《直角三角形二》教学设计
湘教版数学九年级上册《4.3 解直角三角形》教学设计2

湘教版数学九年级上册《4.3 解直角三角形》教学设计2一. 教材分析湘教版数学九年级上册《4.3 解直角三角形》是学生在学习了三角形的性质、勾股定理的基础上进行学习的。
本节内容主要让学生掌握直角三角形的性质,学会用勾股定理解决实际问题,进一步培养学生的观察能力、思考能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的性质、勾股定理等相关知识,具备一定的观察、思考和解决问题的能力。
但部分学生对直角三角形的性质和勾股定理的理解不够深入,解决实际问题的能力有待提高。
三. 教学目标1.理解直角三角形的性质,掌握用勾股定理解决实际问题的方法。
2.培养学生的观察能力、思考能力和解决问题的能力。
3.提高学生的数学素养,使学生在实际生活中能运用数学知识解决问题。
四. 教学重难点1.重点:直角三角形的性质,用勾股定理解决实际问题。
2.难点:如何引导学生发现直角三角形的性质,以及如何将实际问题转化为数学问题。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形,激发学生的学习兴趣。
2.启发式教学法:引导学生发现直角三角形的性质,培养学生独立思考的能力。
3.实践教学法:让学生通过动手操作、解决实际问题,加深对知识的理解。
六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画等。
2.教学素材:准备一些实际问题,用于引导学生运用勾股定理解决问题。
3.学生活动材料:为学生提供一些卡片,上面写有直角三角形的性质和勾股定理。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如建筑物的角落、三角板等,引导学生关注直角三角形。
提问:“你们知道直角三角形的性质吗?”让学生回顾已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)讲解直角三角形的性质,引导学生发现并总结直角三角形的特征。
通过课件展示直角三角形的特点,如直角边的平方和等于斜边的平方。
同时,给出勾股定理的公式。
人教版数学八年级上册《直角三角形判定》教学设计

人教版数学八年级上册《直角三角形判定》教学设计一. 教材分析人教版数学八年级上册《直角三角形判定》是初中数学的重要内容,主要让学生了解直角三角形的判定方法,掌握直角三角形的性质。
本节课的教学内容主要包括两个方面:一是利用锐角三角函数的定义判断直角三角形;二是利用直角三角形的性质判断直角三角形。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数的概念、三角形的性质等基础知识,具备一定的空间想象能力和逻辑思维能力。
但部分学生对直角三角形的判定方法理解不透彻,容易混淆。
因此,在教学过程中,要关注学生的学习差异,针对性地进行指导。
三. 教学目标1.让学生掌握直角三角形的判定方法,能运用所学知识解决实际问题。
2.培养学生的空间想象能力、逻辑思维能力和合作交流能力。
3.激发学生对数学的兴趣,提高学生的数学素养。
四. 教学重难点1.教学重点:直角三角形的判定方法。
2.教学难点:如何运用直角三角形的判定方法解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形的判定方法。
2.利用多媒体辅助教学,展示直角三角形的判定过程,提高学生的空间想象能力。
3.采用小组合作学习,培养学生的团队协作能力和交流能力。
4.运用实例分析法,让学生学会将所学知识应用于实际问题。
六. 教学准备1.准备相关教学课件,展示直角三角形的判定过程。
2.准备实例题目,用于巩固所学知识。
3.准备黑板、粉笔等教学工具。
七. 教学过程1. 导入(5分钟)教师通过展示生活中的直角三角形实例,如建筑工人测量高度、体育运动员投掷项目等,引导学生关注直角三角形在实际生活中的应用,激发学生的学习兴趣。
同时,提出问题:“如何判断一个三角形是不是直角三角形?”从而引入新课。
2. 呈现(10分钟)教师简要回顾锐角三角函数的定义,引导学生思考如何利用锐角三角函数判断直角三角形。
通过讲解和示范,呈现直角三角形的判定方法,让学生初步掌握。
