教案-七年级数学-平方差公式
《平方差公式》教学教案

《平方差公式》教学教案一、教学目标1. 让学生理解平方差公式的含义,掌握公式的推导过程。
2. 能够运用平方差公式解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生对数学知识的兴趣。
二、教学内容1. 平方差公式的定义及推导过程。
2. 平方差公式的应用举例。
三、教学重点与难点1. 重点:平方差公式的推导过程及应用。
2. 难点:平方差公式的灵活运用。
四、教学方法1. 采用问题驱动法,引导学生思考并探索平方差公式的推导过程。
2. 运用实例讲解法,让学生通过具体例子理解并掌握平方差公式。
3. 采用小组合作学习法,培养学生的团队协作能力。
五、教学过程1. 导入新课:通过复习平方根的概念,引导学生进入平方差公式的学习。
2. 讲解与演示:讲解平方差公式的推导过程,并进行演示。
3. 实例分析:分析并解决实际问题,让学生理解平方差公式的应用。
4. 练习与巩固:布置练习题,让学生巩固所学知识。
请提供后续五个章节的教案内容要求,以便我继续编写。
六、教学活动1. 课堂互动:通过提问、讨论等方式,让学生积极参与课堂,提高学生的思维能力。
2. 小组竞赛:设置小组竞赛,激发学生的学习兴趣,培养学生的团队精神。
七、教学评价1. 课堂练习:检查学生对平方差公式的理解和掌握程度。
2. 课后作业:布置有关平方差公式的练习题,巩固所学知识。
3. 单元测试:进行单元测试,评估学生对本节课内容的掌握情况。
八、教学资源1. PPT课件:制作精美的PPT课件,帮助学生直观地理解平方差公式。
2. 练习题库:准备丰富的练习题,满足不同层次学生的学习需求。
3. 拓展资料:提供相关数学故事、历史背景等拓展资料,激发学生的学习兴趣。
九、教学进度安排1. 第1-2课时:讲解平方差公式及其推导过程。
2. 第3-4课时:应用实例讲解,让学生掌握平方差公式的应用。
3. 第5-6课时:进行练习与巩固,提高学生的应用能力。
十、课后反思2. 针对学生的掌握情况,调整后续教学策略。
【教案】青岛版数学七年级下册12.1《平方差公式》教案

【教案】青岛版数学七年级下册12.1《平方差公式》教案一. 教材分析本节课的内容是平方差公式。
平方差公式是代数中的一个重要公式,它揭示了两个数的平方差与它们之间的关系。
青岛版数学七年级下册12.1节的内容主要包括平方差公式的定义、推导过程以及公式的应用。
通过本节课的学习,学生能够理解并掌握平方差公式,并能运用它解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法、完全平方公式等基础知识。
他们对代数式有一定的认识,但对于平方差公式的理解和运用还需要进一步引导和培养。
学生的学习兴趣较为浓厚,但部分学生可能对于公式的推导和证明过程存在困难。
三. 教学目标1.知识与技能目标:学生能够理解平方差公式的定义,掌握公式的推导过程,并能够运用公式解决一些实际问题。
2.过程与方法目标:通过小组合作、探究学习,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养他们积极思考、主动探索的精神。
四. 教学重难点1.教学重点:平方差公式的定义和推导过程。
2.教学难点:平方差公式的运用和解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际例子,激发学生的学习兴趣,引导学生主动探究。
2.小组合作学习:学生进行小组讨论和合作,培养学生的团队协作能力和解决问题的能力。
3.引导发现法:教师引导学生发现平方差公式的规律,培养学生的观察力和思维能力。
六. 教学准备1.教学课件:制作课件,展示平方差公式的定义、推导过程和应用实例。
2.练习题:准备一些练习题,用于巩固学生对平方差公式的理解和运用。
七. 教学过程1.导入(5分钟)教师通过一个生活中的实际例子,引出平方差公式的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师展示平方差公式的定义和推导过程,引导学生理解并掌握公式。
3.操练(10分钟)教师提出一些练习题,学生独立完成,教师给予指导和反馈。
4.巩固(10分钟)教师学生进行小组讨论,共同解决一些实际问题,巩固学生对平方差公式的运用。
《平方差公式》教案(精选15篇)

《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。
(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。
初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计

