北京大学线性代数方博汉线代B2016期中考试题

合集下载

北京大学线性代数方博汉线代B2017经院期末考试题

北京大学线性代数方博汉线代B2017经院期末考试题

其中A, B ∈ Mn×n(R), Bt是矩阵B的转置, tr表示矩阵的迹. • 请验证如此定义的双线性函数确实是内积, 这样Mn×n(R)构成了一个 欧几里德空间. (5分)
• 设U ⊂ Mn×n(R)为所有反对称矩阵的全体, 它是一个子空间(不用证 明). 对任何的方阵A = (aij), 试用aij写出PU A, 即A在子空间U 上的正 交投影. (10分)
1
2
LINEAR ALGEBRA B FINAL, 2:00PM-4:00PM
• 正交补空间U ⊥的维数是多少? (8分) • 若非零子空间U 里的任何两个向量α, β满足f (α, β) = 0, 这样的子空间
是否存在(2分), 可能的最大维数是多少(5分)? (6) (15分) 设V 是复数域C上的n维线性空间.
(1) (15分) 设矩阵A为
A=
1 −1
2 4
• 写出A的特征值和特征向量. A可不可以对角化? (8分)
• 考察线性变换A : M2×2(C) → M2×2(C), 定义为A(U ) = A−1U A, 这 里U ∈ M2×2(C)是一个2阶复数方阵. 写出这个线性变换的特征值和特 征向量, 并且判断A是不是可以对角化并说明理由. (7分)
(4) (15分) 实对称矩阵
0 2 4 A = 2 −3 2 .
420
是否存在实矩阵B使得B2 = A; 若没有,是否存在复矩阵B使得B2 = A? 请说明你这么判断的理由.
(5) (15分) 设K是一个数域, 考察下述K2n上的非退化反对称双线性函数
f (α, β) = x1y1 − y1x1 + x2y2 − y2x2 + · · · + xnyn − ynxn, 其中

2016年北大博雅计划数学试题及答案

2016年北大博雅计划数学试题及答案
C A L
K M
B D
由弦切角定理,得
∠DKM = ∠BAK = ∠KLM,
又 ∠KLA = ∠KM L,于是可得 ∠AKL = ∠BKL,因此由角平分线定理可得 AL : BL = AK : BK,从 而可得 BL = 25.
12.解 C. 分别令 x = 0, 1, −1,可得
2f (0) + f (−1) = 1,
B. 12
C. 13
D. 前三个答案都不对
11. 两个圆内切于 K,大圆的弦 AB 与小圆切于 L,已知 AK : BK = 2 : 5,AL = 10,则 BL 的长为 ( )
A. 24
B. 25
C. 26
D. 前三个答案都不对
(
)
Ä √ä
12. f (x) 是定义在 R 上的函数,且对任意实数 x 均有 2f (x) + f x2 − 1 = 1,则 f − 2 等于 ( )
22ff
(1) + f (0) = 1, (−1) + f (0) = 1,
解得
f (0)
=
f (1)
=
f (−1)
=
1 .再令
x
=
−√2,可得
√ 2f (− 2)
+
f (1)
=
1,从而
√ f (− 2)
=
1.
3
3
13.解 A.
以正 9 边形的某个顶点为等腰三角形的底边所对顶点的等腰三角形有 4 个,其中有一个是正三角形.因
的 x 的个数为 11,分别为
11213123415 ,,,,,,,,,,.
23344555566
5.解 A. 根据题意,有