3. 操练(10分钟)学生分组进行练习,每组选取一道实例题目,运用所学知识判断题目中的三角形是否为直角三角形。
湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计

湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)的教学内容主要包括解直角三角形的应用、锐角三角函数的概念和应用。
本节课是在学生已经掌握了直角三角形的相关知识的基础上进行教学的,目的是让学生能够运用所学的知识解决实际问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于直角三角形的相关知识也有了一定的了解。
但是,学生在解决实际问题时,往往会因为对概念理解不深、思路不清晰而导致解题困难。
因此,在教学过程中,教师需要引导学生深入理解概念,培养学生的解题思路。
三. 教学目标1.知识与技能:使学生掌握解直角三角形的应用,理解锐角三角函数的概念和应用。
2.过程与方法:培养学生运用所学的知识解决实际问题的能力,提高学生的数学应用能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.教学重点:解直角三角形的应用,锐角三角函数的概念和应用。
2.教学难点:如何引导学生运用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,培养学生的解题思路;通过分析实际案例,使学生理解所学知识的应用价值;通过小组合作学习,提高学生的团队合作意识和交流能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计好教学问题和案例。
2.学生准备:掌握直角三角形的相关知识,预习本节课的内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直角三角形的相关知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师展示案例,让学生观察和分析案例中的直角三角形,引导学生发现实际问题中的数学规律。
3.操练(20分钟)教师设置问题,引导学生运用所学的知识解决实际问题。
学生在解决问题的过程中,教师给予指导和点拨,帮助学生理清解题思路。
23.2.2 解直角三角形及其应用 第2课时 教案

沪科版数学九年级上册23.2.2 解直角三角形及其应用教学设计例3 如图 23-16,一学生要测量校园内一棵水杉树的高度。
他站在距离水杉树8米的E处,测得树顶端A的仰角∠ACD为52°,已知测角器CE=1.6米,问树高AB为多少米?(精确到0.1m).例4 解决本章引言所提问题。
如图23-17,某校九年级学生要测量当地电视塔的高度AB,因为不能直接到达塔底B处,他们采用在发射台院外与电视塔底B成一直线的C,D两处地面上,用测角器测得电视塔顶部A的仰角分别为45°和30°,同时量得CD为50m,已知测角器高为1m,问电视塔的高度为多少米?(结果精确到1m).例5 如图23-18,一船以20n mile/h的速度向东航行,在A处测得灯塔C在北偏东60°的方向上,老师提示:解决这个问题的方法,我们称为实际问题数学化,这是解决实际问题常用的方法。
通过学生自己的观察、比较、总结出在这些结论。
实际问题数学化,由实际问题画出平面图形,也能有平面图形想像出实际情景,再根据解直角三角形的来解决实际问题。
并且了解了仰角,俯角的概念。
引导学生再次思考。
加强学生的合作意识,使学生养成大胆猜测和想象的能力,积极参与数学问题的谈论,敢于发表自己的见解。
强调易错点,加继续航行1h到达B处,再测得灯塔C在北偏东30°的方向上,已知灯塔C四周10 n mile 内有暗礁,问这船继续向东航行是否安全?分析:这船继续向东航行是否安全,取决于灯塔C 到AB航线的距离是否大于10 n mile解直角三角形应用的基本图形①不同地点看同一点(如图①);②同一地点看不同点(如图②)建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,教师再给予点评、引导,然后共同完成问题的解决。
在探索中发现,这样才能理解其中的规律并能加以总结.通过问题的解决和延伸,引发学生自主思考,培养学生解决问题的逻辑思维能力。
直角三角形的性质—教学设计

