模糊神经网络控制与自适应神经网络

第7章模糊神经网络控制

与自适应神经网络

智能控制基础

目录

https://www.360docs.net/doc/2a19063833.html, 7.1 模糊神经网络控制

7.2 基于神经元网络的自适应控制7.3*自适应神经网络结构学习

7.1 模糊神经网络控制

https://www.360docs.net/doc/2a19063833.html,

7.1.1 神经网络与模糊控制系统

7.1.2 模糊神经网络的学习算法

模糊神经网络理论的出发点

https://www.360docs.net/doc/2a19063833.html, 模糊控制系统的隶属度函数或控制规则的设

计方法存在很大的主观性。

利用神经网络的学习功能来优化模糊控制规

则和相应的隶属度函数、将一些专家知识预

先分布到神经网络中去是提出模糊神经网络

理论的两个基本出发点。

模糊神经网络结构图

https://www.360docs.net/doc/2a19063833.html,

结构说明

https://www.360docs.net/doc/2a19063833.html, 第一层节点为输入节点,用来表示语言变量; 输出层的每个输出变量有两个语言节点,一

个用于训练时期望输出信号的馈入,另一个

表示模糊神经网络推理控制的输出信号节点; 第二层和第四层的节点称为项节点,用来表

示相应语言变量语言值的隶属度函数。

第三层节点称为规则节点,用来实现模糊逻

辑推理。其中第三、四层节点间的连接系数

定义规则节点的结论部、第二、三层节点间

的连接系数定义规则节点的条件部。

https://www.360docs.net/doc/2a19063833.html,

这一层的节点只是将输入变量值直接传送到下一层。所以,

且输入变量与第一层节点之间的连接系数w ji (1)=1。

f

u a

f

j

j j

j

()()()(),1111==

https://www.360docs.net/doc/2a19063833.html,

实现语言值的隶属度函数变换,可选取钟型函数

其中:m ji 和σji 分别表示第i 个输入语言变量X i 的第j 个语言值隶属度函数的中心值和宽度。可抽象看作第一、二层神经元节点之间的连接系数w ji (2)。

f

M m u

m a

e

j

X j ji ji

i

ji ji

j

f i

j ()()()()()()()(,)()

()

,()

2222222222==-

-=σσ

https://www.360docs.net/doc/2a19063833.html, 完成模糊逻辑推理条件部的匹配工作。由最大、最小推理规则可知,规则节点实现的功

能是模糊“与”运算。

f j(3)=min(u1(3),u2(3),...,u p(3)), a j(3)=f j(3)

且第二层节点与第三层节点之间的连接系数

w ji(3)=1

https://www.360docs.net/doc/2a19063833.html, 有两种模式

从上到下的传输模式时,与第二层相同,实现模糊化的功能。

从下到上的传输模式中,实现的是模糊逻辑

推理运算。根据最大、最小推理规则,是模

糊“或”运算:

f j(4)=max(u1(4),u2(4),...,u p(4)), a j(4)=f j(4)

(4)=1

且第三、四层节点之间的连接系数w

ji

https://www.360docs.net/doc/2a19063833.html,

有两种模式

从上到下的信号传输方式,同第一层。 从下到上是精确化计算,如果采用重心法,有

则第四层节点与第五层节点之间的连接系数w ji (5)可以看作是m ji (5)·σji (5)。

f

w u

m u a

f

u

j

ji i

ji

ji

i

i

j

j

ji i

i

()()()()()()()()()()(),5555555555===

∑∑∑σσ

7.1 模糊神经网络控制

https://www.360docs.net/doc/2a19063833.html,

7.1.1 神经网络与模糊控制系统

7.1.2 模糊神经网络的学习算法

混合学习算法

https://www.360docs.net/doc/2a19063833.html, 第一阶段,使用自组织学习方法进行各语言

变量语言值隶属度函数的初步定位以及尽量

发掘模糊控制规则的存在性(即可以通过自

组织学习删除部分不可能出现的规则)