北京大学高等代数_I+2016+期中考试题+-+答案

北京大学高等代数_I+2016+期中考试题+-+答案

北京大学数学学院期中试题一.(16分)(1)叙述向量组线性相关, 线性无关, 向量组极大无关组的定义 ;(2)已知向量组α1 , ... , α s 能线性表出β1 , ... , β r , 且α1 , ... , α s 的秩等于β1 , ... , β r 的秩 . 证明: β1 , ... , β r 也能线性表出α1 , ... , αs .二.(16分)计算n 级行列式 D = nn 2n 1n n 22212n 12111b a n b a n b a n b a b a b a b a b a b a +++++++++222111. 解:n = 1时,D = 1+ a 1b 1 ;n = 2时,D =(2a 1–a 2 )(b 1–b 2 );n>2时,D = n1n 21n 11n n 12212112n 12111b a n a b a n a b a n a b a a b a a b a a b a b a b a )()()()2()2()2(111------+++= 0 .三.(24分)设矩阵 A 的列向量依次为α1 , ... , α5 . 已知齐次方程组A X = 0解空间的一组基为 [ 3 1 1 0 0 ] T , [ 5 6 1 2 -1 ] T .1) 求A 的简化阶梯型矩阵J ;2) 求A 列向量组的一个极大无关组, 并用此极大无关组表出A 的每个列向量;3) 求 A 行空间的一组基, 并判断当a 取何值时,β = [ 1 a 0 3 2a –1 ] 落在A 的行空间里, 写出此时β在 基底下的坐标;4) 将A 写成BC 的形式,B 是列满秩的矩阵,C 是行满秩的矩阵.解: 1) 矩阵A 的行空间与A 的解空间在R 5中互为正交补 , 即向量 [ a 1 a 2 a 3 a 4 a 5 ] 在A 的行空间中当且仅当 3 a 1 + a 2 + a 3 = 0 且 5a 1 + 6a 2 + a 3 +2 a 4 – a 5 = 0 .解此方程组得行空间的一组基⎥⎦⎤⎢⎣⎡---→⎥⎦⎤⎢⎣⎡-12052001131216500113 得 ⎩⎨⎧++=--=42152132523a a a a a a a a 1 , a 2 , a 4为自由变量. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++--=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡21000501102030125234214214212154321a a a a a a a a a a a a a a a a 故A 的简化阶梯形为 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-- 00000210005*********. 2) A 列向量组的一个极大无关组为α1 , α2 , α4 , 且α3 = –3 α1 – α2 , α5 = 2 α1 + 5α2 + 2α3 ;3) A 行空间的一组基为简化阶梯形的前3个行向量;若 β = [ 1 a 0 3 2a –1 ] 落在A 的行空间里, 则β在此基底下的坐标只能是 [ 1 a 3 ] T ,且有–3–a = 0 , 2 + 5 a + 6 =2a –1 .此条件当且仅当 a = –3 时成立.故当且仅当 a = –3 时β落在A 的行空间里, 此时β的坐标是[ 1 –3 3 ] T .4) A = [ a 1 a 2 a 4 ] ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--210005*********.四.(12分)设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000100010. 记 C( A) = { X ∈ M 3 (R) | A X = X A }.1) 证明: 集合C( A )是线性空间M 3 (R) 的子空间;2) 求子空间C( A ) 的维数和一组基 .解:2) C( A ) 的一组基为 I ,A ,A 2 ( A 3 = 0 )。

北京大学线性代数方博汉线代B物院2018秋期中考试题

北京大学线性代数方博汉线代B物院2018秋期中考试题
ι : V ∗ → Map(A, K),
这里Map(A, K)是集合A到数域K的函数的全体, 构成一个线性空间. 对 任 何V 上 的 线 性 函 数r ∈ V ∗, ι(r)就 是r限 制 在 集 合A上, 即ι(r)(αi)定 义 为r(αi). 试证明:
• (5分) 若rankA = n, 则ι是单射; • (5分) 若A线性无关, 则ι是满射.
线性代数B 期中考试 十月三十日1:00PM-2:50PM
请在另外提供的答题本上答题。务必在答题本封面清楚的标注您的姓名、院系 和学号。本试卷考试结束后不用回收。请写出解答过程。考试期间不可以使用计算 器手机等电子设备,不可以参考任何电子或纸质材料,不可以从其他人那里获得任 何帮助。本试卷共100分。
(1) (20分) 求下列方程组的通解
x1 + x2 + 5x3 = 0, 3x1 + 2x2 + x3 − x4 = 1,
2x1 + x2 − 4x3 − x4 = 1, 4x1 + 3x2 + 6x3 − 3x4 = 1.
(2) (20分)n × n矩阵A, J为
a11 a12 . . . a1n
现在令V = Q3, 这里Q是有理数域. 设
1
0
1 = 0 , 2 = 1 ,
0
0
0 3 = 0 .
1
若η1, . . . , ηn是另外一组基
2
0
3
η1 = 1 , η2 = 1 , η3 = 0 .
−1
1
1
用V ∗的基 ∨1 ,
∨ 2
,
∨ 3
线性表出η1∨,
η2∨
,
η3∨.
(6) (10分)设A = {α1, . . . , αs}为K上有限维线性空间V 中的向量组, 设V 的维数 是n. 考察映射

