模糊神经网络控制与自适应神经网络
神经网络与模糊控制的结合应用

神经网络与模糊控制的结合应用I. 引言神经网络和模糊控制都是近年来广泛应用于自动控制领域的两种重要技术。
神经网络以其较好的学习能力和预测能力,受到了广泛的关注。
而模糊控制以其强大的非线性建模和很好的抗干扰能力而备受推崇。
为了克服单一控制技术的局限性,研究者开始尝试将神经网络和模糊控制进行结合应用。
II. 神经网络和模糊控制的概述1. 神经网络神经网络是一种学习型系统,其结构可以类比为人类大脑的神经元网络。
神经网络通过学习数据集中的模式,能够从中学习出输入输出之间的映射关系。
神经网络的优点在于其能够进行非线性建模、通用近似和容错性能强等特点。
2. 模糊控制模糊控制是一种基于模糊逻辑的控制方法。
其将模糊逻辑应用于实际系统的控制过程中,达到了比传统控制方法更好的抗干扰能力和系统的非线性动态性能。
III. 神经网络模糊控制器设计及应用1. 神经网络模糊控制结合的优点神经网络模糊控制相较于传统的控制方法,具有较强的非线性建模和很好的抗干扰能力,能够捕捉到很好的系统动态,从而实现控制的效果。
2. 神经网络模糊控制器的建立神经网络模糊控制系统可以分为两个部分,分别是模糊控制器和神经网络控制器。
其中模糊控制器负责实现对系统模糊建模,而神经网络控制器则用于学习模糊控制器的输入输出映射关系。
图1:神经网络模糊控制器的框图3. 神经网络模糊控制器在机器人路径规划中的应用机器人路径规划是一个非常复杂的问题,需要考虑到环境的不确定性以及机器人动力学特性。
神经网络模糊控制器通过学习路径规划时的输入输出映射关系,能够提高路径规划的准确性和鲁棒性。
4. 神经网络模糊控制器在工业过程控制中的应用在工业过程控制中,神经网络模糊控制器可以通过学习过程时的输入输出映射关系,实现对工业过程的自适应控制。
其优点在于能够实现强大的建模能力和很好的自适应性,从而提升了工业过程的控制性能。
IV. 总结神经网络和模糊控制都是近年来比较热门的技术,两者在控制领域的应用也在不断发展。
模糊系统的辨识与自适应控制

模糊系统的辨识与自适应控制在现代控制理论研究中,模糊控制是一种重要的控制方法。
模糊控制是对非线性系统的一种解决方案,这种控制方法利用模糊逻辑来处理不确定性和信息丢失问题,从而提高了控制的效率和精度,因此在自适应控制中得到了广泛的应用。
一、模糊系统辨识模糊系统辨识是指对模糊控制系统进行参数辨识和模型识别,目的是为了找到最佳的控制方案。
模糊系统的辨识过程也是确定模糊控制系统结构和参数的过程。
模糊控制系统需要依赖于模糊规则库和隶属函数来完成参数辨识和模型识别。
模糊规则库是一个包含了各种规则的数据库,其中每个规则由一组条件和一组相应的控制动作组成。
隶属函数用来描述输入变量和输出变量之间的映射关系。
在模糊系统辨识的过程中,需要收集大量的数据来分析和处理,以便从中提取有用的信息。
这里的数据包括输入数据和输出数据,输入数据包括控制输入和环境输入,输出数据包括控制输出和系统响应。
通过对这些数据进行分析、模型识别和参数辨识,可以得到一个模糊控制系统的模型,并对其进行优化调整,以使其更好地适应所需的控制任务。
二、自适应控制模糊系统的自适应控制是利用模糊控制系统的动态特性,不断根据控制系统的变化自动调整控制参数,以达到最优的控制效果。
因此,自适应控制算法是一种重要的控制算法,它可以自动调整控制参数以快速响应外部变化。
自适应控制有多种方法,包括自适应模糊控制、自适应神经网络控制、自适应PID控制、自适应模型预测控制等。
其中,自适应模糊控制是一种广泛应用的控制方法,它可以自动调整模糊规则库、隶属函数以及控制输出,以适应不同的控制任务和环境条件。
三、结论总之,在现代控制领域中,模糊控制方法是一种重要的控制方法之一,具有较高的鲁棒性和鲁棒性。
模糊控制方法除了能够处理非线性系统,还可以处理模糊系统,因此在实际控制中被广泛应用。
模糊系统的辨识和自适应控制是模糊控制方法的两个基本方面,它们为模糊控制的优化和应用提供了基础和保障。
模糊控制与神经网络控制