在第二阶段,利用有导学习方法来改进和优

化期望输出的各语言值隶属度函数。

https://www.360docs.net/doc/2a19063833.html,

1. 自组织学习阶段

问题描述:

给定一组输入样本数据x i (t),i=1,2,...,n 、期望的输出值y i (t),i=1,2,...,m 、模糊分区|T(x)|和|T(y)|以及期望的隶属度函数类型(即三角型、钟型等)。

学习的目的是找到隶属度函数的参数和系统实际存在的模糊逻辑控制规则。

https://www.360docs.net/doc/2a19063833.html,

隶属度函数参数的获取

中心值m i 的估计:Kohonen 自组织映射法 宽度值σi 是与重叠参数r 以及中心点m i 邻域内分布函数值相关。

https://www.360docs.net/doc/2a19063833.html,

Kohonen 自组织映射法

一种自组织学习。经过一段时间的学习后,其权值的分布可以近似地看作输入随机样本的概率密度分布。学习过程是一个Winner-take-all 的过程,具体如下:

{}

)()(min )()(1t m t x t m t x i k

i closest -=-≤≤m cloest (t +1)= m cloest (t ) +α(t )[x (t )-m cloest (t )] m i (t +1)=m i (t ) 当m i (t )≠m cloest (t ) k =|T(x )|表示语言变量x 语言值的数目

https://www.360docs.net/doc/2a19063833.html,

宽度σi 的计算

通过求下列目标函数的极小值来获取,即:

其中r 为重叠参数。

也可以采用一阶最近邻域法近似:

2

2

1][21

r m m E N

i N j i

j i nearest -???

?

??-=∑∑=∈σσi i cloest

m m r

=

-

https://www.360docs.net/doc/2a19063833.html,

推理规则的确定

即确定第三层规则节点和第四层输出语言值节点之间的连接关系。 采用竞争学习获得

记o (3)i (t )为规则节点的激励强度、o (4)i (t )为第四层输出语言值节点输出,则

?w t o w t o ij j ij i

()(())

()()=-+43

https://www.360docs.net/doc/2a19063833.html, 仅保留规则节点与同一输出语言变量的所有

语言值节点的连接系数最大的那个连接关系,将其余的连接关系删除。

当某一规则节点与某一输出语言变量所有语

言值节点之间的连接系数都非常小时,则所

有的连接关系都可以删除。

如果某一规则节点与第四层中的所有节点的

连接系数都很少而被删除的话,则该规则节

点对输出节点不产生任何影响。因此,该规

则节点可以删除。

https://www.360docs.net/doc/2a19063833.html, 合并的条件

该组节点具有完全相同的结论部(如图7-2中

输出变量yi中的第二个语言值节点);

在该组规则节点中某些条件部是相同的(如图

7-2中输入变量x

0中的第一个语言值节点的输

出与该组规则节点全部相连);

该组规则节点的其它条件输入项包含了所有其它输入语言变量某一语言值节点的输出。

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑和神经网络的结合成为可能。 2 模糊神经网络的学习算法 各种类型的模糊神经网络学习算法的共同方面是结构学习和参数学习两部分。结构学习是指按照一定的性能要求确定模糊系统的推理规则的条数,每条规则的前提和结论的隶属度函数以及由清晰化得到具体的规则数。参数学习是指进一步细化各隶属函数的参数以及模糊规则的其他参数,以使系统达到最优。结构学习主要是从输入输出数据中提取规则或由输入空间模糊划分获得规则,主要有启发式搜索、模糊网格法、树形划分法、基于模糊聚类的学习算

