一次函数的应用第1课时 教学设计

合集下载

最新北师大版八年级数学上册《一次函数的应用第1课时》教学设计(精品教案)

最新北师大版八年级数学上册《一次函数的应用第1课时》教学设计(精品教案)
第一环节 复习引入
内容:提问:(1)什么是一次函数?
(2)一次函数的图象是什么?
(3)一次函数具有什么性质?
目的:学生回顾一次函数相关知识,温故而知新.
第二环节 初步探究
内容1:
展示实际情境
提供两个问题情境,供老师选用.
实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.
(1)写出v与t之间的关系式;
(2)下滑3秒时物体的速度是多少?
分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.
实际情境二:假定甲、乙二人在一项赛跑中路程 与时间
的关系如图所示.
(1)这是一次函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到 与 间的关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同.
内容2:
想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.
2.本节课用到的主要的数学思想方法:数形结合、方程的思想.
目的:
引导学生小结本课的知识及数学方法,使知识系统化.
内容:
1.如图,直线 是一次函数 的图象,求它的表达式.
2.若一次函数 的图象经过A(-1,1),则 ,该函数图象经过点B(1,)和点C(,0).
3.如图,直线 是一次函数 的图象,填空:
(1) , ;
(2)当 时, ;
(3)当 时, .
4.已知直线 与直线 平行,且与y轴交于点(0,2),求直线 的表达式.
将 代入②,得 .

《一次函数的应用》教学设计(1)

《一次函数的应用》教学设计(1)

一次函数的应用1、教学内容本节课是学习了人教版义务教育课程标准实验教材《数学》八年级上册第十一章《一次函数》后设计的一节复习课。

主要学习内容是把实际问题建立函数模型和根据函数图象的信息,运用数形结合的思想来解决问题。

2、学生分析学习本节课前学生已经学习了一次函数的概念、图象、性质以及一次函数与方程(组)、不等式的关系,对一次函数的知识已经有了全面的了解。

但还不能灵活运用所学知识来解决实际问题,特别是把实际问题建立函数模型的能力和运用数形结合的思想来解决问题的意识还比较弱。

学生最感兴趣的是用函数知识解决发生在身边的实例。

3、设计思想本节课的特色是充分应用信息技术(如多媒体课件,播放刘翔奥运夺冠过程的录像,播放“龟兔赛跑”的Flash动画等)来创设问题的情境,激发学生的学习兴趣,激活学生的思维。

本节课精心设计了七个题目,由浅入深,让学生探究,把学生的思维不断引向深入……,通过老师的点拨使学生的思维得到升华,努力培养学生掌握基本的数学思想,提高学生的数学活动能力。

在整个教学过程中,贯彻“教师为主导,学生为主体,探索为主线,思维为核心”的教学思想。

通过引导学生积极探索、讨论和交流,使全体学生能充分动手、动脑、动口,参与教学的整个过程,使数学课堂真正成为学生亲自参与的、生动活泼的数学思维活动场所。

本节课把教师的“教”和学生的“学”有机结合起来,真正体现“学生是数学学习的主人,教师是数学活动的组织者、引导者与合作者”这一新型的师生关系,体现了创新教育、主体教育和成功教育这一改革与发展的时代精神。

4、教学目标(1)知识与技能①会画实际问题的函数图象;②会根据函数图象的信息,运用数形结合的思想来解决问题。

(2)过程与方法经历画实际问题的函数图象,从实际问题函数图象中发现信息,运用数形结合的思想来解决问题,通过合作、交流编写故事等过程培养学生数形结合的思想,形成利用函数观点认识现实世界的意识和能力。

(3)情感态度与价值观通过观看刘翔奥运夺冠的录像,让学生体会到数学来源于生活,并树立努力拼搏为国争光的理想;在探究问题的过程中体会数学的应用价值;通过与同学合作编写故事,感受成功的喜悦,并建立自信心。