模糊控制与神经网络控制模糊控制和神经网络控制是现代控制领域中的两个重要研究方向,它们通过不同的方法和理论来解决复杂系统的控制问题。
本文将就这两种控制方法进行介绍和对比,并探讨它们在实际应用中的优劣势。
一、模糊控制模糊控制是一种基于模糊逻辑理论的控制方法,它通过将输入和输出之间的关系进行模糊化来实现系统的控制。
模糊控制器的设计通常包括模糊化、规则库的建立、推理机制以及解模糊化等步骤。
在模糊控制中,输入和输出以模糊集形式表示,通过一系列的模糊规则进行推理得到控制信号。
模糊规则库中存储了专家知识,根据实际问题的需求可以设计不同的规则。
推理机制使用模糊规则进行推理,最后通过解模糊化将模糊输出转化为具体的控制量。
模糊控制的优点之一是适用于非线性和不确定性系统,它能够通过模糊化处理来处理实际系统中的不确定性和模糊性。
此外,模糊控制能够利用专家经验进行控制器的设计,无需准确的系统数学模型。
然而,模糊控制也存在一些局限性。
首先,模糊控制的规则库和参数通常需要由专家进行手动设计,这对专家的经验和知识有一定的要求。
其次,模糊控制的性能也会受到模糊规则的数量和质量的影响,如果规则库设计不当,控制性能可能无法满足要求。
二、神经网络控制神经网络控制是一种基于人工神经网络的控制方法,它通过将系统模型表示为神经网络结构来实现控制。
神经网络是一种模仿生物神经系统结构和功能的计算模型,具有自适应学习和适应性处理的能力。
在神经网络控制中,神经网络被用作控制器来学习系统的映射关系。
通过输入和输出的样本数据,神经网络根据误差信号不断调整权重和阈值,使得输出逼近于期望输出。
神经网络控制通常包括网络的结构设计、学习算法的选择和参数调整等步骤。
与模糊控制相比,神经网络控制具有更好的自适应性和学习能力。
它能够通过学习过程来建立系统的非线性映射关系,并且对于未知系统具有较好的鲁棒性。
此外,神经网络控制不需要准确的系统模型,对系统的数学模型要求相对较低。
控制系统中的自适应控制与神经网络控制比较

控制系统中的自适应控制与神经网络控制比较在控制系统中,自适应控制和神经网络控制是两种常见的控制方法。
它们都旨在通过对系统模型和输入输出关系进行学习和调整,实现系统的自适应性能。
然而,它们在实现方式、性能和适用范围等方面存在一些差异。
本文将对自适应控制和神经网络控制进行比较,以帮助读者理解它们的优缺点和适用情况。
自适应控制是一种基于模型参考自适应原理的控制方法。
其核心思想是通过建立系统模型并根据模型误差来调整自适应控制器的参数。
自适应控制根据系统模型的准确性进行分类,可以分为基于精确模型的自适应控制和基于近似模型的自适应控制。
基于精确模型的自适应控制方法要求系统模型必须准确地描述系统的动态特性。
这种方法可以针对不同的系统进行定制化设计,控制性能较好。
然而,由于实际系统的模型通常是复杂和不确定的,因此需要大量的模型辨识工作,且容易受到模型误差的影响。
相比之下,基于近似模型的自适应控制方法更常见。
这种方法通过选择适当的模型结构和参数估计方法,利用系统的输入输出数据进行模型辨识和参数调整。
基于近似模型的自适应控制方法对系统模型的精确性要求较低,适用于对系统了解不充分或者模型难以得到的情况。
然而,近似模型的准确性直接影响自适应控制的性能,需要通过参数调整策略进行优化。
与自适应控制相比,神经网络控制利用神经网络对系统进行建模和控制。
神经网络是一种模仿人脑神经元结构和功能的计算模型,通过大量的神经元连接和权重调整来实现输入输出之间的非线性映射。
在神经网络控制中,神经网络模型可以根据系统的输入输出数据进行在线学习和参数调整。
神经网络控制具有较强的适应性和非线性建模能力,能够有效处理系统模型复杂或不确定的情况。
它不需要事先对系统进行准确建模,适用范围广。
然而,神经网络控制的设计、训练和调参过程较为复杂,需要大量的计算资源和时间,且很难对其内部机制进行解释和理解。
综上所述,自适应控制和神经网络控制都是常见的控制方法,各有其优势和适用范围。
控制系统中的模糊控制与神经网络控制比较

控制系统中的模糊控制与神经网络控制比较在现代控制系统中,模糊控制和神经网络控制是两种常见的控制方法。