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

9.7 机器人神经网络自适应控制

声明:应部分读者的要求,本书第9章增加“机器人神经网络自适应控制”一节,图序、公式序顺延。 9.7 机器人神经网络自适应控制 机器人学科是一门迅速发展的综合性前沿学科,受到工业界和学术界的高度重视。机器人的核心是机器人控制系统,从控制工程的角度来看,机器人是一个非线性和不确定性系统,机器人智能控制是近年来机器人控制领域研究的前沿课题,已取得了相当丰富的成果。 机器人轨迹跟踪控制系统的主要目的是通过给定各关节的驱动力矩,使得机器人的位置、速度等状态变量跟踪给定的理想轨迹。与一般的机械系统一样,当机器人的结构及其机械参数确定后,其动态特性将由动力学方程即数学模型来描述。因此,可以采用自动控制理论所提供的设计方法,采用基于数学模型的方法设计机器人控制器。但是在实际工程中,由于机器人是一个非线性和不确定性系统,很难得到机器人精确的数学模型。 采用神经网络,可实现对机器人动力学方程中未知部分的精确逼近,从而实现无需建模的控制。本节讨论如何利用神经网络控制和李雅普诺夫(Lyapunov )方法设计机器人轨迹跟踪控制的问题,以及如何分析控制系统的稳定性和收敛性。 9.7.1 机器人动力学模型及其结构特性 n 关节机械手动态方程可表示为: ()()()(),d ++++=M q q V q q q G q F q ττ (9.30) 其中,n R ∈q 为关节转动角度向量,()M q 为n n ?维正定惯性矩阵,(),V q q 为n n ?维向心哥氏力矩,()G q 为1?n 维惯性矩阵,()F q 为1?n 维摩擦力,d τ为未知有界的外加干扰,n R ∈τ为各个关节运动的转矩向量,即控制输入。 机器人动力学系统具有如下动力学特性: 特性1:惯量矩阵M(q)是对称正定阵且有界; 特性2:矩阵(),V q q 有界; 特性3:()()2,-M q C q q 是一个斜对称矩阵,即对任意向量ξ,有 ()()()2,0T -=ξ M q C q q ξ (9.31)

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

神经网络控制大作业_南航_智能控制

南京航空航天大学研究生实验报告 实验名称:神经网络控制器设计 姓名: 学号: 专业: 201 年月日

一、题目要求 考虑如下某水下航行器的水下直航运动非线性模型: ()||a m m v k v v u y v ++== 其中v R ∈为水下航行器的前进速度, u R ∈为水下航行器的推进器推力,y R ∈为水下航行器的输出,航行器本体质量、附加质量以及非线性运动阻尼系数分别为 100,15,10a m m k ===。 作业具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 二、神经网络控制器的设计 1.构建系统的PID 控制模型 在Simulink 环境下搭建水下航行器的PID 仿真模型,如下图1所示: 图1 水下航行器的PID 控制系统 其中,PID 控制器的参数设置为:K p =800,K i =100,K d =10。 需要注意的一点是,经过signal to workspace 模块提取出的数据的Save format 为Array 格式。

2.BP神经网络控制器的训练 首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。经过signal to workspace模块提取出的数据为一个训练数据个数乘以输入(或输出)个数的矩阵,因此分别将x、u转置后就得到标准训练数据x’,u’。 然后,新建m文件,编写神经网络控制器设计程序: %---------------------------------------------------------------- p=x'; %input t=u'; %input net=newff(p,t,3,{'tansig','purelin'},'trainlm'); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,x',u'); %train network gensim(net,-1); %generate simulink block %---------------------------------------------------------------- 上述m文件建立了如下图所示的神经网络,包含输入层、1个隐含层和输出层,各层神经元节点分别为1、 3 和1。 图2 神经网络控制器结构及训练方法

