线与圆的关系判断方程是否表示椭圆2.命题规律及备考策略【命题规律】本节内容是新高考卷的常考内容,设题稳定,难度中等或偏难,分值为5-17分【备考策略】1.熟练掌握双曲线的定义及其标准方程,会基本量的求解2.熟练掌握双曲线的几何性质,并会相关计算3.能熟练计算双曲线的离心率4.会求双曲线的标准方程,会双曲线方程简单的实际应用5.会求双曲线中的相关最值【命题预测】本节内容是新高考卷的常考内容,常常考查标准方程的求解、基本量的计算及离心率的求解,需重点强化训练知识讲解1.双曲线的定义平面上一动点M x ,y 到两定点F 1-c ,0 ,F 2c ,0 的距离的差的绝对值为定值2a 且小于F 1F 2 =2c 的点的轨迹叫做双曲线这两个定点F 1,F 2叫做双曲线的焦点,两焦点的距离F 1F 2 叫做双曲线的焦距2.数学表达式:MF 1 -MF 2 =2a <F 1F 2 =2c3.双曲线的标准方程焦点在x 轴上的标准方程焦点在y 轴上的标准方程标准方程为:x 2a 2-y 2b2=1(a >0,b >0)标准方程为:y 2a 2-x 2b2=1(a >0,b >0)4.双曲线中a ,b ,c 的基本关系(c 2=a 2+b 2)5.双曲线的几何性质焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程x 2a 2-y 2b2=1(a >0,b >0)y 2a 2-x 2b2=1(a >0,b >0)范围x ≤-a 或x ≥ay ∈R y ≤-a 或y ≥ax ∈R 顶点坐标A 1(-a ,0),A 2(a ,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b ,0),B 2(b ,0)实轴A 1A 2 =2a 实轴长,A 1O =A 2O =a 实半轴长虚轴B 1B 2 =2b 虚轴长,B 1O =B 2O =b 虚半轴长焦点F 1(-c ,0),F 2(c ,0)F 1(0,-c ),F 2(0,c )焦距F 1F 2 =2c 焦距,F 1O =F 2O =c 半焦距对称性对称轴为坐标轴,对称中心为(0,0)渐近线方程y =±baxy =±a bx离心率e =ca(e >1)e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=1+b a 2⇒e =1+b a2离心率对双曲线的影响e 越大,双曲线开口越阔e 越小,双曲线开口越窄6.离心率与渐近线夹角的关系e =1cos α7.通径:(同椭圆)通径长:MN =EF =2b 2a,半通径长:MF 1 =NF 1 =EF 2 =FF 2 =b 2a8.双曲线的焦点到渐近线的距离为b考点一、双曲线的定义及其应用1.(2024·河北邢台·二模)若点P 是双曲线C :x 216-y 29=1上一点,F 1,F 2分别为C 的左、右焦点,则“PF 1 =8”是“PF 2 =16”的()A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件2.(2023·全国·模拟预测)已知双曲线的左、右焦点分别为F 1、F 2,过F 1的直线交双曲线左支于A 、B 两点,且AB =5,若双曲线的实轴长为8,那么△ABF 2的周长是()A.5B.16C.21D.263.(2024高三·全国·专题练习)若动点P x ,y 满足方程x +2 2+y 2-x -2 2+y 2 =3,则动点P 的轨迹方程为()A.x 294-y 274=1 B.x 294+y 274=1C.x 28+y 24=1D.x 216-y 212=11.(2024·陕西榆林·模拟预测)设F 1,F 2是双曲线C :x 24-y 28=1的左,右焦点,过F 1的直线与y 轴和C 的右支分别交于点P ,Q ,若△PQF 2是正三角形,则|PF 1|=()A.2B.4C.8D.162.(23-24高三下·山东青岛·阶段练习)双曲线x 2a2-y 212=1(a >0)的两个焦点分别是F 1与F 2,焦距为8;M 是双曲线上的一点,且MF 1 =5,则MF 2 =.3.(23-24高二上·四川凉山·期末)已知点M 2,0 ,N -2,0 ,动点P 满足条件PM -PN =2,则动点P 的轨迹方程为()A.x 23-y 2=1x ≥3B.x 23-y 2=1x ≤-3C.x 2-y 23=1x ≥1 D.x 2-y 23=1x ≤-1 考点二、双曲线的标准方程1.(2024高三下·全国·专题练习)双曲线方程为x 2k -2+y 25-k =1,则k 的取值范围是()A.k >5B.2<k <5C.-2<k <2D.-2<k <2或k >52.(2023高三上·湖北孝感·专题练习)过点2,2 且与椭圆9x 2+3y 2=27有相同焦点的双曲线方程为()A.x 26-y 28=1B.y 26-x 28=1C.x 22-y 24=1D.y 22-x 24=13.(22-23高二下·甘肃武威·开学考试)求适合下列条件的双曲线的标准方程:(1)a =4,经过点A 1,4103;(2)焦点y 轴上,且过点3,-42 ,94,5.4.(23-24高三上·河北张家口·开学考试)“k >2”是“x 2k +1-y 2k -2=1表示双曲线”的( ).A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(2024·辽宁·二模)已知双曲线C :x 2-y 2=λ(λ≠0)的焦点为(0,±2),则C 的方程为()A.x 2-y 2=1B.y 2-x 2=1C.x 2-y 2=2D.y 2-x 2=26.(2022高三·全国·专题练习)已知某双曲线的对称轴为坐标轴,且经过点P3,27,Q-62,7,求该双曲线的标准方程.考点三、双曲线的几何性质1.(2024·福建福州·模拟预测)以y=±3x为渐近线的双曲线可以是()A.x23-y2=1 B.x2-y29=1 C.y23-x2=1 D.y2-x29=12.