一次函数(三)-一次函数的应用一(教案)

一次函数(三)-一次函数的应用一(教案)
3.重点难点解析:在讲授过程中,我会特别强调一次函数关系式的建立和图像的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如画出一次函数的图像,并观察其特点。
在实践活动方面,我发现学生们在分组讨论和实验操作过程中,对一次函数在实际问题中的应用有了更深刻的认识。但也有一些小组在成果展示时,表达不够清晰,逻辑性不强。针对这个问题,我可以在活动前给学生提供一些展示的模板和技巧,帮助他们更好地组织和表达自己的思考。
在今后的教学中,我还应注意以下两点:
1.注重个体差异,针对不同学生的掌握程度,给予个性化的指导和鼓励,使他们在一次函数的学习上都能取得进步。
5.数学应用意识:通过解决实际问题,培养学生将数学知识应用于生活,增强数学在实际生活中的价值认识。
三、教学难点与重点
1.教学重点
-函数关系式的建立:重点掌握如何从实际问题中抽象出一次函数关系式,理解自变量和因变量之间的对应关系。
-例如,从行程问题中,理解速度、时间与路程的关系,建立s=vt的函数关系。
2.一次函数图像在坐标平面上的应用,分析图像特点,解决实际问题。
3.1分析一次函数图像的斜率和截距,了解其在实际问题中的意义。
3.2根据图像解决实际问题,如求解函数在某一区间的取值范围等。
3.结合实际案例,培养学生运用一次函数解ຫໍສະໝຸດ 问题的能力。二、核心素养目标
本节课旨在培养学生以下核心素养:
1.数学抽象能力:通过分析实际生活中的问题,抽象出一次函数关系式,使学生理解数学模型在描述现实世界中的作用。

一次函数的应用教学设计

一次函数的应用教学设计

一次函数的应用(第1课时)教学设计教材:冀教版义务教育课程标准实验教科书《数学》(八年级 下) 第25章《一次函数》第5节《一次函数的应用》第1课时 P 167~169一、 教材与学生数学现实的分析:教材的地位和作用:函数是刻画与研究现实世界数量关系和变化规律的重要工具,也是应用极其广泛的数学模型,一次函数是其中最简单最基本的一种,它的学习为今后学习反比例函数,二次函数及高中要学习的各类函数奠定了思想与方法的基础。

一次函数的应用是本章的重点与归宿。

学生数学现实:会确定一次函数表达式,已掌握一次函数的性质及函数与方程,与不等式的关系。

最大的障碍是从文字、表格和图像中正确获取信息,准确建模,这也是解决函数应用的关键。

二、教学目标依据:《新课标》指出,在教学中,应注重所学内容与现实生活的联系,注重学生的体验、探索过程。

知识目标:经历应用一次函数解决实际问题的过程;学会利用函数性质进行判断及决策的方法;领悟函数与方程、不等式的关系及其应用价值。

能力目标:在对实际问题的探究过程中,提高通过文字、表格、图像获取信息的能力及提出问题、分析和解决问题的能力,增进应用函数思想的意识与能力。

情感目标:激发学生学习数学的热情;体现数与形的结合美;实现数学本身最美的价值。

重 点:经历应用一次函数解决实际问题的过程。

难 点:图像信息的正确解读。

三、教法设计与学法指导教法设计:“问题情境—建立模型—解释应用与拓展”的教学模式。

学法指导:以“实际情境”为背景,以问题为主线,引导全员参与,全过程参与,经历知识的形成与应用过程。

以达到提高能力,主动发展的目的。

四、教学过程设计:新课标指出:教学设计应本着符合学生心理和发展特点的原则,尽量符合学生的认知,时时关注学生的兴趣、体验。

尽可能使学生在多方面得到发展。

因此,我将课本上的题目进行了适当改编,通过赋予“母亲节,嘉年华”等学生熟悉而且喜闻乐见的背景,使问题从形式上更加生动,内容上问题:王强上个月销售了 件产品;他这个月的销售量应当 件,才能实现目标. 王强【设计说明】这个题属于文字信息型函数应用题。