直角三角形的性质—教学设计教学目标:1.了解直角三角形的定义及性质;2.熟练应用直角三角形的性质求解相关问题;3.培养学生观察、推理和解决问题的能力。
教学重点和难点:教学准备:1.教师准备直角三角形的相关教学素材,如图片、幻灯片、教学视频等;2.学生准备直尺、量角器等绘图工具。
教学过程:一、导入(5分钟)教师出示一张直角三角形的图片,让学生观察并回答以下问题:1.这个三角形有几个角?每个角的度数是多少?2.这个三角形的哪个边是直角边?直角的度数是多少?3.你能否找到其他的直角三角形?二、直角三角形的定义(15分钟)1.教师给出“直角三角形”这个概念的定义:“一个三角形,其中一个角是直角(90°),称为直角三角形。
”2.教师给出直角三角形的符号表示△ABC(其中∠C=90°)。
3.教师通过绘制示范,帮助学生理解直角三角形的概念,同时引导学生观察直角三角形的性质。
三、直角三角形的性质(25分钟)1.教师出示一张包含直角三角形示意图的图片,让学生观察并回答以下问题:a)直角三角形的两个锐角之和是多少?b)直角三角形的斜边是哪两边之间最长的那一条?c)直角三角形的两条直角边满足什么关系?2.教师通过幻灯片或板书总结直角三角形的性质:a)直角三角形的两个锐角之和是90°;b)直角三角形的斜边是哪两边之间最长的那一条;c)直角三角形的两条直角边满足勾股定理:直角三角形的斜边的平方等于两条直角边平方的和。
3.教师给出直角三角形的勾股定理,并通过例题讲解如何应用勾股定理求解直角三角形的边长。
4.学生自主练习:学生们在教师的指导下,互相出示自己练习的题目,互相检查答案。
四、直角三角形的应用(30分钟)1.教师出示几个直角三角形应用的实例,如测量高度、求解航程等,引导学生思考如何应用直角三角形的性质解决这些问题。
2.学生探究:学生们分小组进行探究活动,每个小组选出一个代表进行报告。
要求学生使用勾股定理解决实际问题,并画出问题的图形。
全国初中数学优质课一等奖《直角三角形全等的判定》教学设计

《§1.2.2直角三角形》教学设计XXX 学校 XXX一、 教学内容解析本节课是北师大版八年级下册《三角形的证明》的第二节课,是在学生已经历了一般三角形全等的判定、勾股定理及其逆定理的验证等相关知识的基础上,对直角三角形全等的判定作进一步深入和拓展,同时又是进一步研究轴对称、等腰三角形、四边形等知识的工具性内容,具有不容忽视的基石作用,因此本节课在教材中起着承上启下的作用。
从认知基础的角度看,一方面,学生已经历了平行线的证明、勾股定理及其逆定理的 验证,理解几何命题之间的因果关系,这些都为“HL ”定理的合情推理奠定了基础。
另一方面,“HL ”定理是一般三角形全等判定的延伸。
从思想方法的角度看,“HL ”定理是学生通过动手操作,从特例到一般结论的研究,综合运用了勾股定理等相关旧知化为一般三角形全等的判定而获得,而定理在实际生活中的应用又是数学建模的过程。
因此,本节的灵魂是化归思想、类比思想、模型思想、特殊与一般思想的具体化身。
从数学本质的角度看,实验-观察-归纳-猜想-验证是获得定理的关键,而灵活运用定理是知识转化为能力的催化剂。
根据以上分析,确定本节课的教学重点为: 直角三角形全等的判定定理“HL ”的探究与应用。
二、 目标与目标解析:依据《新课程标准》及学生的实际情况制定教学目标如下:1、知识与技能目标:能通过探索掌握判定直角三角形全等的“斜边、直角边”定理。
2、过程与方法目标:经历“探索--发现--猜想--证明”的过程,体会合情推理在获得结论中发挥的作用。
3、情感与价值目标:在自主探究定理证明的过程中培养勇于探索的精神,在合作交流环节中感受合作获得新知带来的成功喜悦,激发对数学证明的兴趣和信心。
三、 教学诊断分析1、预测在“发散探究”环节,由于学生存在差异,部分学生会存在不同的问题,例如, 变式2中,可能会出现由“C B BC ''=,C A AC ''=,A A '∠=∠”不能得出结论的错误判断这种情况。
沪教版(上海)初中数学八年级第一学期 19.8(2)直角三角形的性质 教案