(1)(x+3)^2
(2)(y-4)^2
(3)(2a+b)(2a-b)
(4)(3m-n)(3m+n)
2.变式练习题:通过一些变式题目,让学生学会将公式应用于不同场景,提高解决问题的能力。
例题:已知x+y=5,xy=6,求(x-y)^2的值。
3.综合应用题:设计一些综合应用题目,让学生将所学知识应用于解决实际问题,提高学生的综合运用能力。
5.生活实践题:让学生将所学知识联系到生活实际,感受数学在生活中的应用。
例题:某班组织一次郊游活动,共有45人参加。如果每组多安排1人,可以多分5组。请问原来每组有多少人?
在作业布置过程中,教师要关注以下几点:
1.作业难度要适中,既要保证学生对基础知识的掌握,又要适当提高学生的思维能力。
2.作业量要适当,避免给学生造成过重的负担,确保学生有足够的时间进行自主学习和休息。
讨论过程中,教师要关注以下几点:
1.激发学生的讨论热情,鼓励学生积极发表自己的观点。
2.引导学生互相交流解题方法,分享学习心得。
3.注意观察学生的讨论情况,适时给予指导和帮助。
(四)课堂练习,500字
在课堂练习阶段,教师设计不同难度的练习题,让学生进行巩固练习。练习题要涵盖完全平方公式和平方差公式的各种应用场景,包括基本题、变式题和综合应用题。
接着,教师可以引导学生回顾已学的平方运算知识,如(a+b)^2 = a^2 + 2ab + b^2,让学生尝试推导出完全平方公式:(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab。在此基础上,引出本节课将要学习的完全平方公式和平方差公式。
人教版数学七年级上册《平方差公式》教学设计

人教版数学七年级上册《平方差公式》教学设计一. 教材分析《平方差公式》是初中数学的重要内容,人教版七年级上册第17章第二节引入。
本节课主要让学生掌握平方差公式的推导过程、公式结构及应用。
平方差公式的推导有利于培养学生的逻辑思维能力,为后续学习完全平方公式、多项式乘法等知识打下基础。
二. 学情分析七年级的学生已经掌握了整式的乘法、因式分解等基础知识,具备一定的逻辑思维能力。
但在推导平方差公式、理解公式内涵等方面还需加强。
此外,学生对数学公式的记忆往往依赖于死记硬背,缺乏深入理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等方式,自主发现并掌握平方差公式。
三. 教学目标1.知识与技能:让学生掌握平方差公式的推导过程、公式结构及应用。
2.过程与方法:通过观察、操作、思考、交流等方式,培养学生自主学习、合作学习的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:平方差公式的推导过程及应用。
2.难点:理解平方差公式的内涵,掌握公式的灵活运用。
五. 教学方法1.启发式教学:引导学生通过观察、操作、思考、交流等方式,自主发现并掌握平方差公式。
2.小组合作:学生进行小组讨论,培养学生的合作意识。
3.案例分析:选取典型例题,让学生学会运用平方差公式解决问题。
4.归纳总结:引导学生总结平方差公式的推导过程、公式结构及应用。
六. 教学准备1.教学课件:制作课件,展示平方差公式的推导过程、应用案例等。
2.练习题:准备适量练习题,用于巩固所学知识。
3.教学用具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的平方差现象,如正方形面积与边长的关系,引发学生对平方差公式的兴趣。
提问:你们能找出这些现象背后的规律吗?2.呈现(10分钟)展示平方差公式的推导过程,引导学生观察、思考并总结规律。
通过具体案例,让学生学会运用平方差公式解决问题。
七年级数学下册《完全平方公式与平方差公式》教案、教学设计

(二)教学设想
1.创设情境,导入新课
-通过生活中的实例,如土地面积的测量、房屋面积的估算等,引出完全平方公式与平方差公式的概念。
-通过实际问题的解决,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
-引导学生回顾整式乘法和因式分解的知识,为新课的学习搭建知识框架。
-设计有针对性的课后作业,巩固学生对完全平方公式与平方差公式的掌握。
-采用多元化的评价方式,关注学生的个体差异,鼓励学生发挥潜能。
7.教学反思
-教学结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略。
-注重教学方法的创新,提高课堂教学的趣味性和实效性。
四、教学内容与过程
(一)导入新课,500字
1.总结完全平方公式和平方差公式的推导过程。
2.举例说明这两个公式在实际问题中的应用。
3.分析这两个公式在解题过程中的优势和局限性。
讨论结束后,各小组汇报讨论成果,其他小组进行补充和评价。我在这个过程中,适时给予指导和引导,帮助学生深入理解公式。
(四)课堂练习,500字
在课堂练习阶段,我会设计不同难度的题目,让学生运用完全平方公式和平方差公式进行解题。练习题包括以下类型:
在本章节的学习中,学生需要在已有知识的基础上,进一步探究完全平方公式与平方差公式的规律,并将其应用于解决实际问题。此时,学生可能面临以下挑战:
1.对完全平方公式与平方差公用公式解题时,可能会出现符号错误、计算失误等问题,需要教师耐心指导,帮助学生提高运算准确性和解题技巧。
-选择两道课后习题,运用完全平方公式与平方差公式进行因式分解,并解释每一步的推导过程。
七年级数学下册《平方差公式》教案、教学设计

