隶属函数确定方法探讨

合集下载

第4章_隶属函数的确定方法

第4章_隶属函数的确定方法

第4章隶属函数的确定方法在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。

对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。

因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。

然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。

其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。

但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。

本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。

4.1 直觉方法直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函例1、“正好”、“热”和“很热”图1 空气温度的隶属函数例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描图2 汽车行驶速度的隶属函数虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。

因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。

例如,模糊集A = “高个子”的隶属函数。

如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。

(a) (b)图3 不同论域下“高个子”的隶属函数4.2 二元对比排序法建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。

隶属函数及其确定方法

隶属函数及其确定方法

美国加利福尼亚大学控制论教授扎得(L、A、Zadeh)经过多年的琢磨,终于在1965年首先发表了题为《模糊集》的论文。

指出:若对论域(研究的范围)U中的任一元素x,都有一个数A(x)∈[0,1]与之对应,则称A为U上的模糊集,A(x )称为x对A的隶属度。

当x在U中变动时,A(x)就是一个函数,称为A的隶属函数。

隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。

用取值于区间[0,1]的隶属函数A(x)表征x 属于A的程度高低,这样描述模糊性问题比起经典集合论更为合理。

隶属度属于模糊评价函数里的概念:模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。

隶属度函数及其确定方法分类隶属度函数是模糊控制的应用基础,正确构造隶属度函数是能否用好模糊控制的关键之一。

隶属度函数的确定过程,本质上说应该是客观的,但每个人对于同一个模糊概念的认识理解又有差异,因此,隶属度函数的确定又带有主观性。

隶属度函数的确立目前还没有一套成熟有效的方法,大多数系统的确立方法还停留在经验和实验的基础上。

对于同一个模糊概念,不同的人会建立不完全相同的隶属度函数,尽管形式不完全相同,只要能反映同一模糊概念,在解决和处理实际模糊信息的问题中仍然殊途同归。

下面介绍几种常用的方法。

(1)模糊统计法:模糊统计法的基本思想是对论域U上的一个确定元素vo是否属于论域上的一个可变动的清晰集合A3作出清晰的判断。

对于不同的试验者,清晰集合A3可以有不同的边界,但它们都对应于同一个模糊集A。

模糊统计法的计算步骤是:在每次统计中, v o是固定的,A3的值是可变的,作n次试验,其模糊统计可按下式进行计算v0对 A 的隶属频率= v0∈A 的次数/ 试验总次数n随着n的增大,隶属频率也会趋向稳定,这个稳定值就是vo对A 的隶属度值。

第七讲 隶属函数的确定方法

第七讲 隶属函数的确定方法
−1
中间型隶属函数
1.矩形 2.尖型 3.正态型 4.柯西型 5.梯形
µA1 ( x) =
ɶ
1, a − b < x ≤ a + b 0, 其他 exp[ k (x − a)] , x ≤ a (k > 0) exp[ −k ( x − a)] , x > a
−1
µA2 ( x) =
参数法是指利用已知形状的隶属函数作为样板, 通过确定函数参数的方式来给出隶属函数的方 法。 常用隶属函数
偏小型 偏大型 中间型
偏小型隶属函数
x≤a 1, µ A ( x) = ɶ f ( x), x > a
1.降半矩阵型 2.降半伽马型 3.降半正态型 4.降半柯西型 5.降梯形 6.降岭形 7.k次抛物线
隶属函数的确定方法
模糊统计法 参数法
模糊统计法
通过模糊统计实验来确定隶属函数的方法 四要素
① 论域X ② 试验所要处理的论域X的固定元素x0 ③ 论域X的可变动的子集A*,它作为模糊集 A 的有可塑性 ɶ 边界的反映,可由它得到每次试验中x0是否符合模糊集A ɶ 所刻划的模糊概念的一个判决 ④ 条件集C,它限制着A*的变化
ɶ ɶ
µA3 ( x) = exp −k ( x − a)2 , (k > 0) µA4 ( x) = 1+ α ( x − a)β (α > 0, β是非负偶数)
(a2 + x − a) /(a2 − a1), a − a2 < x ≤ a − a1 1, a − a1 < x ≤ a + a1 µA5 ( x) = ɶ (a2 − x + a) /(a2 − a1), a + a1 < x ≤ a + a2 0, 其他 0.5 + 0.5sin [π /(b − a)( x + (b + a) / 2)] , −b < x ≤ −a 0.5 − 0.5sin [π /(b − a)( x − (b + a) / 2)] , a < x ≤ b µA6 ( x) = ɶ −a < x ≤ a 1, 0, 其他

