7方差分析

合集下载

7方差分析

7方差分析

案例


商品的广告策略,对不同广告形式在不同 地区的广告效果进行了评估。 以销售额为观测变量,广告形式和地区为 控制变量,通过单因素方差分析进行分析
地区对 销售额 的影响 组间, 水平
销售额 Sum of Squar es 9265.306 16904.00 26169.31 df 17 126 143 Mean Square 545.018 134.159 F 4.062 Sig. .000
称为Ai 对观测变量产生的效应,且 ai 0
xij ai ij, i 1,, k , j 1,, r 单因素方差分析模型
SSA/ k 1 MSA F ~ F k 1, n k SSE / n k MSE
基本操作

Analyze-compare means-one way anova
95% C onfiden ce Inter v al Low er Bound Up per Bound -3.2784 7.9451 11.0549 22.2784 .9993 12.2229 -7.9451 3.2784 8.7216 19.9451 -1.3340 9.8896 -22.2784 -11.0549 -19.9451 -8.7216 -15.6673 -4.4438 -12.2229 -.9993 -9.8896 1.3340 4.4438 15.6673 -5.2631 9.9298 9.0702 24.2631 -.9854 14.2076 -9.9298 5.2631 6.7369 21.9298 -3.3187 11.8742 -24.2631 -9.0702 -21.9298 -6.7369 -17.6520 -2.4591 -14.2076 .9854 -11.8742 3.3187 2.4591 17.6520

统计学 7方差分析

统计学 7方差分析

13
四、单因素方差分析
(二)分析步骤
•1、提出假设 •2、构造检验统计量 •3、统计决策
2020/4/26
14
1、提出假设
1) 一般提法
▪ H0 : 1 = 2 =…= k
• 自变量对因变量没有显著影响
▪ H1 : 1 ,2 ,… ,k不全相等
• 自变量对因变量有显著影响
2) 注意:拒绝原假设,只表明至少有两个总 体的均值不相等,并不意味着所有的均值 都不相等
12
四、单因素方差分析
(一)单因素方差分析的数据结构 (one-way analysis of variance)
观察值 ( j )
1 2 : ni
水平A1
x11 x12 :
x 1n1
因素A ( i )
水平A2

x21

x22

:
:
x 2n2

水平Ak
xk1 xk2 :
x knk
2020/4/26
3. 判断因素的水平是否对其观察值有影响,实际上就
是比较组间方差与组内方差之间差异的大小
2020/4/26
23
(4)计算均方MS
1. 各误差平方和的大小与观察值的多少有关,为
消除观察值多少对误差平方和大小的影响,需
要将其平均,这就是均方,也称为方差
2. 计算方法是用误差平方和除以相应的自由度
3. 三个平方和对应的自由度分别是
系统误差:在因素的不同水平(不同总体)下,各
观察值之间的差异。比如,同一家超市,不同颜色饮
料的销售量也是不同的,这种差异可能是由于抽样的 随机性所造成的,也可能是由于颜色本身所造成的, 后者所形成的误差是由系统性因素造成的,称为系统 误差。