(b) \( 16^2 - 9^2 \)
(c) \( 25^2 - 20^2 \)
(d) \( 36^2 - 31^2 \)
(2)运用平方差公式解决生活中的实际问题,例如计算两个正方形土地的面积差。
2.选做题:
(1)探索平方差公式在因式分解中的应用,如\( a^2 - b^2 \)的因式分解。
2.分组合作,探究新知
将学生分成小组,让他们相互讨论、交流,共同探究平方差公式。在此过程中,教师适时给予指导,帮助学生理解推导过程,突破教学难点。
3.深入讲解,巩固知识
结合具体例题,详细讲解平方差公式的应用,使学生掌握公式的使用方法。同时,设计不同类型的练习题,让学生在练习中巩固所学知识。
4.突破难点,提高能力
2.学生分享学习心得,交流在解题过程中遇到的困难和解决办法。
3.教师强调平方差公式在数学学习和生活中的重要性,激发学生学习数学的兴趣。
4.教师布置课后作业,要求学生通过练习,进一步巩固所学知识。
五、作业布置
为了巩固本节课所学的平方差公式及其应用,特布置以下作业:
1.必做题:
(1)根据平方差公式,计算以下各式的结果:
针对学生在推导和理解平方差公式过程中可能遇到的困难,教师可以采用以下方法:
(1)运用数形结合的方法,直观地展示平方差公式的推导过程,降低学习难度;
(2)设计具有启发性的问题,引导学生逐步思考,培养逻辑思维能力;
(3)及时反馈,针对学生的错误,给予个性化的指导和纠正。
5.课堂小结,总结规律
在课堂结束前,引导学生总结平方差公式及其应用规律,培养学生的归纳总结能力。
4.通过数学知识的学习,使学生认识到数学在生活中的重要性,提高学生的数学素养。
2024北师大版数学七年级下册1.5.1《平方差公式》教案1