神经网络自适应控制

神经网络自适应控制 学院:电气工程与自动化学院 专业:控制科学与工程 姓名:兰利亚 学号: 1430041009 日期: 2015年6月25日

神经网络间接自适应控制 摘要:自适应模糊控制系统对参数变化和环境变化不敏感,能用于非线性和多变 量复杂对象,不仅收敛速度快,鲁棒性好,而且可以在运行中不断修正自己的控制 规则来改善控制性能,因而受到广泛重视。间接自适应控制是通过在线辨识的到 控制对象的模型。神经网络作为自适应控制器,具有逼近任意函数的能力。 关键词:神经网络间接自适应控制系统辨识 一、引言 自适应控制系统必须完成测量性能函数、辨识对象的动态模型、决定控制 器如何修改以及如何改变控制器的可调参数等功能。自适应控制有两种形式: 一种是直接自适应控制,另一种是间接自适应控制。直接自适应控制是根据实 际系统性能与理想性能之间的偏差,通过一定的方法来直接调整控制器的参 数。 二、间接自适应系统分析与建模 2.1系统的分析 系统过程动态方程:y(k+1)= -0.8y(k)/(1+y2(k))+u(k),参考系统模型 由三阶差分方程描述: ym(k+1)=0.8ym(k)+1.2ym(k-1)+0.2ym(k-2)+r(k) 式中,r(k)是一个有界的参考输入。如果输出误差ec(k)定义为 ec(k)=y(k)-ym(k),则控制的目的就是确定一个有界的控制输入u(k),当k趋于 正无穷时,ec(k)=0.那么在k阶段,u(k)可以从y(k)和它的过去值中计算得 到: u(k)=0.8y(k)/(1+y2(k))+0.8y(k)+1.2y(k-1)+0.2y(k-2)+r(k) (1) 于是所造成的误差方程为: ec(k+1)=0.8ec(k)+1.2ec(k-1)+0.2ec(k-2) (2) 因为参考模型是渐进稳定的,所以对任意的初始条件,它服从当k趋于无穷, ec(k)=0。在任何时刻k,用神经元网络N2计算过程的输入控制,即 u(k)=-N[y(k)]+0.8y(k)+1.2y(k-1)+0.2y(k-2)+r(k) (3) 由此产生非线性差分方程:y(k+1)=-0.8y(k)/(1+y2(k))+N[y(k)] +0.8y(k)+ 1.2y(k-1)+0.2y(k-2)+r(k) (4) 故设计的要点是设计一个神经网络来逼近0.8y(k)/(1+y2(k))。 2.2系统的建模设计过程 第一步,用BP神经网络逼近,神经网络的结构包含三层:输入层、隐含层 和输出层。BP网络的训练过程如下:正向传播是输入信号从输入层经隐层传向 输出层,若输出层得到了期望的输出,则学习算法结束;否则,转至反向传 播。 第二步,输入测试样本,对神经网络的逼近程度进行测试,将测试后的期

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

智能控制大作业-神经网络

智能控制与应用实验报告神经网络控制器设计

一、 实验内容 考虑一个单连杆机器人控制系统,其可以描述为: 0.5sin()Mq mgl q y q τ+== 其中20.5M kgm =为杆的转动惯量,1m kg =为杆的质量,1l m =为杆长, 29.8/g m s =,q 为杆的角位置,q 为杆的角速度,q 为杆的角加速度, τ为系统的控制输入。具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 4、为系统设计神经网络PID 控制器(选作)。 二、 对象模型建立 根据公式(1),令状态量121=,x q x x = 得到系统状态方程为: 12121 0.5**sin() x x mgl x x M y x τ=-= = (1) 由此建立单连杆机器人的模型如图1所示。

图1 单连杆机器人模型 三、系统结构搭建及神经网络训练 1.系统PID结构如图2所示: 图2 系统PID结构图 PID参数设置为Kp=16,Ki=10,Kd=8得到响应曲线如图3所示:

01234 5678910 0.2 0.4 0.6 0.8 1 1.2 1.4 t/s a n g l e /r a d 图3 PID 控制响应曲线 采样PID 控制器的输入和输出进行神经网络训练 p=[a1';a2';a3']; t=b'; net=newff([-1 1;-1 1;-1 1],[3 8 16 8 1],{'tansig' 'tansig' 'tansig' 'logsig' 'purelin'}); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,p,t); gensim(net,-1) 产生的神经网络控制器如图4所示:

MATLAB和神经网络自适应控制

自动控制理的研究离不开人类社会的发展。电子计算机的迅速发展、计算和信息处理的水平提高不断地促使着自动控制理论向更复杂的方向发展。自适应控制的提出是针对系统的非线性、不确定性、复杂性。它的研究主要目标不再是被控对象而是控制系统本身。自上世纪年代初神经网络控制系统,提出了基于理论和应用方面都有了新的突破。 MATLAB简介 MATLAB是美国MathWorks公司开发的用于教育、工程与科学计算的软件产品,它向用户提供从概念设计、数据分析、算法开发、建模仿真到实时实现的理想集成环境,是国际控制界公认的标准计算软件。经过十多年的不断地完善和扩充,MATLAB已经拥有了数十个工具箱和功能模块,可以实现数值分析、优化、统计偏微分方程数值解、自动控制、信号处理、图像处理、声音处理、系统建模等诸多领域的计算和图形显示功能。 MATLAB提供了一种用于编程的高级语言——M语言。M语言是一种面向科学与工程计算的高级语言,其最大的特点是简单和直接。它允许用数学形式的语言编写程序,MATLAB的程序文件和脚本文件通常保存为后缀为“.m”的文件,可以称之为M文件。MATLAB是一种基于不限维数组数据类型的内部交互系统,它既能够进行矩阵和向量计算,也能够采用特定的方法在标量语言中编写程序。它采用一些常用的数学符号来表示问题及其解决方案,将计算、可视化和编程等功能集成于一个简单、易用的开发环境中,为用户工作平台的管理和数据的输入/输出提供了便利的方法,同时还提供了M文件的扩展和管理工具。 神经网络自适应控制 人工神经网络ANN( Ar tif icial Neur al Netw ork) 简称神经网络,是在现代神经学的基础上提出来的,是对人脑或自然神经网络基本特征的抽象和模拟。神经网络很早之前就被证明出来有逼近任意连续有界非线性函数的特殊能力。因此它有很多优点,比如强鲁棒性、容错性、强自适应能力强等。复杂的系统控制提供了一条全新的思路和选择。神经网络控制系统的结构形式有很多种,本文着重介绍神经网络自适应控制方法。一般包括补偿器和自适应处理单元。自适应控制系统的本质是一个非线性随机控制系统,很难为其找到合适的数学模型。为了充分发挥出自适应控制系统的优越性能,提高控制系统的鲁实时性、容错性、鲁棒性以及控制系统参数的自适应能力,能更有效地实现对一些非线性复杂过程系统的

智能控制(神经网络)作业

智能控制作业 学生姓名: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2 )1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6

模糊神经网络在智能控制中的应用研究

模糊神经网络在智能控制中的应用研究1 郑子杰,王虎 武汉理工大学信息工程学院,武汉 (430070) E-mail :zhzijie.27@https://www.360docs.net/doc/2a19063833.html, 摘 要:本文简要介绍了神经网络(Neural Network )及模糊神经网络(Fuzzy Neural Network )的特点以及发展状况,并给出了模糊神经网络在智能控制中的几种应用,同时指出了今后研究中有待解决的一些问题,并对模糊神经网络技术将来的发展及其在工程上的应用作了展望。 关键词:神经网络,模糊神经网络,FFNC ,智能控制 中图分类号: TP183 文献标识码:A 1. 神经网络简介 神经网络是仿效生物处理模式以获得智能信息处理功能的理论。神经网络着眼于脑的微观网络结构,通过大量神经元的复杂连接,采用由底到顶的方法,通过自学习、自组织和非线性动力学所形成的并行分布方式,来处理难于语言化的模式信息[1]。自1943年第一个神经网络模型—MP 模型被提出至今,神经网络的发展十分迅速,特别是1982年提出的Hopfield 神经网络模型和1985年Rumelhart 提出的反向传播算法BP ,使Hopfield 的模型和多层前馈型神经网络成为用途广泛的神经网络模型,在语音识别、模式识别、图像处理和工业控制等领域的应用颇有成效。 神经网络的核心由其基本结构、学习规则及其工作方式三大部分组成。 1.1 基本结构 神经网络是由大量神经元广泛互连而成的复杂网络系统。单一神经元可以有许多输入、输出。神经元之间的相互作用通过连接的权值体现。神经元的输出是其输入的函数。常用的函数类型有:线性函数、Sigmoid 型函数和阈值型函数[2]。虽然单个神经元的结构和功能极其简单和有限,而大量神经元构成的网络系统其行为却是丰富多彩的。图1表示出单个神经元和Hopfield 模型的结构。 在图1(a)中, i u 为神经元的内部状态, i θ为阈值,i x 为输入信号, ij w 表示从j u 到i u 连接的权值, i s 表示外部输入信号,则神经元的输入为-i i j j i i n e t w x s θ=+∑,输出为 ()i i y f n e t =,其中f 是神经元的转 换函数。 在图1(b)中。Hopfield 模型是由许多神经元构成的互连网络,适当选取神经元兴奋模式的初始状态,则网络的状态将逐渐到达一个极小点即稳定点、从而可以联想出稳定点处的样本。 神经网络的基本特征是: (1)大规模并行处理。神经网络能同时处理与决策有关的因素,虽然单个神经元的动作速度不快,但网络的总体处理速度极快。 1本课题得到教育部重点项目(03120)(基于FSOC 嵌入式微控制器设计与研究)的资助。