第七章方差分析与F检验

第七章方差分析与F检验
第七章 方差分析
• 方差分析又称做变异分析,它的主 要功能在于分析实验数据中不同来 源的变异对总变异的贡献大小,如 实验处理引起的变异、被试个体差 异带来的变异、实验误差带来的变 异等,从而确定实验中的自变量是 否对因变量有重要影响。
第一节 方差分析的基本原理
一、方差分析的基本原理:综合的F检验 (一)综合虚无假设与部分虚无假设 方差分析主要处理多于两个以上的平均数
1、建立假设:H0:μ1=μ2=…=μk H1:至少有两个总体平均数是不
同的,即处理效应不全为0 2、计算离差平方和 3、求均方 4、计算F值 5、进行F检验
6、列出方差分析表
变异来源
组间变异 (处理)
组内变异 (误差)
总变异
自由度 平方和 均方 F
dfb=k-1
SSb MSA MSA/
Dfw=∑(n-1) SSw MSE MSE
(六)陈列方差分析表
二、方差分析的基本条件
1、数据所代表的总体必须是正态分布, 即样本必须来自属于正态分布。
2、变异具有可分解性。
3、各组内的方差应无显著差异。因此 理论上在做方差分析之前应先对各 组方差的一致性进行检验。
第二节 单因素完全随机化设 计的方差分析
完全随机设计的方差分析,就是对单因素 组间设计的方差分析。在这种实验研究 设计中,各种处理的分类仅以单个实验 变量为基础,因而把它称为单因素方差 分析或单向方差分析。
③计算均方
MSb=MSA=SSb/dfb=43.33/2=21.67 MSw=MSE=SSw/dfw=30.00/12=2.50 ④计算F值,进行F检验,做出决断
F= MSb/ MSw=21.67/2.50=8.67 查F表,F0.05(2,12)=3.88 8.67>3.88,拒绝虚无假设,可以认为在

7方差分析和一般线性模型

7方差分析和一般线性模型
13.880 25.497
Sig. .000 .000 .000
• 促 销 (promot) 的 F 检 验 统 计 量 ( 其 自 由 度 来 自 promot 和
error的自由度:2,20)取值为13.880,p-值为0.000(更精确
些是0.0001658).而售后服务的F检验统计量为25.497,
Sig. .000
[PROMOT=1.00]
32.708
1.865
17.539
.000
[PROMOT=2.00]
40.333
1.865
21.628
.000
[SERVICE=.00]
-9.417
1.865
-5.049
.000
[SERVICE=1.00]
0a
.
.
.
a. This parameter is set to zero because it is redundant.
度 n-p,在正态分布的假设下, 如果各组增重均值相等(零
假设), 则
F MSB SSB /( p 1) MSE SSE /(n p)
有自由度为 p-1 和n-p 的F 分布.
10
由SPSS可以得到方差分析表:
(比较一元总体的) ANOVA
WEIGHT(重量)
Sum of Squares(平 方和)
Between Groups(处 理)
SSB
Within Groups
SSE
(误差)
Total(总和)
SST
Df
自由度
P-1
n-p
n-1
Mean Square(均 方)
MSB=SSB/(p-1)

第7章:方差分析

第7章:方差分析

15.75
k
x

njxj
j 1
K
nj
811.5 88.625 815.75 888
11.9583
kr
SST
(xij - x)2
i1 j1
8
8
8
(x1 j - x)2 (x2 j - x)2 (x3 j - x)2
j 1
2.水平 水平是指因子在实验中所处的不同状态。如,例7.1中三个分 店处于三个不同的位置,每个位置被看作是一种水平。
3.观察值 观察值是指在具体的因素水平下,实验样本的观察数据。如, 例7.1中每个分店在8个观察日的销售额。
4.交互影响 当方差分析的影响因素不唯一时,需要关注各因素之间是否独 立。如果因素之间存在相互作用,我们称之为“交互影响”, 实际中这个交互影响可以看成是试验结果产生作用的一个新因 素,需要单独分离出来进行分析。
17
3
10
9
13
4
13
12
14
5
11
7
18
6
9
9
14
7
8
6
16
8
15
8
19
试分析这三家分店的平均日营业额是否相同,从而确定营业 地点这个位置因素是否对营业额有显著影响(α=5%)
相应的假设为:
H0 : 1 2 3 1,2,3三者不全相等
如果原假设成立,意味着营业位置对销售没有显著影响;如 果原假设不成立说明至少有两个地点的营业额是有显著差异的 ,即承认营业位置对销售存在显著影响。
方差分析是20世纪20年代发展起来的一种统计方法,是由 英国统计学家费舍尔在进行试验设计时为解释试验数据而首先 引入的。