一次函数第一课时的教案

一次函数第一课时的教案

一次函数第一课时的教案教案标题:一次函数第一课时的教案教学目标:1. 了解一次函数的定义和特征;2. 掌握一次函数的图像、表达式和性质;3. 能够应用一次函数解决实际问题。

教学准备:1. 教师准备:教案、黑板、白板、彩色粉笔或白板笔、教学PPT等;2. 学生准备:课本、笔记本、铅笔、直尺等。

教学过程:一、导入(5分钟)1. 教师通过提问或展示一幅图片引起学生对一次函数的兴趣,激发学生思考。

2. 引导学生回顾前一节课关于函数的知识,复习函数的定义和性质。

二、讲授(20分钟)1. 教师通过示意图向学生介绍一次函数的定义和特征,强调一次函数的表达式形式为y=ax+b,其中a和b为常数,a≠0。

2. 教师通过实例向学生展示一次函数的图像和表达式之间的关系,并解释图像上的斜率和截距的含义。

3. 教师引导学生观察一次函数图像的特点,如直线、斜率、截距等,并总结一次函数的性质。

三、练习(15分钟)1. 学生个人练习:学生根据给定的一次函数表达式,画出对应的图像,并标注斜率和截距。

2. 学生小组合作练习:学生分组完成一些简单的应用题,如求解一次函数的零点、求解实际问题等。

四、讲评(10分钟)1. 教师和学生共同讨论练习中出现的问题,并解答学生的疑惑。

2. 教师对学生的练习情况进行评价,鼓励优秀表现并指出需要改进之处。

五、拓展(5分钟)1. 教师引导学生思考一次函数在实际生活中的应用,如速度、距离、成本等问题。

2. 教师提供一些拓展问题,让学生进一步思考和探索一次函数的更多应用。

六、总结(5分钟)1. 教师对本节课的内容进行总结,强调一次函数的定义、特征和性质。

2. 鼓励学生将所学知识运用到实际问题中,并提出相关问题供学生思考。

七、作业布置(5分钟)1. 布置相关的课后作业,如完成课本上的习题或设计一些实际问题。

2. 提醒学生预习下一节课的内容,做好相关准备。

教学反思:本节课通过导入、讲授、练习、讲评、拓展、总结和作业布置等环节,全面展示了一次函数的定义、特征和性质。

一次函数的应用第一课时.1 一次函数的应用(第1课时) 教学设计

一次函数的应用第一课时.1 一次函数的应用(第1课时) 教学设计

第四章一次函数4. 一次函数的应用(第1课时)大方县第五中学张刚一、学生起点分析本节课之前,学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。

在此基础上引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.二、教学目标分析①了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.②经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;③经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.三、教学重难点教学重点:确定一次函数的表达式教学难点:应用一次函数四、教学准备PPT、多媒体等等五、教学方法合作探究六、教学过程设计本节课设计了六个教学环节:本节课设计了六个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.第二环节初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结。

这个问题涉及到数学对象的一个本质概念——基本量.由于一次函数有两个基本量k、b,所以需要两个条件来确定.第三环节深入探究内容1:例1如图所示,已知直线AB和x轴交于点B,和y轴交于点A①写出AB两点的坐标②求直线AB的表达式在弹性限度内,弹簧的长度y (厘米)是所挂物体的质量x (千克)的一次函数,一根弹簧不挂物体时长14.5cm ;当所挂物体的质量为3kg 时,弹簧长16cm 。