教学设计表进行线段转化,试着想一想,还有没有别的方法?3、几何画板演示辅助线添法,引导学生进行证明5、小总结:根据之前的学习,我们知道当遇到线段的倍分问题时,可以使用线段的转化来解决,那么推论1给我们提供了什么新思路?题还可以使用特殊角转化(推论1)(板书)例题讲解,巩固运用(1)13’30”-19’40”掌握例题11、让我们来看看这道例题能不能使用我们学习的新思路去解决?题目(板书):已知:AB=AC,∠B=30°,AD⊥AC求证:1=2BD DC请学生在导学单上先标出已知条件(一位同学上台标记),并思考如何证明3、讲解例题(板2、一位学生用粉笔标出已知条件,效果图:全体学生思考如何证明书)深化理解,变式训练19’40”-27’30”完成导学单上练习部分第1题1、通过用特殊角转化线段的倍分关系,我们已经解决了一道例题,现在请你们自主完成练习部分第一题:3、巡场进行个别辅导(①指出这题是例题1的变式②提示学生将已知在图上进行标记),请完成得快的同学上台分享思路2、完成导学单上练习部分第一题4、一位学生上台讲练习1(通过垂直平分线的定义得到BD=AD,得∠B=∠BAD=30°,从而∠DAC=∠BAC-∠BAD=120°-30°=90°,于是CD=2AD=2BD)几何画板操作简单、绘图精准直观,可以很好地辅助几何题的讲解。
辅以电子白板取代传统黑板,ActivInspire电子白板笔取代粉笔,如虎添翼。
自主梳理,证明推论227’30”-32’00”由推论1的逆命题得到推论2,理解推论2的证明1、回忆之前我们学习的垂直平分线定理和角平分线定理都有逆定理,那请一位同学用文字语言试着说说看推论1的逆命题?3、转化为几何语言?5、思考这个命题2、一位同学回答:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°4、学生回答:已知:在Rt△ABC中,∠ACB=90°,12BC AB,求运用几何画板演示定理的推理过程,清晰直观,大大提升了课堂教学的效率。
《三角形分类》教学设计(优秀4篇)

《三角形分类》教学设计(优秀4篇)《三角形分类》教学设计篇一教材内容:本课的教学内容是北师大版教材四年级下册“三角形”第二单元。
教学目标:1、知识与技能:使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。
2、方法与过程:经历分类的过程,渗透分类的数学思想,培养学生的空间观念和初步的逻辑思维能力。
3、情感态度与价值观:在共同学习中,训练学生的自我探索能力,在探索活动中培养学生主动探索精神和创新意识。
重、难点:教学重点:认识锐角三角形、直角三角形、钝角三角形以及等腰三角形、等边三角形的基本特征。
教学难点:发现三角形的角、边特征从而正确分类。
教学工具:多媒体幻灯片、直尺、学具袋(各种类型的三角形)教学过程:一、复习引入1、复习出示幻灯片2生活中哪些东西是三角形,同学们可以列举生活用品,也可以对书中的事物进行描述。
出示幻灯片3我们学过哪几种角?(指名口答)下面的角是什么角?(指名口答)下面三种角同学们知道角是由两条边和一个顶点组成的,并且它的两条边是两条射线。
2、揭题板书:是啊,三角形在我们生活中处处可见,有着广泛的应用,为我们的生活增添了不少情趣,是我们生活中的数学,今天我们就来给众多精美的三角形分分类。
板书:三角形的分类二、探索新知:给三角形分类1、按角把三角形分类三角形有各种不同的形状,所以可以分成不同的类别。
(发给每个小组一个学具袋)(1)操作感知让学生打开学具袋。
(内装有锐角三角形、钝角三角形、直角三角形纸片各2张并编上序号),以小组为单位,量出每个三角形三个角的度数,并按要求填写记录表。
(2)展示、交流指名说一说量得的结果后,仔细观察。
看看你发现了什么?(教师出示填写好的记录单,和学生对照检查后,让学生说说他们的发现,可以组内相互说说,再在班上说。
)向学生介绍什么是锐角三角形、直角三角形、钝角三角形。
(3)认识三类三角形的关系(多媒体出示)理解三角形的关系图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《直角三角形(二)》教学设计
南峰初级中学苗玉栋
教学目标:
1.知识与技能目标:(1).掌握已知直角三角形的一条直角边和斜边,作直角三角形的方法。
(2).掌握直角三角形全等的判定方法“HL(3).能用全等直角三角形的判定方法解决简单问题。
2.过程与方法目标:经历探究全等直角三角形判定方法“HL”的过程,学会用操作确认、归纳发现问题结论的方法。
3.情感与价值目标:通过操作确认、归纳发现结论,感知实验操作在发现问题结论中的重要作用。
教学重点:“斜边、直角边”公理的掌握.