它们都具有一定的优势和特点,但是又各自存在一些局限性。
本文将就这两种控制方法进行比较,旨在帮助读者更好地理解和选择适合自己需求的控制方法。
一、模糊控制模糊控制是一种基于模糊逻辑的控制方法,它将人的直观经验与控制系统的数学模型相结合,用来应对系统模型不确定或难以建模的情况。
模糊控制系统由模糊化、模糊推理和解模糊化三个主要部分组成。
1、模糊控制的优势(1)适应不确定性:模糊控制可以很好地应对系统参数变化、环境变化等不确定性因素,因为它不需要准确的数学模型。
(2)处理非线性系统:对于非线性系统,模糊控制可以通过模糊化和模糊推理来逼近系统的动态特性,因此具备较好的适应性。
(3)易于理解和调试:模糊规则基于经验知识,形式简单易懂,参数调节相对容易,操作员或工程师可以理解和调试模糊控制系统。
2、模糊控制的局限性(1)计算复杂性:模糊控制系统需要进行模糊化、模糊推理和解模糊化等操作,这些操作可能导致计算量大、实时性差,不适合对响应时间要求较高的控制系统。
(2)难以优化:模糊控制的参数调节通常是基于试错法,缺乏理论指导,难以进行精确优化,因此对于某些需要高精度控制的系统效果并不理想。
二、神经网络控制神经网络控制是一种利用人工神经网络模拟生物神经网络的结构和功能来实现控制的方法。
神经网络控制系统由输入层、隐含层和输出层构成,通过训练神经网络来实现控制效果。
1、神经网络控制的优势(1)适应性强:神经网络具有强大的自适应性能,能够适应未知系统或具有时变性质的系统,从而在控制过程中实现自学习和自适应。
(2)映射能力强:神经网络可以将非线性映射问题转化为线性可分问题进行处理,从而更好地逼近系统的非线性特性。
(3)具备优化能力:可以通过合理的网络结构和训练算法,实现对网络参数的优化,从而提高控制系统的性能。
2、神经网络控制的局限性(1)训练需耗时:神经网络控制需要通过大量的数据训练神经网络,这可能需要耗费较长的时间,并且对数据质量和标定要求较高。
智能家居中的自适应控制算法

智能家居中的自适应控制算法随着人工智能技术的不断发展,智能家居也越来越普及。
它不仅能够提高家居的舒适性和便捷性,还能够降低能源和资源的消耗,为人们带来更加可持续的生活方式。
智能家居中的一个关键技术就是自适应控制算法。
自适应控制算法是指能够根据控制对象和环境的变化来自我调整的控制算法。
在智能家居中,自适应控制算法可以根据家庭成员的需求和行为习惯来自动调整家居设备的工作模式和能耗,使家居更加智能、节能和环保。
智能家居中常用的自适应控制算法有以下几种:一、模糊控制算法模糊控制算法是利用模糊逻辑原理对复杂系统进行自适应控制的一种方法。
它可以将人类的认知方式(如模糊思维)转换为数学逻辑,实现对系统的自适应控制。
在智能家居中,模糊控制算法可以根据家庭成员的需求和环境变化来自动调整房间温度、空调风速等参数,提高家居的舒适性和节能性。
二、神经网络控制算法神经网络控制算法是利用人工神经网络模拟人脑神经元进行自适应控制的一种方法。
它可以根据输入信号来自动调整神经网络的权值和阈值,实现对系统的自适应控制。
在智能家居中,神经网络控制算法可以根据家庭成员的行为习惯和生理特征来自动调整照明、音响和净化器等设备的工作模式和能耗,提高家庭的智能化程度和节能效率。
三、遗传算法控制算法遗传算法控制算法是通过模拟遗传、变异和选择等自然遗传过程来进行自适应控制的一种方法。
它可以通过对不同控制策略的交叉和变异,让系统在不断优化中实现更好的控制效果。
在智能家居中,遗传算法控制算法可以根据家庭成员的需求和环境变化来调整家居设备的能耗和工作模式,提高家庭的舒适性和节能效率。
总结智能家居中的自适应控制算法可以根据家庭成员的需求和环境变化来自动调整家居设备的工作模式和能耗,提高家居的智能化、节能性和环保性。
当前,随着人工智能技术的不断发展,自适应控制算法将在智能家居领域发挥越来越重要的作用,为人们带来更加智能、舒适、便捷和环保的生活方式。
模糊神经网络

模糊神经网络简介模糊神经网络(FNN)是一种结合模糊逻辑和神经网络的方法,旨在处理模糊信息与不确定性。
