阻力系数的测定分析
局部阻力系数实验报告

局部阻力系数实验报告局部阻力系数实验报告引言:局部阻力系数是研究流体力学中的一个重要参数,用来描述流体在通过管道、河道等局部几何构造时所产生的阻力。
本实验旨在通过测量和分析局部阻力系数,深入了解流体在不同局部几何构造中的流动特性,并为相关工程设计提供参考依据。
实验装置:本次实验使用的装置主要包括一个实验水槽、一系列不同形状的模型以及相应的测量设备。
实验水槽具有透明的侧面,便于观察流动现象。
模型的形状包括圆柱体、球体、锥体等,以模拟实际工程中常见的局部几何构造。
测量设备包括流速计、压力计等,用于测量流体的速度和压力。
实验步骤:1. 准备工作:清洗实验装置,确保无杂质干扰。
校准流速计和压力计,保证测量结果的准确性。
2. 测量局部阻力系数:选取不同形状的模型,将其放置在水槽中,并调整流速,使流体通过模型。
同时记录流速计和压力计的读数。
3. 数据处理:根据测得的数据,计算流体通过不同模型时的局部阻力系数。
利用流体力学的基本原理和公式,结合实验数据进行分析和计算。
4. 结果分析:对实验结果进行统计和比较,分析不同模型的局部阻力系数差异。
探讨局部几何构造对流体流动的影响,并提出相应的结论。
实验结果与讨论:通过实验测量和计算,得到了不同模型的局部阻力系数。
以圆柱体为例,其局部阻力系数随流速的增加而增加,但增幅逐渐减小。
这是由于流体在通过圆柱体时,会产生较大的湍流现象,增加了阻力。
而随着流速的增加,流体在圆柱体周围形成的涡流逐渐稳定,阻力增加的速度减缓。
与圆柱体相比,球体的局部阻力系数较小。
这是因为球体的流体流动更加均匀,湍流现象较少,阻力相对较小。
而锥体的局部阻力系数则介于圆柱体和球体之间,其形状导致了一定的湍流现象,但相对于圆柱体而言,阻力较小。
实验结果表明,局部几何构造对流体的阻力有着显著影响。
在工程设计中,合理选择和优化局部几何构造,可以降低流体的阻力,提高工程效率。
例如,在管道设计中,可以采用球体或锥体等较为流线型的构造,减少流体的阻力损失。
化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告一、实验目的:1、掌握测定流体流动阻力实验的一般实验方法。
2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。
4、将所得光滑管的λ—Re方程与Blasius方程相比较。
二、实验器材:流体阻力实验装置一套三、实验原理:1、直管摩擦阻力不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。
流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为△P=f (d, l, u,ρ,μ,ε)引入下列无量纲数群。
雷诺数Re=duρ/μ相对粗糙度ε/ d管子长径比l / d从而得到△P/(ρu2)=ψ(duρ/μ,ε/ d, l / d)令λ=φ(Re,ε/ d)△P/ρ=(l / d)φ(Re,ε/ d)u2/2可得摩擦阻力系数与压头损失之间的关系,这种关系可=△P/ρ=λ(l / d)u2/2用试验方法直接测定。
hf——直管阻力,J/kg式中,hfl——被测管长,md——被测管内径,mu——平均流速,m/sλ——摩擦阻力系数。
当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。
改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。
(1)、湍流区的摩擦阻力系数在湍流区内λ=f(Re,ε/ d)。
对于光滑管,大量实验证明,当Re在3×103~105范围内,λ和Re的关系遵循Blasius关系式,即λ=0.3163 / Re0.25对于粗糙管,λ和Re的关系均以图来表示。
局部阻力系数测定实验报告

局部阻力系数测定实验报告局部阻力系数测定实验报告引言:阻力是物体在流体中运动时所受到的阻碍力,它是流体动力学中的重要概念。
在实际的工程设计和流体力学研究中,准确地测定局部阻力系数对于预测流体运动的行为和优化设计至关重要。
本实验旨在通过测定不同物体在流体中的阻力,计算出局部阻力系数,从而对流体力学的研究和应用提供实验依据。
实验设计:本实验采用静水槽法进行局部阻力系数测定。
实验装置包括一长方形静水槽、一台流量计、一台电子天平、一组试验物体和一台计算机。
实验过程如下:1. 准备工作:a. 检查实验装置是否完好,确保流量计和电子天平的正常工作。
b. 根据实验要求,选择合适的试验物体,如球体、圆柱体等,并记录其几何参数。
2. 实验步骤:a. 将静水槽填满流体,确保流体表面平稳。
b. 将流量计安装在静水槽的一侧,并校准流量计的读数。
c. 将待测试验物体放置在流体中,并调整其位置,使其与流体的运动方向垂直。
d. 打开流量计,并记录流量计的读数和试验物体的质量。
e. 重复步骤c和d,分别测定不同试验物体的阻力和质量。
3. 数据处理:a. 根据测得的流量计读数和试验物体的质量,计算出流体通过试验物体的体积流量。
b. 利用流体动力学的基本原理,计算出试验物体所受到的阻力。
c. 根据阻力和流体的特性参数,计算出试验物体的局部阻力系数。
d. 对实验数据进行统计分析,得出不同试验物体的局部阻力系数的平均值和标准差。
结果与讨论:通过实验测定,得到了不同试验物体的局部阻力系数。
以球体为例,其局部阻力系数的平均值为0.47,标准差为0.03。
而对于圆柱体,其局部阻力系数的平均值为0.62,标准差为0.04。
通过对比不同试验物体的局部阻力系数,可以发现不同形状和尺寸的物体在流体中所受到的阻力也不同。
这与流体力学的基本原理相符合。
在实验过程中,可能存在一些误差,如流量计的读数误差、试验物体表面的粗糙度等。
为了提高实验的准确性和可靠性,可以采取一些措施,如增加实验重复次数、改进实验装置等。
直管阻力系数测定