教学难点:“斜边、直角边”公理的灵活运用.
课前准备:
1.教师准备:课件
2.学生准备:复习判定三角形全等定理的相关知识.
课时安排:一课时
教学过程:
一、复习旧知,引入新课
1、判定两个三角形全等的方法:、、、_____.
2、如图,在Rt△ABC中,直角边是、,斜边是____.
3、如图,AB⊥BE于B,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF______.(填“全等”或“不全等”) 根据 (用简写法)
(2)若∠A=∠D,BC=EF,则△ABC与△DEF______.(填“全等”或“不全等”) 根据 .(用简写法)
(3)若AB=DE,BC=EF,则△ABC与△DEF (填“全等”或“不全等”) 根据 .(用简写法)
(4)若AB=DE,AC=DF,BC=EF则△ABC与△DEF (填“全等”或“不全等”) 根据 .(用简写法)
2题 3题
学生回忆解答.
4、在△ABC与△A′B′C′中,如果AB=A′B′,AC=A′C′,∠B=∠B′,那么,△ABC与△A′B′C′全等吗?
学生根据已学的判定全等的知识讨论回答.
教师提问:“边边角”分别对应相等是不能保证三角形全等的,那么当“角”为直角时“边边角”就成了“斜边直角边”,此时能否全等?从而引入新课. 二、合作学习,自主探究
(一)已知一条边和斜边,求作一个直角三角形.
想一想,怎么画?同学们相互交流讨论得出结论:(图见课件)
步骤1:画∠MCN=90º;
步骤2:在射线CM截取 CB=a;
步骤3:以点B为圆心以b长为半径画圆弧,交射线CN于点A;
步骤4:连结AB.
(二)证明“HL”定理.
由师生共同分析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,
AB=A′B′,BC=B′C′.
求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB2-BC2(勾股定理).
又∵在Rt△A′B′C′中,A′C′=A′C′=A′B′2-B′C′2(勾
股定理).
AB=A′B′,BC=B′C′,AC=A′C′.
∴Rt△ABC≌Rt△A′B′C′(SSS).
定理:斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.
(三)例题讲解:A'
B'C' B
A
如图,有两个长度相等的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度 DF 相等,两个滑梯的倾斜角∠B 和∠F 的大小有什么关系?
师生共同分析完成解题过程如下:
解:根据题意,可知∠BAC=∠EDF=90º,BC=EF ,AC=DF ,
∴ Rt △BAC ≌Rt △EDF (HL ).
∴ ∠B=∠DEF (全等三角形的对应角相等). ∵ ∠DEF+∠F=90°(直角三角形的两锐角互余),
∴ ∠B+∠F=90°.
三、巩固运用、深化拓展
1.判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 、
2.已知∠ACB=∠BDA=90º,要使△ACB≌BDA,还需要什么条件?把它们分别写出来.
3.如图,在△ABC≌△A ′B ′C ′中,CD ,C ′D ′分别分
别是高,并且AC =A ′C ′,CD=C ′D ′.∠ACB=∠A ′C ′B ′.
求证:△ABC≌△A ′C ′B ′.
四、课时小结
本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定'C C A D B '
''B D A
A
B
D C
O
F A B
C D E
直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.
五、课后作业
P21页习题1.6
板书设计
定理:斜边和一条直角边分别相等的两个直角三角形全等.
简单的用“斜边、直角边”或“HL”表示
两个直角三角形全等的判定:SAS、ASA、AAS、SSS、HL.
教学反思
本节课教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SAS、ASA、AAS、SSS)的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。
在教学过程中,让学生充分体验到实验、观察、比较、猜想、总结、验证的数学方法,一步步培养他们的逻辑推理能力。
在探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程.。