北京大学线性代数方博汉线代B物院2018秋期末考试题(回忆版)

北京大学线性代数方博汉线代B物院2018秋期末考试题(回忆版)

2018秋线性代数期末(回忆版)教师:⽅博汉(1)(20分) V 为实数域 ℝ 上 n 维线性空间,若正交线性映射 f:V →V 特征值为1的特征⼦空间 W 维数为 n −1 。

证明 f =id -−2P ,其中 id - 为 V 上恒同映射, P 为向 W 的正交补空间 W 0 的正交投影映射。

(2)(20分) 复数和四元数的矩阵表⽰• 设 V 为实数域上2阶实矩阵空间 M 2×2(ℝ) 的⼦空间,试找到⼀组基 {1,i} ,使得1 ∙1=1,1∙i =i ∙1=i,i ∙i =−1• 设 V 为实数域上2阶复矩阵空间 M 2×2(ℝ) 的⼦空间(所以共有8维),试找到⼀组基 {1,i,j,k} 使得1∙1=1,1∙i =i ∙1=1,1∙j =j ∙1=j,1∙k =k ∙1=1 i 2=j 2=k 2=i ∙j ∙k =−1 (3)(20分) 设矩阵A =>0000011010010000@ 若将 A 视为实数域上正交矩阵,求⼀组正交基,使得A 化为标准的分块对⾓化的形式(10分);若将A 视为⾣矩阵,求⾣空间中⼀组正交基,使得A 对⾓化。

(10分)(4)(20分) 若A 为复数域上 n 阶⽅阵,定义exp (A )=D A E k!GEHI =I +A +A 22!+A L 3!+⋯可以⽤Jordan 标准形证明,对于任意矩阵,右边的式⼦是收敛的(你不⽤证明)。

• (10分)证明:expOtr (A )R =det (exp (A))•(10分)证明:若A是反对称矩阵,则 exp (A) 是正交矩阵。

(提⽰:先证明 若AB=BA,则 exp(A+B)=exp(A)∙exp (B) 可以直接⽤这个结论证明,得5分)(5)(20分) 设 V 为复数域上 n 维线性空间。

我们知道 V⊗V 上有同构σ(α⊗β)=β⊗α(a) (2分) 设 S={v∈V⊗V |σ(v)=v } ,S 是 V⊗V 的⼦空间(你不⽤证明这个事实),求 S 的维数,设 V 的⼀组基为 {e\,e2,⋯,e]}。

北大博雅数学2016答案

北大博雅数学2016答案

2016年北京大学博雅计划测试数学 答案1.【解答】A由于()x a x a e e ++'-=-,于是切点横坐标为x =-a ,进而有-(-a )+2=a a e -+-解得a =-3. 【评析】非常基础的问题,注意计算速度和准确度。

2.【解答】B不妨假设0a b c a b c <≤≤+>,。

(1) 0≥; (2) 错误,a =2,b =3,c =4即为反例; (3) 正确,因为有0222a b c a b ca ++-+-=>; (4) 正确,因为有()()()()()1110ab bc c a a b b c c a -++-+--+>-+---=。

【评析】一道灵活结合了不等式和几何三角形的问题,考察学生的代数基本功,总体难度也不算大。

3.【解答】C如图,连接CF ,由于DOE ∆与DFC ∆相似,因此DO DC DE DF ⋅=⋅,从而22421DO =⋅,因此OE ===【评析】非常简单的几何计算。