该网络模拟人类大脑处理模糊信息的机制,能够有效地应对现实世界中的模糊问题。
模糊逻辑模糊逻辑是一种处理模糊性的数学工具,它引入了模糊集合和模糊运算,能够描述事物之间的模糊关系。
与传统的逻辑相比,模糊逻辑更符合人类认知过程,能够更好地处理模糊信息。
神经网络神经网络是一种由神经元和连接权重构成的计算模型,它能够通过学习不断优化权重,从而实现对输入数据的自适应建模。
神经网络在模式识别、预测和优化等方面表现出色。
模糊神经网络模糊神经网络将模糊逻辑和神经网络相结合,利用神经网络的自适应学习能力和模糊逻辑的模糊描述能力,有效地处理模糊信息。
FNN将模糊集合映射到神经网络,通过训练调整连接权重,实现对模糊规则的建模与推理。
FNN的特点•模糊描述能力:FNN能够处理模糊和不确定性信息,更适合于现实世界中的复杂问题。
•自适应学习:FNN可以根据输入数据进行权重调整,不断优化网络性能。
•非线性映射:FNN具有非线性映射能力,能够建模复杂的非线性关系。
•规则推理:FNN能够根据事先定义的模糊规则进行推理和决策。
应用领域模糊神经网络在诸多领域得到广泛应用: - 模糊控制:用于处理模糊和不确定性信息的系统控制。
- 模糊识别:用于模糊模式识别和特征提取。
- 模糊优化:用于解决模糊目标函数的优化问题。
- 模糊决策:用于模糊环境中的决策问题。
结语模糊神经网络作为模糊信息处理的有效工具,将模糊逻辑和神经网络的优势相结合,为处理现实世界中的复杂问题提供了一种全新的视角和方法。
随着人工智能技术的不断发展,模糊神经网络有望在更广泛的领域发挥重要作用。
智能控制第7章 模糊神经网络控制与自适应神经网络PPT课件

第五层
❖有两种模式
❖从上到下的信号传输方式 ,同第一层。
❖从下到上是精确化计算,如果采用重心法, 有
fj(5 ) w ( j5 )iu i(5 ) (m ( j5 )i (j5 )i)u i(5 ), i
E fj(4)
E fj(5)
fj(5) fj(4)
E fj(5)
fj(5) u(j5)
u(j5) fj(4)
E fj(5)
m(5) ji
u (5) (5)
ji i
u(j5)
i
u (5) (5) (5) jj jj
(j5i)ui(5))(
m u ) (5) (5) (5) (5)
图7-2 :规则节点合并示例
2. 有导师学习阶段
❖可采用BP学习
E1(y(t)ˆy(t))2min 2
w(t1)w(t)(E w)
E w ( n E )e ( n w t)e tE f w f E f fa w a
第五层
m E (j5)i a E (j5) a fj((j5 5))
wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感34如果被控系统yk1fykyk1uk1gukwwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感351tdltdltdltdl神经网络n神经网络n331基于神经网络的模型参考自适应控制结构图参考模型wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感3671wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感37则控制系统的误差方程为其中wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感383233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感393233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感40对于yk1fykyk1uk1guk可得如果存在可用神经网络逼近之
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.2 神经网络的自校正控制
32/47
模型参考自适应控制