第7章 方差分析-1

第7章 方差分析-1

第一节 方差分析的基本原理
在科学研究中进行多个平均数间的 差异显著性检验,即方差分析。 方差分析的基本思想是将测量数据 的总变异按照变异原因不同分解为处 理效应和试验误差,并作出其数量估 计。

一、数学模型

假设有k组观测数据,每组有n个观 测值,则用线性可加模型来描述每 一个观测值,有:
xij i ij
F检验 若实际计算的F值大于 F0.05( df ,df ),则 F 值在α=0.05的水平上显著,我们以95% 的可靠性推断 代表的总体方差大于 S t2 S e2 代表的总体方差。这种用F值出现概率 的大小推断两个总体方差是否相等的 方法称为 F检验。 无效假设把各个处理的变量假设来自 同一总体,即H0:σt2=σe2,对HA:σt2≠σe2 。
在多因素试验中,实施在试验单位上的具体项 目是各因素的某一水平组合。例如进行3种饲
料和3个品种对猪日增重影响的两因素试验,
整个试验共有3×3=9个水平组合,实施在试 验单位(试验猪)上的具体项目就是某品种与某
种饲料的结合。所以,在多因素试验时,试验
因素的一个水平组合就是一个处理。
5、试验单位(experimental unit) 在试验中能接受不同试验处理的独立的试 验载体叫试验单位。 在畜禽、水产试验中, 一只家禽、 一头
2 ( x xi )( xi x ) 0
1
2
(x x)
1
n
2
( x x ) ( xi x )
2 1 1
n
n
2
把 k 个处理的离均差平方和累加,得:
( x )
1 1
k
n
2
n ( xi x ) ( x x )

7假设检验方法方差齐性检验方差分析

7假设检验方法方差齐性检验方差分析


一般我们会采用公式
(拒绝区在右测)。
进行单侧检验
• 决策如下:


,则拒绝原假设,即两总体方差
差异显著;


,则接受原假设,即两总体方差
差异不显著(方差具有齐性)


7假设检验方法方差齐性检验方差分析
4
两个独立样本方差间差异的显著性检验
• 例 某次教改后,从施行两种不同教学方法的班级 中随机各抽出10份和9份试卷,得到如下的成绩数 据:
14
单因素完全随机设计方差分析的过程
• 实验中的自变量称为因素,只有一个自变
量的实验称为单因素实验;有两个或两个以上 自变量的实验称为多因素实验。
统计假设检验方法(二)
统计假设检验是统计推断的重要方法, 一般需要对平均数的差异 显著性进行检验,分单总体和双总体两种情况(用Z检验或t检验).若 比较三个或三个以上均数差异用方差分析.若对方差(统计量)差异进 行检验,用F检验;对分类计数变量的统计推断用卡方检验.本章主要 研究:
1、F检验—方差齐性检验(即检验总体方差是否相等); 2、方差分析—三个或三个以上均数差异分析;
7假设检验方法方差齐性检验方差分析
7
二、单因素完全随机设计方差分析

检验两个总体之间平均数差异
显著性用Z检验或t检验;检验两个总
体方差差异显著性用F检验;检验三
个或三个以上均数之间的差异性用
方差分析.这部分主要介绍:
1、方差分析的基本原理 2、方差分析的一般步骤 3、单因素完全随机设计方差分析过程
方差分析的基本原理:
方差分析就是将总体变异分解为组间变异( ) 和由抽样误差等其他原因产生的组内变异( ), 然后分析组间变异与组内变异的关系.若样本组 间变异比组内变异显著地大,则认为组间有本质 性差异,否则不认为组间有显著性差异.