确定隶属函数的方法

确定隶属函数的方法

7
其中mi是第i位专家的估计值,并请每个人标出各自对
所做估计值的信任度,记为 e1,e2, ,en, 这里ei表示第i
位专家对自己的估计的把握程度,并且规定 ei [0,1],第 有绝对把握时, ei=1;毫无把握时,取ei=0; 其
它情形,取 0 ei 1.
(6)计算
m
1 M
n
mi ,
iM
其中 M {iei;i1 ,2,...,n },
③中间型 A ( x ) 1, a x b
1
e
(
x
b
)
2
,x
b
a
编辑ppt
15
其它常见模糊分布还有 (3) 半梯形分布与梯形分布;
m21,m22, ,m2n
(4)重复2、3步,直至离差值小于或等于预先
给定的标准 0. 设重复k次后,有 d k , 这里 d k 为重复k次后的离差。
(5)将第k次得到的对
A (u 0 )的平均估计值
m
k
和d再交k给各位专家,请他们做最后的“判断”,给出估计

m1,m2, ,mn
编辑ppt
对于 m11,m12, ,m1n计算平均值 m 1 和离差 d 1 :
m1
1 n
n i 1
m1i ,
d1
1 n
n i1
m1i
m1
2
编辑ppt
6
(3)不记名将全部数据 m 11,m 12, ,m 1n,m 1,d 1送交 每位专家,同时附上进一步的补充资料,请每位
专家在阅读和思考之后,给出新的估计值:
可暂时使用m , 但要特别注意信息反馈,不断通过
“学习过程”,完 A(u0)m

确定隶属函数的几种主要方法

确定隶属函数的几种主要方法

区别: 区别:
若把概率统计比喻为“变动的点” 若把概率统计比喻为“变动的点”是否 落在“不动的圈” 落在“不动的圈”内, 则把模糊统计比喻为“变动的圈” 则把模糊统计比喻为“变动的圈”是否 盖住“不动的点” 盖住“不动的点”.
二相F统计 二相 统计: 设有二相集 P2 = { A, A } 统计
x
−∞
Pη ( x )dx
的概率密度, 其中Pξ ( x )和Pη ( x )分别是随机变量 ξ和η的概率密度,即
A2 ( x ) = 1 − A1 ( x ) − A3 ( x )
按概率方法计算,得 按概率方法计算,
x − a1 A1 ( x ) = 1 − Φ σ1 x − a2 A3 ( x ) = Φ σ2
A3 ( x )
0
a1
a2
x
数对(ξ ,η )确定映射
e(ξ ,η ) :

U → { A1 , A2 , A3 }
x≤ξ A1 ( x ) e(ξ ,η )( x ) = A2 ( x ) ξ < x ≤ η A ( x) x >η 3
概率P{ x ≤ ξ }是随机变量 ξ落在区间[ x , b )的可能大小.
次实验中覆盖27岁的年龄区间的次数为 若n次实验中覆盖 岁的年龄区间的次数为 , 次实验中覆盖 岁的年龄区间的次数为m, 则称m/n为27岁对于(青年人)的隶属频率。 为 岁对于 青年人)的隶属频率。 岁对于( 则称
岁对( 表2-1 27岁对(青年人)的隶属频率 岁对 青年人)
实验次数n 实验次数 隶属次数m 隶属次数 隶属频率 m/n 0.6 0.7 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78 10 20 30 40 6 14 23 31 50 39 60 47 70 53 80 62 90 100 110 68 76 85 120 130 95 101