❖通过选择一个适当的参考模型和由稳定性理 论设计的自适应算法,并利用参考模型的输 出与实际系统输出之间的误差信号,由一套 自适应算法计算出当前的控制量去控制系统 达到自适应控制的目的。
❖中心值mi的估计 :Kohonen自组织映射法 ❖宽度值σi是与重叠参数r以及中心点mi邻域内
分布函数值相关。
15/47
Kohonen自组织映射法
❖一种自组织学习。经过一段时间的学习后, 其权值的分布可以近似地看作输入随机样本 的概率密度分布。学习过程是一个Winnertake-all的过程,具体如下:
6/47
第一层
❖这一层的节点只是将输入变量值直接传送到 下一层。所以,
f (1) j
u(1) j
,
a (1) j
f (1) j
❖且输入变量与第一层节点之间的连接系数 wji(1)=1。
7/47
第二层
❖实现语言值的隶属度函数变换 ,可选取钟型 函数
合并的条件 ❖该组节点具有完全相同的结论部(如图7-2中
输出变量yi中的第二个语言值节点); ❖在该组规则节点中某些条件部是相同的(如图
7-2中输入变量x0中的第一个语言值节点的输 出与该组规则节点全部相连); ❖该组规则节点的其它条件输入项包含了所有 其它输入语言变量某一语言值节点的输出。
20/47
i
24/47
第三层
❖与第四层相似
(3) j
E
f
(3) j
E
a
(3) j
a(j3)
f
(3) j
E
f
(4) j
f
( j
4)
a(j3)
( j
4)
f
(4) j
ui(3)
(4) j
❖如果输出语言变量有m个,则
m
(3) j
(4) k
k 1
25/47
第二层
问题描述: ❖给定一组输入样本数据xi(t),i=1,2,...,n、期望
的输出值yi(t),i=1,2,...,m、模糊分区|T(x)| 和 |T(y)|以及期望的隶属度函数类型(即 三角型、钟型等)。 ❖学习的目的是找到隶属度函数的参数和系统 实际存在的模糊逻辑控制规则。
14/47
隶属度函数参数的获取
i
则第四层节点与第五层节点之间的连接系数 wji(5)可以看作是mji(5)·σji(5)。
11/47
7.1 模糊神经网络控制
7.1.1 神经网络与模糊控制系统
7.1.2 模糊神经网络的学习算法
12/47
混合学习算法
有两种模式 ❖从上到下的传输模式 时,与第二层相同,实
现模糊化的功能。 ❖从下到上的传输模式中,实现的是模糊逻辑
推理运算。根据最大、最小推理规则,是模 糊“或”运算:
fj(4)=max(u1(4),u2(4),...,up(4)), aj(4)=fj(4) 且第三、四层节点之间的连接系数wji(4)=1
22/47
第五层
E
E
a(j5)
f
(5) j
[ y(t) yˆ(t)]
u (5) (5) ji i
m(ji5)
a
(5) j
f
(5) j
m(ji5)
u (5) (5) ji i
i
E
(5) ji
E
a
(5) j
a
(5) j
f
(5) j
f
(5) j
(5) ji
(t
1)
m(2) ji
(t)
E aห้องสมุดไป่ตู้(j2)
ef
(2) j
2(ui(2)
m(2) ji
)
((j2i ) )2
(2) ji
(t
1)
(2) ji
(t
)
E
a
(2) j
ef
(2) j
2(ui(2)
m(2) ji
)2
((j2i ) )3
27/47
整个学习流程
训练样本数据
❖采用竞争学习获得 ❖记o(3)i(t)为规则节点的激励强度、 o(4)i(t)为第
四层输出语言值节点输出 ,则
wij
(t
)
o(4) j
( wij
(t)
o(3) i
)
18/47
规则删除
❖仅保留规则节点与同一输出语言变量的所有 语言值节点的连接系数最大的那个连接关系, 将其余的连接关系删除。
m u (5) (5) ji i
(
u (5) (5)
ji i
)
(
m u )u (5) (5) (5) (5)
ji ji i
i
[ y(t) yˆ(t)]
i
i
(
u ) (5) (5) 2 ji i
i
❖反向传播到上一层的广义误差δ(5)为
(5) j
E
f
(5) j
E a(j5)
a(j5)