(2024·广西柳州·模拟预测)双曲线x24-y216=1的一个顶点到渐近线的距离为( ).A.5B.4C.455D.233.(2024·河南新乡·三模)双曲线E:x2a2+a+2-y22a+3=1的实轴长为4,则a=.4.(2024·湖南益阳·模拟预测)已知双曲线x2m -y2n=1(m>0,n>0)与椭圆x24+y23=1有相同的焦点,则4m+1n的最小值为()A.6B.7C.8D.95.(2022·福建三明·模拟预测)已知双曲线C1:x2+y2m=1m≠0与C2:x2-y2=2共焦点,则C1的渐近线方程为( ).A.x±y=0B.2x±y=0C.x±3y=0D.3x±y=06.(2024·贵州·模拟预测)我们把离心率为5+12的双曲线称为“黄金双曲线”.已知“黄金双曲线”C:x2 25-2-y2b2=1(b>0),则C的虚轴长为.1.(24-25高三上·江苏南通·开学考试)过点P2,3的等轴双曲线的方程为.2.(2024·安徽合肥·一模)双曲线C:x2-y2b2=1的焦距为4,则C的渐近线方程为()A.y=±15xB.y=±3xC.y=±1515x D.y=±33x3.(23-24高三上·河南漯河·期末)已知双曲线C:mx2-y2=1(m>0)的一条渐近线方程为mx+3y =0,则C的焦距为.4.(24-25高三上·山东泰安·开学考试)若双曲线x2a2-y2b2=1a>0,b>0的一个焦点F5,0,一条渐近线方程为y=34x,则a+b=.5.(2024·河南新乡·模拟预测)(多选)已知a>0,b>0,则双曲线C1:x2a2-y2b2=1与C2:x2a2-y2b2=4有相同的()A.焦点B.焦距C.离心率D.渐近线考点四、双曲线的离心率1.(2023·北京·高考真题)已知双曲线C的焦点为(-2,0)和(2,0),离心率为2,则C的方程为.2.(2024·上海·高考真题)三角形三边长为5,6,7,则以边长为6的两个顶点为焦点,过另外一个顶点的双曲线的离心率为.3.(2024·全国·高考真题)已知双曲线的两个焦点分别为0,4,0,-4,点-6,4在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.24.(2022·浙江·高考真题)已知双曲线x2a2-y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A x1,y1,交双曲线的渐近线于点B x2,y2且x1<0<x2.若|FB|=3|FA|,则双曲线的离心率是.5.(2022·全国·高考真题)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.52B.32C.132D.1726.(2024·广东江苏·高考真题)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.1.(2024·河南周口·模拟预测)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距与其虚轴长之比为3:2,则C 的离心率为()A.5B.455C.355D.522.(2024·四川成都·模拟预测)双曲线C :x 2m -y 2=1(m >0)的一条渐近线为3x +my =0,则其离心率为( ).A.233B.63C.103D.2633.(2024·湖北武汉·模拟预测)已知双曲线y 2a 2-x 2b 2=1a >0,b >0 的一条渐近线的倾斜角为5π6,则此双曲线的离心率为()A.2B.3C.2D.54.(2024·山东·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2的直线与E 的右支交于A ,B 两点,且BF 2 =2AF 2 ,若AF 1 ⋅AB=0,则双曲线E 的离心率为()A.3B.173C.233D.1035.(2024·福建泉州·一模)O 为坐标原点,双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F 1,点P 在E 上,直线PF 1与直线bx +ay =0相交于点M ,若PM =MF 1 =2MO ,则E 的离心率为.考点五、双曲线中的最值问题1.(22-23高三上·湖北黄冈·阶段练习)P 为双曲线x 2-y 2=1左支上任意一点,EF 为圆C :(x -2)2+y 2=4的任意一条直径,则PE ⋅PF的最小值为()A.3B.4C.5D.92.(22-23高三下·江苏淮安·期中)已知F 1,F 2分别为双曲线x 29-y 24=1的左、右焦点,P 为双曲线右支上任一点,则PF 12-PF 2PF 2最小值为()A.19B.23C.25D.853.(22-23高二上·浙江湖州·期末)双曲线x 2m -y 2n =1(m >0,n >0)的离心率是2,左右焦点分别为F 1,F 2,P 为双曲线左支上一点,则PF 2 PF 1的最大值是()A.32B.2C.3D.41.(22-23高三下·福建泉州·阶段练习)双曲线C :x 2-y 2=1的左、右顶点分别为A ,B ,P 为C 上一点,直线P A ,PB 与x =12分别交于M ,N 两点,则MN 的最小值为.2.(2022高三·全国·专题练习)长为11的线段AB 的两端点都在双曲线x 29-y 216=1的右支上,则AB 中点M 的横坐标的最小值为()A.75B.5110C.3310D.323.(23-24高二下·江苏南京·期中)已知A ,B 分别是双曲线C :x 29-y 25=1的左、右顶点,P 是双曲线C上的一动点,直线P A ,直线PB 与x =2分别交于M ,N 两点,记△PMN ,△P AB 的外接圆面积分别为S 1,S 2,则S 1S 2的最小值为()A.316B.181 C.34D.2581考点六、双曲线的简单应用1.(23-24高三上·江西·期末)阿波罗尼斯(约公元前262年~约公元前190年),古希腊著名数学家﹐主要著作有《圆锥曲线论》、《论切触》等.尤其《圆锥曲线论》是一部经典巨著,代表了希腊几何的最高水平,此书集前人之大成,进一步提出了许多新的性质.