对模糊隶属函数确定方法的进一步探讨

对模糊隶属函数确定方法的进一步探讨

对模糊隶属函数确定方法的进一步探讨隶属函数的确定不应只侧重于对信息自身模糊性的识别和描述,还应该正确描述主体的心理测度,重视主体认识水平的缺陷。

探讨了用简便可行的隶属函数度量方法来测量人们进行决策时心理测度上的模糊性,给出了具体不同情况下的描述函数,在一定程度上可以更准确地描述信息的模糊性,从而使决策更具有合理性。

标签:隶属函数;模糊分布;心理测度一、引言客观事物均不同程度地存在着不确定性,这种不确定性蕴涵在客观表现及其主观识别之中。

从本质上看,不确定性是主观对于客观而言的,即对客观信息的识别与刻画无不受到主观因素的影响,受到主体心理因素的影响,进而表现为认知水平和描述方法的差异。

而一般的隶属函数确定的方法多从下面两个角度;或侧重于描述信息自身的模糊性、识别和刻画方法的模糊性,或从如何消除减少主观任意性成分来进行研究,而忽视了起决定作用的主体想心理思维模式和判断尺度,使得隶属函数的确定不够完善。

另一方面,随着生产系统、社会系统的大规模化和复杂化,使得人们进行预测与决策变得十分困难。

由于决定预测的准确性及决策成败的关键是人,所以应能正确描述人的心理测度上的模糊性。

对于此类问题,当今决策理论是从理性决策的行为决策两分支进行研究,但在现实实际操作生活中,出现了理性决策与行为决策不相一致的情况。

正是基于这两方面因素考虑,力图应用理性决策与行为决策相结合的思想,通过定性与定量相结合的方法,找到一种能反映主体心理测度的方法,从能够描述存在的现象和避免不应发生的现象出现两个角度进行研究,使信息的模糊隶属描述更具有合理性,使人们在模糊的状态下进行的预测和决策偏差更小。

二、分类描述1.当主体参考事态进行判断时,往往由于过于自信而出现偏差,当事件发生的客观概率在0.5上,而人们又认为或希望它发生,则判断出的隶属度往往高于凭他们的知识和事实本应判断出的值;另一方面,当客观概率小于0.5,而人们又不认为或不希望它会发生,则往往估计偏低。