高级统计学:第七章方差分析

高级统计学:第七章方差分析

第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。

一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。

饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。

这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。

现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。

新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。

A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。

可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。

二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。

如,颜色水平:将因素中不同的现象称为水平。

(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。

多因素方差分析:同时针对多个因素进行分析。

观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。

方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。

如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。

如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。

对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、CLASS
3、MODEL 4、MEANS
变量表;
因变量表=效应; 效应[/选择项];
5、ALPHA=p 显著性水平(缺省值为0.05) 是指因变量与自变量效应,模型如下: 1、主效应模型 MODEL y=a b c; 2、交互模型 3、嵌套效应 MODEL y=a b c MODEL y=a b c(a a*b b); (a b c是主效应,y是因变量) a*c b*c a*b*c;
4、混合效应模型号 MODEL
离差平方和 1.56 11.56 3.1 16.22
自由度 2 2 4 8
F值 FA=1.01 FB=7.46
F0.05(2,4) F0.01(2,4) 6.94 6.94 18.0 18.0
显著性
*
Q QB
X
i 1 j 1
3
3
2 ij
T2 16 .22 3 3
1 3 T2 2 QA Ti. 1.56 3 i 1 3 3
j 1 m n
T X ij Ti
i 1 j 1
2
m
n
m
i 1
2 Q ( X ij X ) ( X ij 2 X ij X X 2 ) i 1 j 1 i 1 j 1
m
n
1 m n X mnX X ( X ij )2 mn i 1 j 1 i 1 j 1 i 1 j 1
2 ij 2 2 ij
m
n
m
n
T2 X mn i 1 j 1
m n 2 ij
10
同样可推出:
1 m 2 QE X Ti n i 1 i 1 j 1
2 ij
m
n
1 m 2 T2 QA Ti n i 1 mn
2、数据的简化: 试验数据经过变换
' X ij b( X ij a)
16.2 16.8 19.0
2
15.1 17.5 20.1
3
15.8 17.1 18.9
4
14.8 15.9 18.2
5
17.1 18.4 20.5
6
15.0 17.7 19.7
A1 A2 A3
方差分析就是把总的 试验数据的波动分成
1、反映因素水平改变引起的波动。 2、反映随机因素所引起的波动。
然后加以比较进行统 计判断,得出结论。
6
二、离差平方和的分解与显著检验
记:
1 n X i X ij n j 1
将Q进行分解:
1 m n X X ij mn i 1 j 1
Q ( Xij X ) 2
i 1 j 1
m
n
Q
( X
m n i 1 j 1
ij
Xi ) (Xi X )
式中:
n
m ni
m ni i 1
T2 2 Q ( X ij X ) 2 X ij n i 1 j 1 i 1 j 1
m
ni
Ti
ni Xij j 1
Ti QE ( X ij X i ) X i 1 j 1 i 1 j 1 i 1 ni
13
列表:
方差来源
因素A 试验误差 总误差
离差平方和
4217.3 1114.7 5332
自由度
2 15 17
F值
28.38
F0.05
3.68
F0.01
6.38
显著性
**(十分显著)
说明:
F F (2,15)
,说明酸液浓度对汗布冲击强力有十分显著的影响。
14
15
16
17
18
五、各水平下试验次数不等时的方差分析 设第 i个水平试验次数为ni, 则有
9
(3)给定显著性水平
,查表得临界值 F (m 1, m(n 1))