其中也包括圆锥曲线的光学性质,光线从双曲线的一个焦点发出,通过双曲线的反射,反射光线的反向延长线经过其另一个焦点.已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,其离心率e =5,从F 2发出的光线经过双曲线C 的右支上一点E 的反射,反射光线为EP ,若反射光线与入射光线垂直,则sin ∠F 2F 1E =()A.56B.55C.45D.2552.(22-23高二上·山东德州·期末)3D 打印是快速成型技术的一种,通过逐层打印的方式来构造物体.如图所示的笔筒为3D 打印的双曲线型笔筒,该笔筒是由离心率为3的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该笔筒的上底直径为6cm ,下底直径为8cm ,高为8cm (数据均以外壁即笔筒外侧表面计算),则笔筒最细处的直径为()A.5748cm B.2878cm C.5744cm D.2874cm 3.(2023·浙江杭州·二模)费马定理是几何光学中的一条重要原理,在数学中可以推导出圆锥曲线的一些光学性质.例如,点P 为双曲线(F 1,F 2为焦点)上一点,点P 处的切线平分∠F 1PF 2.已知双曲线C :x 24-y 22=1,O 为坐标原点,l 是点P 3,102 处的切线,过左焦点F 1作l 的垂线,垂足为M ,则OM=.4.(2024·全国·模拟预测)在天文望远镜的设计中,人们利用了双曲线的光学性质:从双曲线的一个焦点射出的光线,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上.如图,已知双曲线的离心率为2,则当入射光线F 2P 和反射光线PE 互相垂直时(其中P 为入射点),cos ∠F 1F 2P 的值为()A.5+14B.5-14C.7+14D.7-145.(2024·吉林延边·一模)祖暅是我国南北朝时期伟大的科学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”.某同学在暑期社会实践中,了解到火电厂的冷却塔常用的外形可以看作是双曲线的一部分绕其虚轴旋转所形成的曲面(如图).现有某火电厂的冷却塔设计图纸,其外形的双曲线方程为x 2-y 24=1(-2≤y ≤1),内部虚线为该双曲线的渐近线,则该同学利用“祖暅原理”算得此冷却塔的体积为.6.(2023·广东茂名·三模)我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:F 1,F 2是双曲线的左、右焦点,从F 2发出的光线m 射在双曲线右支上一点P ,经点P 反射后,反射光线的反向延长线过F 1;当P 异于双曲线顶点时,双曲线在点P 处的切线平分∠F 1PF 2.若双曲线C 的方程为x 29-y 216=1,则下列结论正确的是()A.射线n 所在直线的斜率为k ,则k ∈-43,43B.当m ⊥n 时,PF 1 ⋅PF 2 =32C.当n过点Q7,5时,光线由F2到P再到Q所经过的路程为13D.若点T坐标为1,0,直线PT与C相切,则PF2=12一、单选题1.(23-24高三下·重庆·期中)已知双曲线y212-x2b2=1b>0的焦距为8,则该双曲线的渐近线方程为()A.y=±13x B.y=±3x C.y=±3x D.y=±33x2.(2024·湖南邵阳·模拟预测)若点-3,4在双曲线C:x2a2-y2b2=1a>0,b>0的一条渐近线上,则C的离心率为()A.259B.2516C.53D.543.(2024·全国·模拟预测)设双曲线x2a2-y2b2=1(a>0,b>0)的一个顶点坐标为(-2,0),焦距为23,则双曲线的渐近线方程为()A.y=±2xB.y=±2xC.y=±12x D.y=±22x4.(2024高三上·全国·专题练习)已知双曲线C的左、右焦点分别是F1,F2,P是双曲线C上的一点,且PF1=5,PF2=3,∠F1PF2=120°,则双曲线C的离心率是()A.7B.72C.73D.745.(2024·全国·模拟预测)若双曲线x2a2-y2b2=1(a>0,b>0)的右焦点F c,0到其渐近线的距离为32c,则该双曲线的离心率为()A.12B.32C.2D.26.(2024·四川·模拟预测)已知F1,F2分别为双曲线C的左、右焦点,过F1的直线与双曲线C的左支交于A ,B 两点,若AF 1 =2F 1B ,AB =BF 2 ,则cos ∠F 1BF 2=()A.118B.19C.29D.237.(2024·全国·模拟预测)设椭圆x 2a 2+y 2b 2=1(a >b >0)和双曲线x 2a 2-y 2b 2=1的离心率分别为e 1,e 2,若e 1∈55,1 ,则e 2的取值范围是()A.1,255B.1,355C.255,+∞D.355,+∞二、填空题8.(2024·湖南岳阳·三模)已知双曲线C 过点(1,6),且渐近线方程为y =±2x ,则C 的离心率为.9.(2024高三·全国·专题练习)在平面直角坐标系xOy 中,已知点F 1-17,0 、F 217,0 ,MF 1 -MF 2 =2,点M 的轨迹为C ,则C 的方程为.10.(2024高三·全国·专题练习)求适合下列条件的曲线的标准方程:(1)过点A (3,2)和点B (23,1)的椭圆;(2)焦点在x 轴上,离心率为2,且过点(-2,2)的双曲线.一、单选题1.(2024·江西·模拟预测)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线交双曲线左支于A ,B 两点,AB ⊥AF 2,tan ∠AF 2B =43,则双曲线C 的渐近线方程为()A.y =±32xB.y =±3xC.y =±32x D.y =±62x 2.(2024·山西太原·模拟预测)在平面直角坐标系中,已知点A 坐标为0,-6 ,若动点P 位于y 轴右侧,且到两定点F 1-3,0 ,F 23,0 的距离之差为定值4,则△APF 1周长的最小值为()A.3+45B.3+65C.4+45D.4+653.