模糊控制中隶属度函数的确定方法

模糊控制中隶属度函数的确定方法模糊控制是一种基于模糊逻辑的控制方法,其中隶属度函数是模糊控制的重要组成部分。

隶属度函数的作用是将输入信号映射到隶属度空间,为控制器提供输入参数。

确定合适的隶属度函数能够提高模糊控制器的精度和稳定性。

本文将介绍几种常用的隶属度函数的确定方法。

一、试验法试验法是最基本的隶属度函数确定方法,即通过试验的方式逐步调整隶属度函数,直到达到最佳效果。

该方法适用于控制系统较简单、规模较小的场景。

试验法需要较多的实验数据和多次改进,且缺乏理论和数学基础支持。

二、专家法专家法是利用经验和判断力,根据被控对象和控制目标的特点,设计隶属度函数。

专家法相对于试验法具有更高的效率和准确性,适用于大规模、复杂的控制系统。

但是,该方法需要控制领域的专家评估隶属度函数的质量,并征询其他领域的专家意见,所以其设计具有一定的主观性。

三、数学建模法数学建模法是利用系统建模方法对控制对象进行数学描述,从而确定隶属度函数的方法。

该方法需要掌握数学建模技术和数学分析方法,运用数学软件工具进行系统的建立和分析。

该方法较为科学,可以系统的分析控制对象,而且不依赖于控制领域的专家知识和经验。

四、经验法经验法是使用过往的经验数据和样本数据来确定隶属度函数的方法。

该方法适用于控制对象特征类似的场景,具有低成本的优势。

经验法需要提取出具有代表性的样本集,并根据样本集的特点进行隶属度函数的设计。

该方法缺点是其适用性相对较弱,需要额外的数据处理方法来提取有用的特征。

五、混合法混合法是将多种方法结合使用来确定隶属度函数,以尽可能综合各种方法的优点,提高确定隶属度函数的准确性。

混合法需要根据具体情况,结合试验法、专家法、数学建模法、经验法等多种方法进行综合性分析和处理,提出最终的隶属度函数。

混合法确定隶属度函数的准确性和实用性较为综合,但需要在方法融合的过程中考虑不同方法的权重和影响因素,难度较高。

综上所述,确定隶属度函数的方法因系统的复杂性、预测的精确度和需要的优化目标等多种因素而异。

模糊数学教程第6章确定隶属函数的方法

详细描述
主观经验法主要依赖于专家的专业知识和经验,通过专家对模糊概念的深入理 解和主观判断,来确定隶属函数的形状、参数和阈值等。这种方法简单易行, 但受限于专家知识和经验的局限性。
统计学习法
总结词
基于数据样本和统计学习理论来确定隶属函数的方法。
详细描述
统计学习法利用已知数据样本,通过统计学习理论和方法,如回归分析、决策树、支持向量机等,来拟合和优化 隶属函数。这种方法客观、科学,但需要足够的数据样本和计算资源。
VS
详细描述
连续性是指隶属函数在定义域内的任何一 点都存在明确的隶属度值,没有跳跃或中 断。连续的隶属函数能够更好地描述模糊 现象,因为模糊现象本身也是连续变化的 。
单调性
总结词
隶属函数应该是单调的,以反映模糊集合的 单调性质。
详细描述
单调性是指随着输入值的增大或减小,隶属 度值也相应增大或减小。单调递增的隶属函 数表示随着输入值的增加,隶属度也逐渐增 加;单调递减的隶属函数则表示随着输入值 的增加,隶属度逐渐减小。
经济效益评价
在经济效益评价中,隶属函数可以用于将各 评价指标的量纲统一,通过计算隶属度来评 价项目的经济效益。
在模糊聚类分析中的应用
模糊聚类算法
隶属函数在模糊聚类算法中起到关键作用,通过计算样本点对各个聚类的隶属度,实现样本点的软分 类。
聚类效果的评估
在模糊聚类分析中,隶属函数可以用于评估聚类效果,通过计算样本点对各个聚类的隶属度分布情况 ,判断聚类的质量和稳定性。
模糊数学教程第6章确定隶属函数 的方法
目 录
• 引言 • 确定隶属函数的方法 • 隶属函数的特性 • 隶属函数的优化 • 隶属函数的应用 • 总结与展望
01 引言

直觉方法-隶属函数的确定方法


虽然直觉的方法非常简单,也很直观,但它却包含着对象的背 景、环境以及语义上的有关知识,也包含了对这些知识的语言学描 述。因此,对于同一个模糊概念,不同的背景、不同的人可能会建 立出不完全相同的隶属函数。例如,模糊集A = “很冷”的隶属函 数。不同性别、不同生活环境的人所得出的曲线方法
1、直觉方法
直觉的方法就是人们用自己对模糊概念的认 识和理解,或者人们对模糊概念的普遍认同来建立 隶属函数。这种方法通常用于描述人们熟知、有共 识的客观模糊现象,或用于难于采集数据的情形。
例 1 考虑描述空气温度的模糊变量或“语言”变量,
我们取之为“很冷”、“冷”、“正好”、“热”和 “很热”,则凭借我们对“很冷”、“冷”、“凉 爽”、“适宜”和“热”这几个模糊概念的认知和理 解,规定这些模糊集的隶属函数曲线如图1 所示。

第6章确定隶属函数的方法


这里 (x)
x
1 2
e dt
t2 2
增量法(Incremental) 例1、设论域X=[0, 200](单位:岁),又设 A F (X),

且定义 A 为老年,求其隶属函数 A(x).


解:任给x一个增量 x, 相应地 A(x)也有一个增量 A(x x) A(x), 假定
这里c为积分常数,适当选择k和c,则可完全确定
因素加权综合法
实际问题中有时会遇到这样的模糊集,它 由若干个因素相互作用而成,而每个因素由可以用 模糊集来表示,此时的论域可以表示为n个因素的 Descartes乘积,即 U U1 Un , Ai F (Ui )(i 1,....,n)

,. . . , An 复合而成. A F (U), A由A1
(1)加权平均型(Method of weighted mean)
..., An (un ) 累加成的,可令 若 A(u)是由 A1(u1 ),