2024北师大版数学七年级下册1.5.1《平方差公式》教案1一. 教材分析《平方差公式》是北师大版数学七年级下册第1章第5节的内容,本节课主要让学生掌握平方差公式的推导过程和应用。
平方差公式是初中学历阶段非常重要的一个公式,它不仅在数学计算中有着广泛的应用,而且为学生以后学习更高深的数学知识打下基础。
二. 学情分析七年级的学生已经具备了一定的代数基础,对因式分解、有理数运算等概念有一定的了解。
但学生在学习新知识时,往往还依赖于死记硬背,对于公式的推导和证明过程缺乏理解。
因此,在教学过程中,需要引导学生主动探索,理解平方差公式的推导过程,提高学生的逻辑思维能力。
三. 教学目标1.知识与技能目标:让学生掌握平方差公式的推导过程,理解并熟练运用平方差公式进行计算。
2.过程与方法目标:通过合作交流、探究学习,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.教学重点:平方差公式的推导过程和运用。
2.教学难点:平方差公式的灵活运用,以及理解公式背后的数学思想。
五. 教学方法采用问题驱动法、合作交流法、探究学习法等,引导学生主动探索,提高学生的逻辑思维能力和团队协作能力。
六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。
2.学具准备:笔记本、笔。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的一些实际问题,引导学生思考如何用数学知识解决这些问题。
例如,一块正方形的土地,如果每边减少3米,新的土地面积是多少?让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)引导学生列出正方形土地面积的计算公式,然后展示平方差公式的推导过程。
通过示例,让学生理解平方差公式的含义,并学会如何运用。
3.操练(10分钟)让学生独立完成一些关于平方差公式的练习题,巩固所学知识。
教师及时给予解答和指导,帮助学生掌握平方差公式的运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.下列多项式的乘法中,可以用平方差公式计算的是( )
A.(a+b)(b+a)
C.( 1 a+b)(b- 1 a)
3
3
3.下列计算中,错误的有( )
B.(-a+b)(a-b) D.(a2-b)(b2+a)
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.
(2)( 1 x + 1 y )( 1 x - 1 y ) 2 3 23
(4)(-4a-1)(4a-1)
例 2:计算: (1)102×98
(2) y 2 y 2 y 1 y 5
同步练习:
(1)a 3ba 3b
(2)3 2a3 2a
(3)51 49
(4)3x 43x 4 2x 33x 2
2.计算下列各题,并观察下列乘式与结果的特征: (1)(x+1)(x-1)= (2)(m+2)(m-2)= (3)(2x+1)(2x-1)= (4)(x+5y)(x-5y)= 观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律? 比较等号两边的代数式:同学们分别用文字语言和符号语言叙述这个公式.
(2) 1 x 1 y 1 x 1 y 2 3 2 3
(3) x 3y x 3y
(4) 2a b2a b 4a2 b2
培养孩子终生学习力
1
同步练习: 检测 1.口答下列各题:
(l) (x+3) (x-3); (2) (5-b)(5+b);
(3)(2x-y)(2x+y); (4)(2x-3y)(2x+3y).
教师姓名
学生姓名
年 级 七年级 上课时间
学科
数学 课题名称
乘法公式---平方差公式
教学目标
1、了解平方差公式的推导和内容。 2、能够用平方差公式进行正运算和逆运算。 3、学会整体法解决一些平方差公式。
教学重难点 平方差公式进行正运算和逆运算
一、新课引入: 1.回忆单项式乘以多项式的法则和多项式乘以多项式的法则,并用字母表示出来。
2、计算:1002 992 982 972 L 22 11 。
二、知识交叉题 3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).
三、实际应用题 4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短 3 米,东西方向要加长 3 米,则改造
后的长方形草坪的面积是多少?
2015 2013- 20142
6:利用平方差公式计算:
(1)
2007
.
20072 2008 2006
(2)
20072
.
2008 2006 1
课后作业:
培养孩子终生学习力
4
A 卷:基础题
一、选择题
1.平方差公式(a+b)(a-b)=a2-b2 中字母 a,b 表示( )
A.只能是数
B.只能是单项式 C.只能是多项式 D.以上都可以
(5) 2x 3y 2x 3y
(4) 1 x2 1 1 x2 1 2 3 2 3
(6) 2a 3b2a 3b
(7) a 2a 2a2 4
(8) 1 y2 x2 1 y x 1 y x
9
3 3
2、计算: (1)103×97
(2)79×81
(3)50.2×49.8
检测 2.下列计算对不对?如果不对,怎样改正?
(1) (1+2x)(1−2x)=1−2x2
(2) (2a+b)(2a−b)=2a2−b2
(3) (a+b)(a−b)=a2-b2
(4) (-a+b)(a+b)=b2-a2
(5) (-5x-2y)(5x-2y)=25x2-4y2
检测 3.计算下列各题 (l)(2x+y)(2x-y) (3)(b+2a)(2a-b)
培养孩子终生学习力
6
(4)10 1 9 6 77
3、化简:
培养孩子终生学习力
3
(1) a ba b a 3ba 3b (2) x 2yx 2y 2x y2x y
(3) x2 2x2 2 x 2x 2
4、化简: a(a-5)-(a+6)(a-6)
(x y)(x y)( x2 y2 )
5、 9982 - 4
A.1 个 B.2 个 C.3 个 D.4 个
4.若 x2-y2=30பைடு நூலகம்且 x-y=-5,则 x+y 的值是( )
A.5
B.6
C.-6
D.-5
二、填空题
5.(-2x+y)(-2x-y)=______. 6.(-3x2+2y2)(______)=9x4-4y4. 7.(a+b-1)(a-b+1)=(_____)2-(_____)2. 8.两个正方形的边长之和为 5,边长之差为 2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 三、计算题
例 3:请简便计算出: 20042 2003 2005
培养孩子终生学习力
2
例 4:请你利用平方差公式求出 2 1 22 1 24 1 28 1 ... 264 1 的值。
课堂练习: 1、计算:
(1) 2x 52x 5
(2) 1 2a1 2a
(3) 1 a 1 b 1 a 1 b 3 2 3 2
9.利用平方差公式计算:20 2 ×19 1 . 33
10.计算:(a+2)(a2+4)(a4+16)(a-2).
B 卷:提高题
培养孩子终生学习力
5
一、七彩题 1.(多题-思路题)计算:
(1)(2+1)(22+1)(24+1)…(22n+1)+1(n 是正整数);
(2)(3+1)(32+1)(34+1)…(32008+1)- 34016 . 2
用字母表示: 这个公式就叫做平方差公式。 注;公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。
3、 几何法: 用不同的方法对图形进行剪拼割补, 请学生们利用面积相等验证平方差公式;有图大正方形的边长为 a,小正方形的边长为 b.
a
二、经典例题:
例 1:计算:
b
(1) 2x y2x y