(4)由样本观察值计算出F (5)若F > F (m 1, m(n 1)) ,则拒绝H0。 (说明因素A各水平间有显著性差异) (6)若F F (m 1, m(n 1)) ,则接受H0。(说明因素A各水平间无显著性差异) 三、计算的简化 1、 对Q、QE、QA计算简化。(给出一个简化的计算公式和数据简化的方法) 令: n Ti X ij
QB (l 1) FB F (l 1, ( m 1)(l 1)) QE (m 1)(l 1)
T2 T ml i 1
m 2 i.
1 l 2 T2 QB T. j m j 1 ml
3)给定显著水平
,查表得临界值
F (m 1, (m 1)(l 1))
试验结果
假设:美中不足组合水平下服从正态分布、互相独立、方差相等。 所需要解决的问题是:所有Xij的均值是否相等。
20
假设检验:
1)在假设H0成立的条件下。 2)统计量
T2 Q X ml i 1 j 1
m l 2 ij
QA 1 ( m 1) FA F ( m 1, (m 1)(l 1)) QA QE l (m 1)(l 1)
3
6
1 3 2 T2 1 6084 QA Ti 27332 42173 . 6 i 1 3 6 6 18
Q QE QA 1114.7 4217.3 5332
计算出F值:
QA 4217 .3 (3 1) 2 28 .38 QE 1114 .7 (3(6 1)) 5
方差分析
1
第一节
概述
因素(因子)—— 可以控制的试验条件
因素的水平 —— 因素所处的状态或等级 单(双)因素方差分析——讨论一个(两个) 因素对试验结果有没有显著影响。
2
例如:某厂对某种晴棉漂白工艺中酸液浓度(g/k)进 行试验,以观察酸液浓度对汗布冲击强力有无显著影 响。
冲击强力 浓度 序号
1
n m ( X i X ) ( X ij X i ) ( X i X )(nX i nX i ) 0 i 1 j 1 i 1
7
故:
Q ( X ij X i ) ( X i X ) 2
2 i 1 j 1 i 1 j 1
3
6
'2 ij
5670 T X Ti 78
i 1 j 1 ' ij i 1
3
6
3
Ti 2 27332
i 1
3
12
计算
1 3 2 1 QE X Ti 5670 27332 11147 . 6 i 1 6 i 1 j 1
'2 ij
4
第二节 单因素方差分析
一、假设检验 设:A1、A2、A3、为三个总体X1、X2、X3,每个总体有6个样 本Xi1、Xi2、…、Xi6 ( i=1,2,3 )。 注:要判断酸液浓度的3种水平对汗布的冲击强力是否有显著影响,实 质上就是检验3种不同水平所对应的3个总体是否有显著差异的问题。即 检验3个总体数学期望是否相等。 以后就是求解问题,为了说明一般解的公式(方法),如下作一般分析。
m n m n 2

2
( X ij X i ) ( X i X ) 2 ( X ij X i )( X i X )
2 i 1 j 1
n
m
n
i 1 j 1
i 1 j 1
由于
( X
i 1 j 1
m
m
ij
X i )( X i X )
冲击强力 浓度
序号
1
-8 -2 20
2
-19 5 31
3
X ij' 10( X ij 17)
4
-22 -11 12
5
1 14 35
6
-20 7 27
Ti
-80 14 144
X
j 1
6
'2 i
A1 A2 A3
由表中数据可算出
-12 1
1454 396 3820
19
X
i 1 j 1
第三节 双因素方差分析
例如:某厂对生产的高速钢铣刀进行淬火工艺试验,考察回火温度A和淬火温度B两 个因素对强度的影响。今对两个因素各3个水平进行试验,得平均硬度见表: Bj B1(1210‘C)B2(1235’C)B3(1250‘C) Ai A1(280’C) A2(300‘C) A3(320’C) 64 66 65 66 68 67 68 67 68
3
方差分析的基本思想:把全部数据关于总均值的离差平方和 分解成几部分,每一部分表示某因素诸水平交互作用所产生 的效应,将各部分均方与误差均方相比较,从而确认或否认 某些因素或交互作用的重要性。
用公式概括为:
各因素引起
由个体差异 引起(误差)
总变异=组间变异+组内变异
种类:常用方差分析法有以下4种 1、完全随机设计资料的方差分析(单因素方差分析) 2、随机区组设计资料的方差分析(二因素方差分析) 3、拉丁方设计资料的方差分析(三因素方差分析) 4、R*C析因设计资料的方差分析(有交互因素方差分析)
数据简化后对F值的计算没有影响,不会影响检验的结果 四、方差分析表
方差来源
因素A 试验误差 总误差
离差平方和
QA QE Q
自由度
m-1 m(n-1) mn-1
F值
F QA (m 1 ) QE [ m( n 1 )]
F0.05 F0.01
显著性
11
例:前例题 X ij 17)
22
23
24
25
相关文档
最新文档