A(u)= i Ai (ui ) i 1
n
其中 u (u1 ,...,un ) U,(1, 2 ,, n)是权重向量,且
(4)条件S,它联系着对模糊概念所进行的划分 过程的全部客观或心理的因素,制约者A*的运动。
Remark:
模糊统计法的基本要求是在每次实验中,对u0是 否属于 A 作出确切的判断,即要求在每次试验中, A*必须确定。 模糊统计试验的特点:在各次试验中 u0固定,A*是变的,这点不同于随机试验. 隶属度计算公式为:
1 (6)计算 m M
它情形,取 0 ei 1.
iM
m,
i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隶属函数确定方法探讨袁 力,姜 琴(郧阳师范高等专科学校,湖北丹江口442700) [摘 要]隶属函数描述了研究对象对于某模糊子集的隶属程度,是模糊数学最显著的特征,也是模糊数学应用中最关键的参量.隶属函数有很多不同的确定方法,确定过程中又有很多人为的技巧.文中就隶属函数的一般确定方法以及其它确定方法进行了探讨. [关键词]模糊;隶属函数;隶属度 [中图分类号]TP391.4 [文献标识码]A [文章编号]1008—6072(2009)06—0044—031 引言模糊集理论由Zadeh首次提出后,得到了迅速的发展,并广泛应用于控制系统、人工智能、数据挖掘、模式识别等领域.在应用模糊集理论时,一个不容忽视的问题就是隶属函数的构建,它是正确运用该模糊集理论的关键所在.隶属函数是模糊数学最显著的特征,它描述了事物的不确定性,加上其值域与概率密度函数的值域相同,使人容易将两者混淆.虽然两者都研究不确定性,但却有着本质的区别.概率论研究的是事物出现与否所表现的不确定性,而事物本身的含义十分明确.比如某市车祸的概率,车祸本身没有什么不明确,只是它发生的频数是个不确定的数,但徘徊在某一数值的左右.然而模糊数学所研究的不确定性则是事物本身.这种事物被说成是甲还是乙,有时到了模棱两可的地步,最后只能说它是甲的程度是多少,是乙的可能性是多少,即这一事物是否符合某一概念没有明确的界限,仅用隶属度对符合的程度进行度量.隶属函数的确定有很多方法,可以通过模糊统计,可以通过推理,可以采用二元对比排序的方法,可以通过“学习”逐步修改、调整和完善,也可以采用典型的隶属函数作为近似[1].确定的过程是客观的,但期间又可以加上人为的技巧.2 常见的方法2.1 模糊统计法概率统计是通过大量随机试验确定某事物发生的概率,如食物A在n次试验中出现了k次,则A事物出现的概率表示为:P A=LimN→∞kn(1)一般在n足够大时,P A值稳定于[0,1]中某一个数值,从而得到A发生的概率.模糊统计在形式上类似于概率统计,并且都是用确定性手段研究不确定性.但两者属于不同的数学模型,它们有如下的重要区别.随机试验最基本的要求是:在每次试验中,事件A发生(或不发生)必须是确定的.在各次试验中,A是确定的,基本空间Ω中的元素ω是随机变动的.做n次试验,计算A发生的频率=“ω∈A”的次数n(2)随着n增大,通常会表现出频率稳定性.频率稳定所在的那个数,叫做在某种条件下的概率.模糊统计试验的基本要求[2]是:要对论域上固定的元μ0是否属于论域上一个可变动的普通集合A3(A3作为模糊集A的弹性疆域),作一个确切的判断.这要求在每次试验中,A3必须是一个取定的普通集合.在各次试验中,μ0是固定的,而A3在随机变动,做n次试验,计算μ0对A的隶属频率=“μ0∈A3”的次数n(3)随着n的增大,隶属频率也会呈现稳定性.频率稳定值就叫做μ0对A的隶属度.在进行模糊统计试验时,必须遵循一个原则:被调查的对象一定要对模糊词汇的概念熟悉并有用数量近似表达这一概念的能力;对原始数据要进行初步分析,删去明2009年12月郧阳师范高等专科学校学报Dec.2009第29卷第6期Journal of Yunyang Teachers College Vol.29No.63 33[收稿日期]2009-08-10[作者简介]袁 力(1977-),男,湖北丹江口人,郧阳师范高等专科学校数学系讲师,硕士,主要从事统计与金融数学方面的研究.YYSZXB44显不合乎逻辑的数据.2.2 二元对比排序法实际运用中要确定某模糊子集的隶属函数往往是通过确定有限个对象的隶属度来实现的,而确定这有限个对象的隶属度往往要进行两两比较,看谁的隶属程度高,从而将这些对象按隶属度大小排队,这就是二元对比排序法的基本思想.