一次函数的应用优秀教案

一次函数的应用优秀教案

一次函数的应用【课时安排】2课时【第一课时】【教学目标】1.能通过函数图象获取信息,发展形象思维。

2.能利用函数图象解决简单的实际问题。

3.初步体会方程与函数的关系。

【教学重点】一次函数图象的应用。

【教学难点】正确地根据图象获取信息。

【教学过程】一、导入新课。

在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数的应用。

二、讲授新课。

(一)做一做。

1.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少。

干旱持续时间t (天)与蓄水量V(万立方米)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天,蓄水量为多少?连续干旱23天呢?(3)蓄水量小于400万立方米时,将发生严重干旱警报。

干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?[师]请大家根据图象回答问题,有困难的请大家互相交流。

[生甲]答:(1)水库干旱前即t=0时,也就是1200万立方米。

(2)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值。

当t=10时,V约为1000万立方米。

同理可知当t为23天时,V约为750万立方米。

[生乙](3)当蓄水量小于400万立方米时,将发出严重干旱警报,也就是当V等于400万立方米时,求所对应t的值。

当V等于400万立方米时,所对应的t的值约为40天。

[生丙]水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求。

当V为0时,所对应的t的值约为60天。

(二)练一练。

1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示。

根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x轴交点的横坐标即为摩托车行驶的最长路程。

八年级上册数学 一次函数的应用(1) 教案

八年级上册数学   一次函数的应用(1) 教案

课题:一次函数的应用(第一课时)●教学目标:知识与技能目标:1、能通过函数图象获取信息,发展形象思维。

2、能利用函数图象解决简单的实际问题,3、初步体会方程与函数的关系。

过程与方法目标:1、通过方程与函数关系的研究,建立良好的知识联系。

情感与态度目标通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。

重点:一次函数图象的应用●难点:学会解较为复杂的一次函数的应用题.●教学流程:一、课前回顾1. 什么是一次函数?若两个变量x,y间的关系式可以表示成y=kx+b (k,b为常数,k≠0)的形式,则称y 是x的一次函数.2. 一次函数的图象是什么?一条直线常数项b决定一次函数图象与y轴交点的位置.二、情境引入探究1:某物体沿一个斜坡下滑,它的速度v (米/秒)与其下滑时间t(秒)的关系如右图所示:(1)请写出 v 与t的关系式;(2)下滑3秒时物体的速度是多少(1)请写出 v 与t的关系式;设V=kt;∵(2,5)在图象上∴由5=2k得,k=2.5∴V=2.5t(2)下滑3秒时物体的速度是多少?将3s代入V=2.5t,得V=7.5总结:确定正比例函数的表达式需要1个条件确定一次函数的表达式需要2个条件.探究1:在弹性限度内,弹簧的长度 y(厘米)是所挂物体质量 x(千克)的一次函数。

一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米。

请写出 y 与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度。

解:设y=kx+b,根据题意,得14.5=b ①16=3k+b ②将b=14.5代入②,得k=0.5所以在弹性限度内,y=0.5x+14.5当x=4时,y=0.5×4+14.5=16.5即物体的质量为4千克时,弹簧长度为16.5厘米.总结:怎样求一次函数的表达式?这种求函数解析式的方法叫做待定系数法求一次函数的表达式的详细步骤1.设——一次函数表达式 y=kx+b或者y=kx;2.代——将点的坐标代入y=kx+b中,列出关于K、b的方程3.解——解方程求出K、b值;4.定——把求出的k、b值代回到表达式中即可.练习1:1.如图,直线l是一次函数y=kx+b的图象,求它的表达式.解:设正比例函数y=kx将点(-1,3)代入其中3=-1×k,得k=-3∴y=-3x2. 已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的应用(第1课时)
一、学生起点分析
本节课之前,学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。