(2024·广东广州·模拟预测)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,一条渐近线的方程为y =2x ,直线y =kx 与C 在第一象限内的交点为P .若PF =PO ,则k 的值为()A.52B.32C.255D.4554.(2024·湖南长沙·二模)已知A 、B 分别为双曲线C :x 2-y 23=1的左、右顶点,过双曲线C 的左焦点F作直线PQ 交双曲线于P 、Q 两点(点P 、Q 异于A 、B ),则直线AP 、BQ 的斜率之比k AP :k BQ =()A.-13B.-23C.-3D.-325.(2024·河北·三模)已知O 是坐标原点,M 是双曲线x 2a 2-y 2b2=1a >0,b >0 右支上任意一点,过点M作双曲线的切线,与其渐近线交于A ,B 两点,若△AOB 的面积为12b 2,则双曲线的离心率为()A.2B.3C.5D.26.(2024·陕西商洛·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作直线与双曲线C 的左、右两支分别交于A ,B 两点.若AB =83AF 1 ,且cos ∠F 1BF 2=14,则双曲线C 的离心率为()A.2B.53C.43D.37.(2024·宁夏银川·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),点B 的坐标为(0,b ),若C 上存在点P使得PB <b 成立,则C 的离心率取值范围是()A.2+12,+∞ B.5+32,+∞ C.2,+∞D.5+12,+∞二、填空题8.(2024·浙江·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M 为双曲线渐近线上的点,且F 1M ⋅F 2M=0,若MF 1 =2MF 2 ,则该双曲线的离心率e =.9.(2024·辽宁·模拟预测)设O 为坐标原点,F 1,F 2为双曲线C :x 29-y 26=1的两个焦点,点P 在C 上,cos ∠F 1PF 2=45,则|OP |=10.(2024·广西来宾·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若双曲线的左支上一点P 满足sin ∠PF 1F 2sin ∠PF 2F 1=3,以F 2为圆心的圆与F 1P 的延长线相切于点M ,且F 1M =3F 1P ,则双曲线的离心率为.1.(2024·天津·高考真题)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=12.(2023·全国·高考真题)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.4553.(2023·全国·高考真题)设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-44.(2023·天津·高考真题)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.过F 2向一条渐近线作垂线,垂足为P .若PF 2 =2,直线PF 1的斜率为24,则双曲线的方程为()A.x 28-y 24=1B.x 24-y 28=1C.x 24-y 22=1D.x 22-y 24=15.(2023·北京·高考真题)已知双曲线C 的焦点为(-2,0)和(2,0),离心率为2,则C 的方程为.6.(2023·全国·高考真题)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C 的方程;(2)记C 的左、右顶点分别为A 1,A 2,过点-4,0 的直线与C 的左支交于M ,N 两点,M 在第二象限,直线MA 1与NA 2交于点P .证明:点P 在定直线上.7.(2022·天津·高考真题)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,抛物线y 2=45x 的准线l 经过F 1,且l 与双曲线的一条渐近线交于点A ,若∠F 1F 2A =π4,则双曲线的方程为()A.x 216-y 24=1B.x 24-y 216=1C.x 24-y 2=1D.x 2-y 24=18.(2022·北京·高考真题)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =.9.(2022·全国·高考真题)若双曲线y 2-x 2m2=1(m >0)的渐近线与圆x 2+y 2-4y +3=0相切,则m =.10.(2022·全国·高考真题)记双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值.11.(2021·全国·高考真题)双曲线x 24-y 25=1的右焦点到直线x +2y -8=0的距离为.12.(2021·全国·高考真题)若双曲线x 2a 2-y 2b2=1的离心率为2,则此双曲线的渐近线方程.13.(2021·北京·高考真题)若双曲线C :x 2a 2-y 2b2=1离心率为2,过点2,3 ,则该双曲线的方程为()A.2x 2-y 2=1B.x 2-y 23=1 C.5x 2-3y 2=1D.x 22-y 26=114.(2021·全国·高考真题)已知双曲线C :x 2m -y 2=1(m >0)的一条渐近线为3x +my =0,则C 的焦距为.15.(2021·全国·高考真题)在平面直角坐标系xOy 中,已知点F 1-17,0 、F 217,0 ,MF 1 -MF 2 =2,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA ⋅TB =TP ⋅TQ ,求直线AB 的斜率与直线PQ 的斜率之和.。