29/47
基于神经元网络的自适应控制
❖神经网络控制器完全满足自适应控制的要素
在线、实时地了解对象; 有一个可调节环节; 能使系统性能达到指标要求和最优。
❖常规的神经网络控制器本身也具有一定的自 适应能力 。
30/47
设计思想
第7章 模糊神经网络控制 与自适应神经网络
智能控制基础
目录
7.1 模糊神经网络控制 7.2 基于神经元网络的自适应控制
7.3* 自适应神经网络结构学习
2/47
7.1 模糊神经网络控制
7.1.1 神经网络与模糊控制系统
7.1.2 模糊神经网络的学习算法
3/47
模糊神经网络理论的出发点
❖模糊控制系统的隶属度函数或控制规则的设 计方法存在很大的主观性。
❖利用神经网络的学习功能来优化模糊控制规 则和相应的隶属度函数、将一些专家知识预 先分布到神经网络中去是提出模糊神经网络 理论的两个基本出发点。
图7-2 :规则节点合并示例
21/47
2. 有导师学习阶段
❖可采用BP学习
E 1 ( y( t ) ˆy( t ))2 min 2
w( t 1 ) w( t ) ( E ) w
E E (net) E f E f a w (net) w f w f a w
❖完成模糊逻辑推理条件部的匹配工作 。由最 大、最小推理规则可知,规则节点实现的功 能是模糊“与”运算。
fj(3)=min(u1(3),u2(3),...,up(3)), aj(3)=fj(3)
且第二层节点与第三层节点之间的连接系数 wji(3)=1
9/47
第四层
(3) k
u
(3) j
min(u1(3) , u2(3) ,..)
otherwise
E
a
(2 j
)
k
q (3) k
❖ qk(3)=δk(3) 当aj(2)是第k个规则节点输入值中的最小值时; ❖ qk(3)=0 其它情况下。
26/47
第二层学习公式
m(2) ji
❖当某一规则节点与某一输出语言变量所有语 言值节点之间的连接系数都非常小时,则所 有的连接关系都可以删除。
❖如果某一规则节点与第四层中的所有节点的 连接系数都很少而被删除的话,则该规则节 点对输出节点不产生任何影响。因此,该规 则节点可以删除。
19/47
规则合并
f
(2) j
Mj Xi
(m(ji2)
,
(2) ji
)
(ui(2)
m(2) ji
)2
(
(2) ji
)2
,
a e (2)
f
(2) j
j
❖其中: mji和σji分别表示第i个输入语言变量Xi 的第j个语言值隶属度函数的中心值和宽度。
可抽象看作第一、二层神经元节点之间的连 接系数wji(2) 。
8/47
第三层
❖与传统的自适应控制器一样 ,有两种不同的 设计途径 :
控制
直接控制
• 通过系统辨识 获取对象的数 学模型,再根 据一定的设计 指标进行设计;
• 根据对象的输 出误差直接调 节控制器内部 参数来达到自 适应控制的目 的。
31/47
7.2 基于神经元网络的自适应控制
❖通过求下列目标函数的极小值来获取,即:
E
1 2
N
[
i1 jNnearest
mi m j
i
2
r]2
其中 r为重叠参数 。 ❖也可以采用一阶最近邻域法近似:
i
mi
mcloest r
17/47
推理规则的确定
❖即确定第三层规则节点和第四层输出语言值 节点之间的连接关系。
❖第一阶段,使用自组织学习方法进行各语言 变量语言值隶属度函数的初步定位以及尽量 发掘模糊控制规则的存在性(即可以通过自 组织学习删除部分不可能出现的规则)
❖在第二阶段,利用有导学习方法来改进和优 化期望输出的各语言值隶属度函数。
13/47
1. 自组织学习阶段
4/47
模糊神经网络结构图
5/47
结构说明
❖第一层节点为输入节点,用来表示语言变量; ❖输出层的每个输出变量有两个语言节点,一
个用于训练时期望输出信号的馈入,另一个 表示模糊神经网络推理控制的输出信号节点; ❖第二层和第四层的节点称为项节点,用来表 示相应语言变量语言值的隶属度函数。 ❖第三层节点称为规则节点,用来实现模糊逻 辑推理。其中第三、四层节点间的连接系数 定义规则节点的结论部、第二、三层节点间 的连接系数定义规则节点的条件部。