在此基础上引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.二、教学任务分析本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念--基本量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于%、b的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.
本节课的教学目标是:
①了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待
定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.
②经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表
达式,进一步发展数形结合的思想方法;
③经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生
的思维.
三、教学过程设计
本节课设计了六个教学环节:
本节课设计了六个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;
第六环节:作业布置.
第一环节复习引入
内容:提问:(1)什么是一次函数?
(2) 一次函数的图象是什么?
(3) 一次函数具有什么性质?目的:学
生回顾一次函数相关知识,温故而知新.第二环节初步
探究
内容1:
展示实际情境
提供两个问题情境,供老师选用.
实际情境一:某物体沿一个斜坡下滑,它的速度p(米/
秒)与其下滑时间看(秒)的关系如图所示.
(1)写出/与Z之间的关系式;
(2)下滑3秒时物体的速度是多少?
分析:要求/与Z之间的关系式,首先应观察图象,确定函数的类型,然后根据函
数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数
(4)求甲、乙二人y与X的函数关系式.
目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.
教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.
内容2:
想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?
目的:在实践的基础上学生加以归纳总结。

这个问题涉及到数学对象的一个本质概念一一基本量.由于一次函数有两个基本量&、b,所以需要两个条件来确定.
第三环节深入探究
内容1:
例1在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数,一根弹簧不挂物体时长14.5cm;当所挂物体的质量为3kg时,弹簧长IGcm0写出y与X之间的关系式,并求所挂物体的质量为4kg时弹簧的长度.
解:设y=履+b,根据题意,得
14.5=6,①
16=3%+。

,②
将6=14.5代入②,得A=0.5.
所以在弹性限度内,y=0.5x+14.5.
当x=4时,y=0.5×4+14.5=16.5(厘米).
即物体的质量为4千克时,弹簧长度为16.5厘米.
目的:
引例中设置的是利用函数图象求函数表达式,这个例子选取的是弹簧的一个物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步体会函数表达式是刻画现实世界的一个很好的数学模型.这道例题关键在于求一次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而解.
教学注意事项:
学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂
3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到y与X间的关
系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不
内容2:
想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.
求函数表达式的步骤有:
1 .设一次函数表达式.
2 .根据已知条件列出有关方程.
3 .解方程.
4 .把求出的h8值代回到表达式中即可.
目的:对求一次函数表达式方法的归纳和提升。

在此基础上,教师可指出这种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法.
第四环节反馈练习
内容:
1 .如图,直线/是一次函数y=&+b的图象,
求它的表达式.
2 .若一次函数y=2x+力的图象经过A(—1,1),b=,该函
数图象经过点B(1,—)和点C(—,0).
3 .如图,直线/是一次函数),=履+b的图象,填空:
(1) b=,k=;
(2)当x=3O时,y=;
(3)当y=30时,X=.
4 .己知直线/与直线y=-2x平行,且与y轴交于点(0,2),求直线/的表达式∙
答案:
1. y=-3X
(2) ^=3,B(1,5)t C(--,0).
(3) 3∙(1)b=2,k=--;
(4) 一18;
(5) -42.
(6) y=-2x+2•
目的:
四个练习旨在对学生求一次函数表达式的掌握情况进行反馈,以便及时调整教学进程.
效果:
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.
第五环节课时小结
内容:
总结本课知识与方法
1 .本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出3b的值,从而确定函数解析式。

其步骤如下:(1)设函数表达式;(2)根据已知
条件列出有关h6的方程;(3)解方程,求h6;4.把k6代回表达式中,写出表达式.
2 .本节课用到的主要的数学思想方法:数形结合、方程的思想.
目的:
引导学生小结本课的知识及数学方法,使知识系统化.
第六环节作业布置
习题4.5:1、2、3、4
目的:进一步巩固当天所学知识。

教师也可根据学生情况适当增减,但难度不应过大.
四、教学设计反思
1 .设计理念
本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.
2 .突出重点、突破难点策略
探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛.教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法.教学中还注意到尊重学生的个体差异,使每个学生都学有所获.
3 .分层教学
根据本班学生及教学情况可在教学过程中选择拓展资源中内容进行补充或拓展,也可留作课后作业.。

相关文档
最新文档