高三数学 双曲线的定义、性质及标准方程 知识精讲

高三数学 双曲线的定义、性质及标准方程 知识精讲

高三数学双曲线的定义、性质及标准方程知识精讲【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。

(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。

说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。

2. 双曲线的标准方程、图形及几何性质:标准方程xayba b2222100-=>>(,)中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。

其渐近线方程为y=±x 。

等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。

5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。

双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.4 双曲线(知识点讲解)【知识框架】【核心素养】1.考查双曲线的定义,求轨迹方程及焦点三角形,凸显数学运算、直观想象的核心素养.2.考查双曲线几何性质(范围、对称性、顶点、离心率、渐近线),结合几何量的计算,凸显逻辑推理、数学运算的核心素养.3.考查直线与双曲线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)双曲线的定义及标准方程1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.2.双曲线的标准方程标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形(二)双曲线的几何性质 双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线y =±b axy =±a bx离心率 e =ca,e ∈(1,+∞),其中c =a 2+b 2 实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长.a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)(三)常用结论 1.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 2.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a . (3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2·1tan θ2,其中θ为∠F 1PF 2.【常考题型剖析】题型一:双曲线的定义及其应用例1.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -|OP |=( )A .222B 410C 7D 10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得1333x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+= 故选:D.例2.(2017·上海·高考真题)设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________ 【答案】11【详解】由双曲线的方程2221(0)9x y b b -=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±,又因为15PF =,所以2||11PF =. 【总结提升】1.双曲线定义的主要应用(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解.4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解. 题型二:双曲线的标准方程例3.(2021·北京高考真题)双曲线2222:1x y C a b -=过点2,3,且离心率为2,则该双曲线的标准方程为( ) A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得3b a =,再将点2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a -=,则双曲线的方程为222213x y a a-=,将点2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =因此,双曲线的方程为2213y x -=.故选:B例4. (2022·全国·高三专题练习)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为( ) A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【分析】设双曲线的标准方程为()222210,0y x a b a b -=>>,由双曲线的定义知3c =,2a =,即可求出双曲线的标准方程.【详解】设双曲线的标准方程为()222210,0y x a b a b -=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .例5.【多选题】(2020·海南·高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C n C .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【规律方法】1.求双曲线方程的思路(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一是分类讨论,注意考虑要全面;二是注意巧设双曲线:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.2.利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 3.双曲线方程的几种形式:(1)双曲线的一般方程:当ABC ≠0时,方程Ax 2+By 2=C可以变形为x 2C A +y 2C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A ,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B=1.因此,当A >0时,表示焦点在x 轴上的双曲线;当B >0时,表示焦点在y 轴上的双曲线.(2)共焦点的双曲线系方程:与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为x 2a 2+λ-y 2b 2-λ=1(a >0,b >0);与双曲线y 2a 2-x 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为y 2a 2+λ-x 2b 2-λ=1(a >0,b >0).题型三:双曲线的实际应用例6.(2023·全国·高三专题练习)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x 轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A .221169x y -=B .2214x y -=C .22189x y -=D .22143x y -=【答案】D【分析】由已知得双曲线的焦点在x 轴上,设该双曲线的方程为()222210,0x y a b a b -=>>,代入建立方程组,求解即可得双曲线的标准方程.【详解】由题意可知该双曲线的焦点在x 轴上,实轴长为4,点()4,3在该双曲线上.设该双曲线的方程为()222210,0x y a b a b-=>>,则222224,431,a a b =⎧⎪⎨-=⎪⎩解得2a =,3b =,故该双曲线的标准方程是22143x y -=.故选:D.例7.(2021·长丰北城衡安学校高二月考(理))如图为陕西博物馆收藏的国宝——唐⋅金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线2222:x y C a b-=1(a >0,b >0)的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍,则杯身最细之处的周长为( )A .2B .3πC .3D .4π【分析】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m , 代入方程,即可解得23,3a a == 3,从而得解. 【详解】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m 代入双曲线方程可得 22222225134331,1m m a b a b -=-= , 即22222213251312,14m m a b a b-=-=,作差可得2273124a =,解得23,3a a ==,所以杯身最细处的周长为23π . 故选:C 【总结提升】解答实际应用问题时,要注意先将实际问题数学化,条件中有两定点,某点与这两定点的距离存在某种联系,解题时先画出图形,分析其关系,看是否与椭圆、双曲线的定义有关,再确定解题思路、步骤. 题型四 已知双曲线的方程,研究其几何性质例8.(2018·浙江·高考真题)双曲线221 3x y -=的焦点坐标是( )A .()2,0-,)2,0B .()2,0-,()2,0C .(0,2-,(2D .()0,2-,()0,2【分析】根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±,因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.例9.(2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________. 5【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,22543c a b ++,所以双曲线的右焦点为(3,0), 所以右焦点(3,0)到直线280x y +-=225512==+ 5例10.(2020·北京·高考真题)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________. 【答案】 ()3,0 3【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,6a =,3b =,则223c a b =+=,则双曲线C 的右焦点坐标为()3,0, 双曲线C 的渐近线方程为22y x =±,即20x y ±=, 所以,双曲线C 的焦点到其渐近线的距离为23312=+. 故答案为:()3,0;3.例11.(2021·全国·高考真题(理))已知双曲线22:1(0)x C y m m -=>30x my +=,则C 的焦距为_________. 【答案】4【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】由渐近线方程30x my +=化简得3y x m=-,即3b a m =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.例12.(2021·全国·高考真题)若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】3y x =±【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a ==,即2c a =, 又22224a b c a +==,即223b a =,则3ba=, 故此双曲线的渐近线方程为3y x =±. 故答案为:3y x =±. 【总结提升】1.已知双曲线方程讨论其几何性质,应先将方程化为标准形式,找出对应的a 、b ,利用c 2=a 2+b 2求出c ,再按定义找出其焦点、焦距、实轴长、虚轴长、离心率、渐近线方程.2.画双曲线图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图.3.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.4.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.等轴双曲线的离心率与渐近线关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系). 6.双曲线的焦点到渐近线的距离等于虚半轴长b 7.渐近线与离心率()222210,0x y a b a b -=>>的一条渐近线的斜率为2222221b b c a e a a a-===-可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.8.与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系,如借助双曲线上点的坐标范围,方程中Δ≥0等来解决.题型五 由双曲线的性质求双曲线的方程例11. (2022·天津·高考真题)已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c ⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a ,可得2ba=, 所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.例12.