4.【解答】D满足(0,1)x ∈,且1()7f x >的x 的个数为11,分别为1121312341523344555566,,,,,,,,,,。

【评析】这个函数是非常有名的黎曼函数的一部分,但是对于学生的要求很低,只需要准确理解题意即可,问题本身并不困难。

5.【解答】A根据题意,有()()2242313=x x x x c x ax bx c --+-+++,于是a =-c -10,b =3c -3,从而有a +b -2c =-13。

【评析】简单的待定系数法,注意计算不要出错。

6.【解答】B令2log k x =,则a +x ,a +12x ,a +13x 成等比数列,从而可得x =-4a ,进而可得公比为13。

【评析】涉及等比数列的运算,较为基础。

7.【解答】D 依据题意,有2102458367910coscoscoscos cos cos cos cos cos cos cos cos cos 11111111111111111111111111πππππππππππππ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭224816cos cos cos cos cos 1111111111πππππ⎛⎫=- ⎪⎝⎭而24816116coscoscos cos cos 2sin cos ...cos 11111111111111112sin 11πππππππππ⎛⎫= ⎪⎝⎭ 1221613212sin cos ...cos ...sin 11111111324sin 32sin 1111ππππππ⎛⎫==== ⎪⎝⎭ 故原式值为11024-【评析】熟悉余弦二倍角连乘的点鞭炮公式的话,此题不算难题,但是要注意计算不能出错。

线代期中考试卷及答案详解

线代期中考试卷及答案详解

..2012《线性代数》期中考试试卷及答案详解一、单项选择题 (每小题4分,共20分)1. 下列各式中,哪个是5阶行列式det (a ij )的项⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( B )(A) 5541342312a a a a a (B) 2451421533a a a a a (C) 4124335215a a a a a (D) 5433451122a a a a a解 根据n 阶行列式的定义,行列式的算式中,每一项都是不同行、不同列的n 个数的乘积,并且带有符号:(1) 若行标排列是标准排列,则该项的符号取决于列标排列的逆序数的奇偶性;(2) 若列标排列是标准排列,则符号取决于行标排列的逆序数的奇偶性;(3) 若行标、列标排列都不是标准排列,则符号取决于行标排列与列标排列的逆序数之和的奇偶性(或者,交换一般项中的元素,使行标成为标准排列,再根据列标排列的逆序数判断).题中每个选项都是5阶行列式不同行、不同列的5个数的乘积,因此,需进一步判断各项是否带有正确的符号.选项(A)错误。

其行标排列是标准排列,列标排列的逆序数为t (23415)=3, 故,列标排列为奇排列,(或者,由于将列标排列23415变成标准排列12345需要进行奇数次对换,也可得23415为奇排列)。

所以选项(A)缺少“-”.选项(B)正确。

其行标和列标排列都不是标准排列,方法一:行标排列和列标排列的逆序数之和t (31452)+t (35214)=4+6=10,得符号为“+”;方法二,交换相乘的元素,使行标成为标准排列,得a 15a 24a 33a 42a 51,此时列标排列54321为偶排列,故取“+”. 同理,选项(C)和(D)错误,都应带“-”.2. 已知n 阶行列式D =1,将D 逆时针旋转90o,得行列式D ~,则D ~的值为⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( C )(A) 1 (B) -1 (C) (-1)n (n -1)/2 (D) (-1)n /2解 将D 逆时针旋转90o ,相当于对D 先作转置(这不会改变行列式的值),再作上下翻转[即交换n (n -1)/2次相邻行的位置,每次交换都改变行列式的符号],因此,应选(C).参见“行列式的性质”布置的思考题,或者教材习题一第7题的解答.3. n 阶行列式D n =0的必要条件是⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( D )(A) 有一行(列)元素全为零 (B) 有两行(列)元素对应成比例 (C) 各列元素之和皆为零(D) 以D n 为系数行列式的齐次线性方程组有非零解解 选项(A)(B)(C)都是D n =0的充分条件(但不是必要条件). 只有选项(D)为充分必要条件.4. 已知A , B 均为n 阶方阵,E 是n 阶单位矩阵,则下列命题中正确的是⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( D )(A) 若A ≠B ,则∣A ∣≠∣B ∣(B) 若(A -E )(B -E )=O ,则A =E 或B =E (C) A 2-B 2=( A +B )( A -B ) (D) A 2-E =( A +E )( A -E )解 答案为(D).选项(A)错误,反例:⎪⎪⎭⎫ ⎝⎛=1001A , ⎪⎪⎭⎫⎝⎛=1112B 选项(B)错误。