不过单独比较某两个对象,较为容易排出次序,当两两比较完全完成后,要将所有的对象排序时,由于不满足传递性,往往出现循环,无法排除次序.比如兄弟三人比谁更像父亲,老大与老二比,老二更像,老二与老三比,老三更像.但老三和老大比时,又似乎老大更像.这种情况屡见不鲜.那么,在二元对比的基础上,采用什么方法实现整体排序,怎样确定每个个体的隶属度呢?可以采用择优比较法、相对比较法、对比平均法等.择优比较法的基本思想是将两两对比的大量模糊统计结果,按频数多少择优;相对比较法的基本思想是在两两对比中确定两者相对度量级或二元比较级,然后通过一定的算法得到一个相比矩阵,最后按照一定的规则根据相比矩阵的元素确定其总体次序;对比平均法的基本思想是对任一元素,将其与其他所有元素的两两对比结果加以综合,以取平均值的方法或加权平均的方法计算出隶属度.2.3 逻辑推理法在所研究的对象中,往往有些具有特定的规律,可以按规律去设计这些对象对于具有某种特性的模糊集的隶属函数.这种方法含有推理的成分,故谓之逻辑推理法.例如:E={(A,B,C)|A+B+C=180°,A、B、C>0},易见A、B、C即三角形的三个内角.现要求给出“近似等腰三角形内角”这一模糊集的函数.由于等腰三角形的前提是两内角相等,故可将隶属函数设计为:μI (A,B,C)=1-160°min{A-B,B-C,A-C}(4)那么,只要有两个角相等,就有μ1(A,B,C)=1.当A=119°,B=59°,C=2°时,有μI(A,B,C)=1-160°min{60°,57°,117°}(5)=1-160°×57°=0.05可见,三内角相差很大时,隶属度趋近于0.2.4 专家评判法对某种特定的对象,专家最有发言权.比如“谁唱得最好”,那些声乐方面的教授及歌唱家无疑最清楚.在青年歌手大奖赛中,每一参赛的青年歌手的角逐,是通过评分委员会的专家们打分来决定名次的.每一位专家在打分时及时在对上述“谁唱得最好”的隶属程度进行评判.综合所有专家的评分,加上“去掉一个最高分,去掉一个最低分”的计分方法,尽可能减少主观好恶因素的干扰,而得到客观的评分结果.这就是专家评判打分以确定隶属度的最明显最直观的实例.这种例子,在实际生活中是不少见的.3 其它确定方法为获得更符合客观实际的连续隶属函数,人们提出在获得离散数据点的情况下采用拟合、逼近及插值等方法,取得了一定的研究成果[3,4,5].但这些成果也存在着不足,如文献[4]所求取的隶属函数形式是基于梯形隶属函数的一种推广,尽管可通过共轭梯度搜索算法来求取满足约束条件下的参数,确定最终的隶属函数形式,但其拟合误差值仅在给定的形式及其精度下最小,总体误差仍不容忽视.文献[5]采用bezier曲线逼近方式,当曲线的幂次较低时,修改曲线的功能较弱,此时灵活性受到限制.文献[3, 5]需确定控制点数目及位置,且控制点数目会对拟合出的隶属函数精度造成影响.由离散数据点构造隶属函数时,离散点本身不一定非常准确,不必精确地通过各点,只需构造出的隶属函数符合离散点分布的总体轮廓,并尽可能接近已知的数据.基于这一思想,文献[6]通过最小二乘法来构建隶属函数.最小二乘法是一种数学优化技术,它建立在误差控制基础上,通过最小化误差的平方和找到一组数据的最佳函数匹配.为减小拟合误差,采用了3项措施以达到预期目标.所构建的隶属函数,对任意输入物理量可直接得到其对应模糊语言变量的隶属度,从而有效避免专家指定隶属度的主观臆断性及不一致性.该方法简单、求解精度高,具有广泛适用性和较强的应用价值.仿真结果证实了该方法的有效性.在模糊线性规划领域中,众多学者多集中于问题的求解,而对于系数的隶属函数的确定却很少有所讨论.In2 uiguchi等人[7]讨论了可能线性规划中隶属函数的确定,他们的方法主要是通过与决策者的交流,得到模糊系数在不同α-水平下的截集,然后利用线性插值得到模糊系数的隶属函数.这一方法有几个缺点:(1)根据此方法确定的模糊系数隶属函数有时精度比较低;(2)由此确定的模糊线性规划模型有时与决策者的实际决策不一致.为克服以上缺点,文献[7]中提出通过要求决策者提供更多的α-截集来提高所得隶属函数的精度.但这一要求,有时对决策者而言,是非常苛刻的,甚至是不合理的.针对这一问题,文献[8]提出一种两阶段法来确定模糊系数的隶属函数.第一阶段,利用文献[7]中的方法,确定一个相对粗糙的隶属函数;第二阶段,利用决策者过YYSZXB45去的决策(这一要求对于决策者而言是实际可行的,甚至是容易的)来提高所得隶属函数的精确度.