(2021·北京·高考真题)若双曲线2222:1x y C a b -=离心率为2,过点2,3,则该双曲线的方程为( )A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B【分析】分析可得3b a =,再将点()2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a =-=,则双曲线的方程为222213x y a a-=,将点()2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =,因此,双曲线的方程为2213y x -=.故选:B例13.(2018·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:22122bc b bc b d c a b --==+,22222bc b bc b d c a b++==+, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2229112c b e a a a ==+=+=, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项. 【规律总结】1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法,同样需要经历“定位→定式→定量”三个步骤.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n 2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).题型六 求双曲线的离心率(或范围)例13.(2019·全国·高考真题(文))设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A 2B 3C .2 D 5【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .例14.(2021·湖北恩施土家族苗族自治州·高三开学考试)双曲线2222:1x y C a b -=(0a >,0b >)的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足2AF BF >,则双曲线离心率e 的取值范围是( ) A .12e << B .312e <<C .322e << D .331e +<<【答案】B 【分析】设双曲线半焦距c ,再根据给定条件求出|BF |长,列出不等式即可得解. 【详解】设双曲线半焦距为c ,因BF AF ⊥,则由22221x c x ya b =⎧⎪⎨-=⎪⎩得2||||b y B a F ==,而AF a c =+, 于是得22b a c a +>⋅,即222c a a c a-+>⋅,整理得23a c >,从而有32c e a =<,又1e >,所以双曲线离心率e 的取值范围是312e <<. 故选:B例15.(2022·浙江·高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【答案】364【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=. 故答案为:364.例16.(2020·全国·高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y 2,则C 的离心率为_________. 【答案】3【分析】根据已知可得2ba=,结合双曲线中,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b -=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =,2213c be a a==+=.故答案为:3 1.在解析几何中,求“范围”问题,一般可从以下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②通过判别式Δ求解;③利用点在双曲线内部形成的不等关系求解;④利用解析式的结构特点,如a ,a ,|a |等非负性求解.2.求双曲线离心率的取值范围,关键是根据题目条件得到不等关系,并想办法转化为关于a ,b ,c 的不等关 系,结合c 2=a 2+b 2和ca =e 得到关于e 的不等式,然后求解.在建立不等式求e 时,经常用到的结论:双曲线上一点到相应焦点距离的最小值为c -a .双曲线的离心率常以双曲线的渐近线为载体进行命题,注意二者参数之间的转化.3.与双曲线离心率、渐近线有关问题的解题策略(1)双曲线的离心率e =c a是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)双曲线()222210,0x y a b a b -=>>的渐近线是令22220x y a b-=,即得两渐近线方程x a ±y b =0.(3)渐近线的斜率也是一个比值,可类比离心率的求法解答.注意应用21c b e a a ⎛⎫==+ ⎪⎝⎭题型七:与双曲线有关的综合问题例17.(2022·江西·丰城九中高三开学考试(文))已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,E 为双曲线C 的右顶点.过2F 的直线与双曲线C 的右支交于,A B 两点(其中点A 在第一象限),设,M N 分别为1212,AF F BF F 的内心,则ME NE -的取值范围是( )A .4343,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭ B .4343⎛ ⎝⎭C .3333⎛ ⎝⎭D .55⎛ ⎝⎭【答案】B【分析】由内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,将ME NE -表示为θ的三角函数,结合正切函数的性质可求得范围.【详解】设1212,,AF AF F F 上的切点分别为H 、I 、J , 则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a , ∴122-=HF IF a ,即122-=JF JF a .设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=, 得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合. 同理可得12BF F △的内心在直线JM 上, 设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ, 当2πθ=时,||||0ME NE -=; 当2πθ≠时,由题知,2,4,3===ba c a, 因为A ,B 两点在双曲线的右支上, ∴233ππθ<<,且2πθ≠,所以tan 3θ<-或tan 3θ>, ∴3133tan 3θ-<<且10tan θ≠, ∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ. 故选:B.例18.(2018·全国·高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若OMN 为直角三角形,则|MN |=( ) A .32B .3C .3D .4【答案】B【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得33(3,3),(,)22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为33±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒, 可以得出直线MN 的方程为3(2)y x =-, 分别与两条渐近线33y x =和33y x =-联立, 求得33(3,3),(,)22M N -,所以2233(3)(3)322MN =-++=,故选B.例19.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______. 【答案】21+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解. 【详解】由题意知: ,2,2pc p c -=-∴= ∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b ∴-=2224224,60c a c a c a b =-∴-+=2322e ∴=±,又()1,e ∈+∞,2 1.e ∴=+故答案为:21+例20.(2020·全国·高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立2222222{1x cx y a b c b a =-==+,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223bc a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.例21. (2022·全国·高考真题(理))若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________. 【答案】33【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =-(舍去). 故答案为:33.例22. (2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>43F 且斜率为0k >的直线交C 的两支于,A B 两点.若||3||FA FB =,则k =________________. 【答案】33【分析】由题意设双曲线的方程为22223113x y a a -=,直线为1x y c k =-,即1433x y a k =-,联立方程,设()()1122,,,A x y B x y ,由||3||FA FB =,得123y y =,由根与系数的关系求解即可 【详解】因为22224316,33c a c a b a ==+=, 所以22313b a =,双曲线的方程为22223113x y a a -=,设过左焦点F 且斜率为0k >的直线为1x y c k =-,即1433x y a k =-, 与双曲线222231131433x y a a x y ak ⎧-=⎪⎪⎨⎪=-⎪⎩联立得2221310431693033y ay a k k ⎛⎫--+= ⎪⎝⎭, 设()()1122,,,A x y B x y ,则()()221212221043169,31333133ak a k y y y y k k +=⋅=--,因为||3||FA FB =, 所以123y y =,所以()()222222210431694,331333133ak a k y y k k ==--,消去2y 得()222221696433169163133a k a k k ⨯⨯⨯=-, 化简得2121133k =-,即213k =, 因为0k >, 所以33k =, 故答案为:33例23.(2022·广东·广州市真光中学高三开学考试)设1F ,2F 分别是双曲线2222:1(0,0)x ya b a bΓ-=>>的左、右两焦点,过点2F 的直线:0l x my t --=(,R m t ∈)与Γ的右支交于M ,N 两点,Γ过点(2,3)-,且它的7(1)求双曲线Γ的方程;(2)当121MF F F =时,求实数m 的值;(3)设点M 关于坐标原点O 的对称点为P ,当2212MF F N =时,求PMN 面积S 的值. 【答案】(1)2213y x -=; (2)1515m =±; (3)9354. 【分析】(1)根据点在双曲线上及两点距离列方程组求双曲线参数,即可得方程;(2)由点在直线上求得2t =,根据1F 到直线:20l x my --=与等腰三角形12F MF 底边2MF 上的高相等,列方程求参数m ;(3)设11(,)M x y ,22(,)N x y ,联立双曲线与直线方程,应用韦达定理得1221213m y y m +=-,122913y y m =--,由向量的数量关系可得2135m =,根据对称点、三角形面积公式1222OMN S S y y ==-求PMN 面积. (1)由Γ过点(2,3)-,且它的虚轴的端点与焦点的距离为7,所以()222224917a b b a b ⎧-=⎪⎨⎪++=⎩,即2213a b ⎧=⎨=⎩, 则所求的双曲线Γ的方程为2213y x -=. (2)因为直线:0l x my t --=过点2(2,0)F ,所以2t =,由121MF F F =得:等腰三角形12F MF 底边2MF 上的高的大小为22112()152MF MF --=, 又1F 到直线:20l x my --=的距离等于等腰三角形12F MF 底边上的高,则2202151m ---=+, 即2115m =,则1515m =±. (3)设11(,)M x y ,22(,)N x y ,由221320y x x my ⎧-=⎪⎨⎪--=⎩得:22(31)1290m y my -++=, 则1221213m y y m +=-,122913y y m=--,又2212MF F N =,即212y y =-, 则121213m y m -=-,2129213y m =-,即22122()13m m =-2913m-,则2135m =, 又M 关于坐标原点O 的对称点为P ,则2121212222()4OMN S S y y y y y y ==-=+-222221*********()4()1313134m m m m m +=--==---. 则所求的PMN 面积为9354. 【总结提升】 双曲线的综合问题常常涉及双曲线的离心率、渐近线、范围与性质,与圆、椭圆、抛物线、向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。