北大版-线性代数部分课后答案详解

北大版-线性代数部分课后答案详解

2•用行列式的泄义证明习题1.2:如如如如1 •写岀四阶行列式中幻I'2勺3"24含有因子的项“3】a 32 a 33a 34«41勺 2«43仙解:由行列式的泄义可知,第三行只能从@2、中选,第四行只能从厲2、中选,所 以所有的组合只有(-l )f (,324)如给角2知或(-1)"网 a H a 23a 34a 42,即含有因子勺]“23的项为一如吹32% 和 a H a 23a 34a 42证明:第五行只有取他「山2整个因式才能有可能不为°,同理,第四行取“42,第三 行取①I 、©2,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0 •以第 五行为参考,含有的因式必含有0,同理,含有的因式也必含有0“故所有因式都为0 •原命题得证・。

3 •求下列行列式的值:0 1 0♦ • ♦0 •… 0 1 00 02 ♦ • 00 ... 2 0 0(1)■ ■ ■ ■■ ;(2)• • ■ • • •0 00 • • ”一〃 一 1 0 0 0n 0 0 • •• 00 …0 H0 1 0 ♦ • • 00 2• • • 0解:(1) ■ ■ ■■ ■ ■ ■■ ■/lX r(234...nl)=("1)Ix2x3x--•xn =(-1)*"1 n\0 0 ・•・//-In 0 0 • • • 0a 2l0 01 0 0 ■ …2 • •0 ■ 0 ■■ ”一• • …0 • 0 ■0 0 00 n=(-1)侶心5)» B= 如■ •“22 ■■f 1-n…5少…如尸■5肝・・・a nn证明:A=BoE (T 严•”%叫2…%沪Wi"叫z (T 严%%…讣A 叩2・・%和巾 时2 ••叭和巾命题得证。

5•证明:如下2007阶行列式不等于61 2 …2006 200722 32 …20072 2OO82 D=33 • 43 • …20083 • • 20083■• ■■ •• • • •■ ■证明:最后一行元素,除去2007*”是奇数以外,其余都是偶数,故含2008^7的因式也都 是偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

何帮助。本试卷共100分。 (1) (20ቤተ መጻሕፍቲ ባይዱ) 下面线性方程组有没有解?若有,请找出所有的解。
x1 − x2
x1
+2x3 = 1, −2x3 = 1,
x1 − 3x2 +4x3 = 2.
(2) (20分)求矩阵A的逆
1 0 −1 A = −2 1 3 .
3 −1 2
(3) (20分)求下列向量组的秩和它的一个极大无关组
线性代数B(课程号:00131460)期中考试 十一月一日10:10AM-12:00PM, 理教201
请在另外提供的答题本上答题。务必在答题本封面清楚的标注您的姓名、院系 和学号。本试卷考试结束后不用回收。请写出解答过程。考试期间不可以使用计算 器手机等电子设备,不可以参考任何电子或纸质材料,不可以从其他人那里获得任
α1 = (3, 6, 1, 5),
α2 = (1, 4, −1, 3),
α3 = (−1, −10, 5, −7),
α4 = (4, −2, 8, 0).
(4) (20分)请计算下面的矩阵的特征值和每个特征值对应的特征子空间。
0 1 1 2 −1 1
2 −1 1
(5) (10分)给定矩阵
1 −1 A = 2 2 ,
10
B=
3 −4
1 4
,
请问是否存在矩阵C使得CA = B? 若存在,请找出一个来。 (6) (10分)计算An(这里整数n ≥ 1),其中A如下
λ 1
A
=
λ
1 λ
1
.
λ
答案应该是一个矩阵,并且每项是λ, n的表达式。
1
相关文档
最新文档