此方法可以有效地提高所提取隶属函数的精确度,大大降低其模糊性.4 结束语人脑作为认识和改造客观世界的主体,它对于自然现象的反映往往都是模糊的.这种模糊有来自于客体自身的模糊性,也有认识角度的模糊性.隶属程度问题就为解决事物的模糊性提供了一个重要参量.在隶属函数确定过程中,要从实际问题的特性出发,总结和吸取人们长期积累的实践经验.特别地,在判断隶属函数是否符合实际时,主要要看它是否正确地反映了元素隶属集合到不隶属集合这一变化过程的整体特性,而不在于单个元素的隶属度数值如何.因此,隶属函数的确定虽然带有浓重主观色彩,但一定要遵循客观规律和科学性.[参考文献][1]舒 宁,马洪超,孙和利.模式识别的理论和方法[M].武汉:武汉大学出版社,2004.[2]杨伦标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2005.[3]Wang C H,Wang W Y,Lee T T,et a1.Fuzzy B-spline mem2 bership function(BMF)and it s application in fuzzy-neural con2 tral[J].IEEE Trans on system,Man and Cybernetics,1995,25 (5):841-851.[4]Chang P T,Huang L C.Lin H J.The fuzzy Delphi met hod via fuzzy statistics and membership function fitting and an applica2 tion to t he human resources[J].Fuzzy Set s and Systems,2000, 112(3):511-520.[5]Medaglia A L,Fang S C,Nuttle H L W,et al.An efficient and flexible mechanism for constructing membership function[J] .European J of Operational Research,2002,139(1):84-95. [6]袁 杰,史海波,刘昶.基于最小二乘拟合的模糊隶属函数构建方法[J].控制与决策,2008,23(11):1263-1266.[7]INU IGUCHI M,TANINO T,SA KAWA M.Membership Function Elicition in Possibilistic Problems[J].FSS(S0615-0114),2000,(111):29-45.[8]魏本成,李钢.模糊线性规划中模糊目标系数的隶属函数的确定[J].信阳师范学院学报(自然科学版),2007,20(4):416 -418.【编校:胡军福】A St u d y o n t he Det e r mi nat i o n of Me m be rs hip Fu nct i o nYUAN-Li,J IAN G-Qin(Yunyang Teachers’College,Danjiangkou442700,China)Abst ract:Membership f unction describes the membership degree of the research subjects to a f uzzy subset,which is the most significant feature of f uzzy mathematics and the most important parameter of f uzzy mathematics in the applica2 tion.Determination of membership f unction is an objective process,but can be combined with man-made skills.This ar2 ticle discusses how to determine the membership function.Ke y wor ds:f uzzy;membership f unction;membership degreeYYSZXB46。

相关文档
最新文档