高中数学第二章双曲线方程及性质的应用课后提升训练含解析新人教A版选修84


,
x1x2=
=-
,消去 x2,
得 a2= .又因为 a>0,所以 a= .
马鸣风萧萧整理
有两个不同的解 ,
【解析】 因为正方形 OABC 的边长为 2,所以 B(2 因为 a2+b 2=c 2,所以 a=b=2.
,0),渐近线为 y= ± x.所以 c=2
,a=b. 又
答案 :2
【补偿训练】 过双曲线 - =1 的右焦点的直线被双曲线所截得的弦长为
的条数为 ( )
A.4
B.3
C.2
D.1
【解析】 选 D. 依题意可得右焦点 F(5,0),
A. - =1
B. - =1
C. - =1
D. - =1
【解析】 选 A.由题意知 :a=2,a+b= c,又 c2=a2+b 2,且焦点在 y 轴上 ,选 A.
2.(2017·德化高二检测 )直线 y=k(x+
取值有 ( )
A.1 个
B.2 个
C.3 个
)与双曲线 -y2=1 有且只有一个公共点 ,则 k 的不同 D.4 个
所以 e1= ,e2= .
所以双曲线中 :c=5,e= ,a= ,b2= ,
双曲线方程为
- =1.
椭圆中 :c=5,e= ,a=10,b2=a2-c2=75,
椭圆方程为
+ =1.
12.(2017·黄石高二检测 )已知双曲线 3x2-y2=3, 直线 l 过右焦点 F2,且倾斜角为 45° ,与双曲线交
方程为 y=x, 点 P( ,y0)在该双曲线上 ,则
·
=( )
A.-12
B.-2
C.0
D.4

高三数学 双曲线的定义、性质及标准方程 知识精讲

高三数学双曲线的定义、性质及标准方程知识精讲【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。

(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。

说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。

实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。

其渐近线方程为y=±x 。

等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。

5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。

说明:(1)在双曲线有关计算和证明中首先分清双曲线焦点在x 轴上,还是在y 轴上,中心是否在原点。

(2)在解与双曲线有关的问题时,注意利用定义及各元素之间的相互依赖关系(如:222,ca cb e a=-=等)。

(3)使用韦达定理求某些参数时,要注意利用判别式△≥0或(△>0)来限制参数的取值范围,否则,会出现错误。

(4)依题意判断曲线是双曲线的一个分支,还是整个双曲线。

(5)双曲线是具有渐近线的曲线。

双曲线的定义方程与性质课件-2025届高三数学一轮复习


=2<6,所以点 M 的轨迹是以点 C 1(-3,0)和 C 2(3,0)为焦
点的双曲线的左支,且2 a =2, a =1,又 c =3,则 b 2= c 2- a 2=
2

8,所以点 M 的轨迹方程为 x 2- =1( x ≤-1).
8
目录
高中总复习·数学
2. 若双曲线经过点(3,
的标准方程是
1
4
F 2,若 O 为坐标原点,点 P 为双曲线上一点,且 P 在第一象限,|
F 1 P |+| F 2 P |=5,则| OP |=
21
2

目录
高中总复习·数学
9
|1 |= ,
|1 | − |2 | = 4,
2
解析:由题意知൝
所以൞
又|
1
|1 |+|2 |=5,
|2 |= ,
的离心率为(
A.
7
2
C. 7

B.
13
2
D. 13
目录
高中总复习·数学
解析:设| PF 2|= m ,| PF 1|=3 m ,则| F 1 F 2|=
2 + 92 − 2 × 3 × × cos60°= 7 m ,所以 C 的离心率 e
|1 2 |

2
7
7
= = =

= .