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

机械臂神经网络自适应控制

机械臂神经网络自适应控制 一.前言 由于经典控制方法和现代控制方法在控制机器人这种复杂系统时所表现的种种不足,近年来,越来越多的学者开始将智能控制方法引入机器人控制,实现机器人控制的智能化。主要的控制方法有:模糊控制Fc,神经网络控制NNc,专家控制Ec等等。对于复杂的环境和复杂的任务,如何将人工智能技术中较少依赖模型的求解方法与常规的控制方法来结合,正是智能控制所要解决的问题。因此,智能控制系统必须具有模拟人类学习和自适应、自组织的能力。现代智能控制技术的进步,为机器人技术的发展尤其是智能机器人技术的研究与发展提供了可能。神经网络的研究已经有30多年的历史,它是介于符号推理与数值计算之间的一种数学工具,具有很好的学习能力和适应能力,适合于用作智能控制的工具,所以神经网络控制是智能控制的一个重要方面。由于神经网络在许多方面试图模拟人脑的功能。因此神经网络控制并不依赖精确的数学模型,并且神经网络对信息的并行处理能力和快速性,适于机器人的实时控制。神经网络的本质非线性特性为机器人的非线性控制带来了希望。神经网络可通过训练获得学习能力,能够解决那些用数学模型或规则描述难以处理或无法处理的控制过程。同时神经网络还具有很强的自适应能力和信息综合能力,因而能同时处理大量的不同类型的控制输人,解决输入信息之间的互补性和冗余性问题,实现信息融合处理。这就特别适用于像机器人这样具有复杂的不确定性系统、大系统和多变量高度非线性系统的控制。近年来,神经网络在机器人控制中得到了广泛的应用。 二、机械臂系统设计 机械臂是一个多输人多输出、强耦合的复杂机电系统,要对其实现精确的控制比较困难。为此,先不考虑机械臂的动态控制,只对其进行运动控制,使其能够准确的跟踪给定的轨迹曲线。其基本的控制结构,如图1所示。 (一)机械臂的模型设计 本文针对两关节机械臂进行设计,两关节机械臂的控制图如下 n一连杆平面机械臂的动力学模型如下式: (2-1)其中分别代表各关节的角度位置、角速度以及角加速度; 为惯性矩阵;为向心矩阵;为重力向量;代表控制输入向 量。

智能控制神经网络的自适应PID控制器综述

HUNAN UNIVERSITY 2016 年6 月 25 日 课程 智能控制理论 题 目 基于神经网络的自适应PID 控制器的设计 学生姓名 学生学号 专业班级 学 院 名 称