2
合|| PF 1|-| PF 2||=2 a ,运用平方的方法,建立关
于| PF 1|·| PF 2|的方程.
目录
高中总复习·数学
2. 求双曲线标准方程的两种方法
(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,
列出参数 a , b , c 的方程(组)并求出 a , b , c 的值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线的标准方程及性质的应用
时间:30分钟,总分:70分 班级: 姓名:
一、选择题(共6小题,每题5分,共30分)
1.已知直线l 与双曲线22:2C x y -=的两条渐近线分别交于A ,B 两点,若AB 的中点在该双曲线上,O 为坐标原点,则AOB ∆的面积为( )
A .12
B .1
C .2
D .4 【答案】C .
【解析】
试题分析:由题意得,双曲线的两条渐近线方程为y x =±,设11(,)A x x ,22(,)B x x -,
∴AB 中点1212(
,)22x x x x +-,∴22121212()()2222x x x x x x +--=⇒=,
∴121211||||||||222
AOB S OA OB x x ∆=⋅=⋅==,故选C . 2.已知l 是双曲线22
:124
x y C -=的一条渐近线,P 是l 上的一点,12,F F 是C 的两个焦点,若120PF PF ⋅=,则P 到x 轴的距离为( )
(A (B (C )2 (D 【答案】C
【解析】
试题分析:12(F F ,不妨设l 的方程为y =,设00()P x
由21200000(,),)360PF PF x x x ⋅=⋅=-=.
得0x =P 到x ,故选C .
3.双曲线22
221x y a b
-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=3|PF 2|,则双曲线离心率的取值范围为( )
A .(1,2)
B .(]1,2
C .(3,+∞)
D .[)3,+∞
【答案】B
试题分析:根据双曲线定义可知122PF PF a -=,即2232PF PF a -=,21,3a PF PF a ∴== 在12PF F ∆中,1212F F PF PF <+,2224,222c c PF c PF a a <<=∴
<,当P 为双曲线顶点时,2c a
=, 又∵双曲线e >1,∴1<e ≤2 4.双曲线22
221x y a b
-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为
30 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )
A
B
D
【答案】C
【解析】
试题分析:将x c =代入双曲线的方程得2
b y a =即2,b M
c a ⎛⎫ ⎪⎝⎭
在12MF F ∆中2
tan 302b a c =
即222c a ac -=
c e a
== 5.双曲线442
2=-y x 的两个焦点21F F 、,P 是双曲线上的一点,满足12PF PF ⊥,则12F PF ∆的面积为 ( )
A 、1
B 、
25 C 、2 D 、5 【答案】A
【解析】 试题分析:222
2224411cot 1cot 1424x x y y b S b θπ-=∴-=∴=∴==⨯= 6.已知双曲线22
221(0,0)x y a b
a b
-=>>的一条渐近线方程是y =,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为( )
A .22136108x y -=
B .221927
x y -= C .22110836x y -= D .22
1279
x y -=
【解析】
试题分析:224y x =的准线为6x =-,所以双曲线中6c =,由渐近线为y =b a
∴= 22
9,27a b ∴==,双曲线方程为22
1927x y -= 二、填空题(共4小题,每题5分,共20分)
7.(北京市朝阳区2016届高三第一学期期末数学文10)双曲线2
2
13y x -=的渐近线方程为 .
【答案】y =.
【解析】
试题分析:1a =,b =b y x a
=±=,故填:y =. 8. (北京市东城区2016届高三第一学期期末数学文9)双曲线22
1169
x y -=的离心率是_________. 【答案】
54. 【解析】
试题分析:由标准方程知4a =,3b =,所以5c ==,所以离心率54c e a =
=. 9.已知双曲线122
22=-b
y a x 的一条渐近线方程为034=-y x ,则双曲线的离心率为 . 【答案】
53
【解析】 试题分析:由题意可知43b a = 222222216162559993
b c a c c e a a a a -∴=∴=∴=∴== 10.已知1F 、2F 分别为双曲线C :22
1927
x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2AF =________.
【答案】6
【解析】 试题分析:()22
222111222819,27362122,029274AF MF x y a b c F F c M AF MF -=∴==∴=∴==∴=== 122266AF AF a AF -==∴=
三、解答题(共2小题,每题10分,共20分)
11.已知椭圆与双曲线221412y x -=的焦点相同,且它们的离心率之和等于145
. (1)求椭圆方程;
(2)过椭圆内一点(1,1)M 作一条弦AB ,使该弦被点M 平分,求弦AB 所在直线方程.
【答案】(1)19
252
2=+x y (2)034925=-+y x 【解析】
试题分析:(1)求出椭圆的焦点和离心率,进而得到双曲线的离心率和焦点,再由椭圆的a ,b ,c 的关系,即可得到椭圆方程;(2)设出弦AB 的端点的坐标,代入椭圆方程和中点坐标公式,运用作差,结合平方差公式和斜率公式,由点斜式方程即可得到直线AB 的方程
试题解析:(1)由题意知,双曲线的焦点坐标为)4,0(),4,0(-,离心率为422
e ==, 设椭圆方程:)0(122
22>>=+b a b
x a y ,则4=c 5
425144=-===∴a a c e ,5=∴a , 91625222=-=-=∴c a b , ∴椭圆方程为:19
2522=+x y . (2)设),(),,(2211y x B y x A ,
M 为弦AB 的中点,2,22121=+=+∴y y x x ,
由题意:⎪⎪⎩⎪⎪⎨⎧=+=+)2(19
25)1(192522222121x y x y ,)2()1(-得 9
))((25))((2121
2121x x x x y y y y -+-=-+, 9
25)(9)(2521212121-=++-=--=∴y y x x x x y y k AB , 此时直线方程为:)1(9251--
=-x y ,即034925=-+y x , 故所求弦AB 所在的直线方程为034925=-+y x .
12.已知抛物线1C 的顶点在坐标原点,它的准线经过双曲线2C :22
221x y a b
-=的左焦点1F 且垂直于2C 的两个焦点所在的轴,若抛物线1C 与双曲线2C
的一个交点是2(3M . (1)求抛物线1C 的方程及其焦点F 的坐标;
(2)求双曲线2C 的方程及其离心率e . 【答案】(1)2
4y x =焦点(1,0)F (2)22
118
99x y -=离心率3e = 【解析】
试题分析:(1)先出抛物线方程,然后将点M 的坐标代入可求出抛物线方程,从而求出焦点坐标;(2)根据抛物线的准线方程求双曲线的焦点坐标,然后根据双曲线的定义可求出a ,从而求出双曲线的方程,最后求出双曲线的离心率
试题解析:(1)由题意可设抛物线1C 的方程为22y px =.
把2(3M 代入方程22y px =,得2p = 因此,抛物线1C 的方程为24y x =.
于是焦点(1,0)F
(2)抛物线1C 的准线方程为1y =-,所以,1(1,0)F - 而双曲线2C 的另一个焦点为(1,0)F ,于是 17522333a MF MF =-=-= 因此,13
a = 又因为1c =,所以22289
b
c a =-=
. 于是,双曲线2C 的方程 为22
118
99
x y -= 因此,双曲线2C 的离心率3e =.。

相关文档
最新文档