基于神经网络的自适应PID控制器的设计 摘要 神经网络由于其固有的自学习、自适应、自组织和大规模并行处理能力,已经在控制及其优化领域取得了广泛的应用。利用神经网络来可以处理控制系统的非线性、不确定性和逼近系统的辨识函数等问题并取得了大量研究成果。PID控制是最经典的控制算法,其简单、稳定、高效的性能使其在工业控制领域具有绝对的统治地位。但是面对现代控制系统规模大,复杂度高的情况,单纯使用传统的PID控制已经无法满足要求。本文结合神经网络与PID两者的优势,提出了一种基于神经网络的自适应PID控制器的设计的方法。实验证明该方法具有一定的实际应用价值。 近年来,智能控制在工业领域的应用受到了广泛的关注,硬件性能的不断提高与硬件成本的不断降低起到了至关重要的作用。目前在工业中单纯使用传统的控制方法具有一定的局限性,在面对复杂系统与大规模控制的情况下不能保证在任何时刻都提供准确无误的控制信号,将传统的PID控制方法结合智能控制中的神经网络控制可以克服信息的不完备性和不确定性,更加准确地控制被控对象,从而做出正确的判断和决策。 1.神经网络控制 神经网络用于控制系统设计主要是针对系统的非线性、不确定性和复杂性进行的。资料显示,国内外将神经网络用于控制系统设计的方式和结构还未有一种统一的分类方法。目前,对神经网络控制系统比较公认地研究方向可以分为监督控制、神经自适应控制、预测控制和逆控制,这时根据控制系统的结构划分的。本文利用到的就是神经自适应控制。 本文结合神经网络自适应控制与PID控制,提出了一种有效的控制器设计方法,并在在MA TLAB中进行控制系统仿真。 2.控制器原理 根据当前产生误差的输入和输出数据,以及误差的变化趋势作为神经网络的输入条件,神经网络将根据当前PID控制器的误差情况以及过去所有进行的PID控制历史数据,共同作为样本数据,重新进行神经网络的参数的训练,得到神经网络内部传递函数的新的表达式,之后PID参数调整将依据新的神经网络进行自动的控制和调整,从而以实现PID控制器具备自适应调节的能力。 图2-1 单神经元自适应PID控制实现原理图 为此设计了PID控制器实现原理图,如图2-1所示。从图2中可以看出PID控制器在完成正常PID功能之外设计了基于神经网络的PID参数调整模块。模块依照前期生成的神

神经网络自适应控制地原理

神经网络自适应控制的原理 自适应控制是一种特殊的反馈控制,它不是一般的系统状态反馈或输出反馈,即使对于现行定常的控制对象,自适应控制亦是非线性时变反馈控制系统。这种系统中的过程状态可划分为两种类型,一类状态变化速度快,另一类状态变化速度慢。慢变化状态可视为参数,这里包含了两个时间尺度概念:适用于常规 反馈控制的快时间尺度以及适用于更新调节参数的慢时间尺度,这意味着自适应 控制系统存在某种类型的闭环系统性能反馈。原理图如下: 图2-7自适应控制机构框图 人工神经网络(简称ANN)是也简称为神经网络(NNS )或称作连接模型,是对人脑或自然神经网络若干基本特性的抽象和模拟。人工神经网络以对大脑的 生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面 的功能。人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。”这一定义是恰当的。 人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型。目前在神经网络研究方法上已形流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类: (1)利用神经生理与认知科学研究人类思维以及智能机理。 (2)利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经

网络模型,深入研究网络算法和性能,女口:稳定性、收敛性、容错性、 鲁棒性等;开发新的网络数理理论。 应用研究可分为以下两类: (1) 神经网络的软件模拟和硬件实现的研究。 (2) 神经网络在各个领域中应用的研究。 神经网络具有以下?特点: (1) 能够充分逼近任何复杂的非线性关系; (2) 全部定性或定量的信息都均匀分布存在于网络内的各神经元,因此有很强 的容错性和鲁棒性; (3) 使用并行分布处理的方式,让大量运算成可以快速完成; 神经网络自适应的一般结构 神经网络自适应控制有两种基本结构形式,一种是神网络模型参考自适应 控制 (NNMRAC ),—种是神经网络自校正控制(NNSTC )。神经网络模型参考自 适应控制又分为直接型与间接型。结构如图(2 -8 )所示。构造一个参考模型使 其输出为期望输出,控制的目的是使y 跟踪。 (a )直接型 (b)间接型 图2-8神经网络模型参考自适应控制结构 y

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

相关文档
最新文档