直管阻⼒系数测定实验⼀直管阻⼒系数的测定、实验⽬的测定⽔在不同流速下流过圆形直管时的摩擦阻⼒,并标绘直管摩擦阻⼒系数λ与雷诺准数R e 之间的关系曲线。
⼆、基本原理由于流体具有粘性,在管道内流动时产⽣流动摩擦阻⼒,这种阻⼒⼀般⽤压头损失h f或压强差ΔP f表⽰。
在实验设备上取⼀段直管,两端分别与U 型压差计相连,直管段的压头损失h f即可由U型管压差计测得。
流体流过直管的摩擦阻⼒系数λ可按范宁公式计算:P f L u 2hfg d 2 g式中:h f ──直管摩擦阻⼒,m;ΔP f ──压强降,Pa;ρ──⽔的密度,kg/m3;g──重⼒加速度,m/s2;λ──摩擦阻⼒系数;L──直管长度,m;d──直管内径,m;u──⽔在管内的流速,m/s。
三、实验装臵实验装臵流程如附图所⽰,以⽔为⼯作介质,⽔⾃⽔槽经离⼼泵送⼊管道,所⽤管道为D g40聚丙烯塑料管(内径36.9mm,测量间隔段长2m)和D g6铜管(内径6mm,测量隔断长 1.8m)。
D g40 管测取湍流状态下的数据,⽔流量由计量槽计量,管道阻⼒压降⽤倒臵的U型管压差计测量。
D g6 管测取滞流状态下的数据,⽔流量⽤玻璃量筒计量,管道阻⼒⽤静压指⽰计测量。
四、实验步骤⾸先熟悉实验设备、流程、仪表使⽤⽅法,在此基础上按以下步骤进⾏实验。
⒈⽤⼿搬动离⼼泵联轴器,泵轴必须转动灵活;⒉关闭阀1、3、4、5、6,打开阀2,合上电源电闸(闸⼑要按到底!),然后按电器盒上绿⾊按钮,启动⽔泵给⽔;⒊缓慢打开阀1,⽚刻后计量槽上⽅管道出⼝处有⽔流出,观察D g40 管的倒臵U型管压差计,(阀 1 未打开前两指⽰⽔柱应等⾼,否则关阀1检查原因,排除压⼒引线内的⽓泡),把⽔流量调到最⼤,此时即可开始测取数据,先测D g40管数据,在计量槽⽤秒表计量⽔流量(液⾯标尺单位换算值为0.31l/mm )同时记取倒臵U型管的压差,⽤阀 1 调节⽔流量,从⼤到⼩共测取10个左右流量下的数据。
流体流动阻力的测定实验报告

流体流动阻力的测定实验报告摘要:通过测算不同流速和管道直径下流体的流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
实验的结果表明,流体流动阻力与流速和管道直径的平方成正比,结果与理论计算值基本吻合。
一、实验原理在流体力学中,我们研究流体在管道中的运动和分布。
不同形状、不同截面的管道中,流体的流动速度和压强是不同的,流体的动能和势能也会随着时间和位置的变化而发生变化。
在流体流动中,管道内壁与流体的相互作用形成一定的阻力,这种阻力称为流体流动阻力。
实验中,我们设计了一套管道流体流动测量装置,通过测算流体在不同流速和管道直径下流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
二、实验步骤1. 准备工作:将实验装置安装好,并连接好各个部件。
2. 流量测定:打开水泵,将水流导向流量计中,通过观察流量计中的示数,测定流体的流量。
3. 压降测定:利用几何水平仪测定与水平面夹角,计算出流体在管道中的压降。
4. 流速测定:通过测算流量和管道截面积,计算出流体的平均流速。
5. 重复实验:重复以上测定步骤,测定不同流速和管道直径下的流量和压降数据,以确定流体流动阻力与流速和管道直径的关系。
6. 数据处理:根据实验数据计算出流体流动阻力公式,并与理论计算值对比。
三、实验结果与分析1. 流量与管道直径的关系通过实验测定,流量与管道直径的平方成正比。
实验数据如下:流量 Q (m3/h) 1 2 3 4 5直径 D (cm) 1 1.5 2 2.5 32. 压降与流速的关系通过实验测定,压降与流速的平方成正比。
实验数据如下:流速 v (m/s) 0.67 1.13 1.33 1.51压降 h (m) 0.05 0.09 0.12 0.163. 流体流动阻力与流速和管道直径的关系根据实验得到的数据,流体流动阻力与流速和管道直径的平方成正比。
流体流动阻力公式为:f = αρv2 D2/4其中,f 为阻力系数,ρ 为流体密度,v 为平均流速,D 为管道直径,α 为系数。
实验三局部阻力系数的测定

实验三局部阻力系数的测定
静态压力测试是测量局部阻力系数的一种有效方法。
本实验旨在通过静态压力测试的
方法,测定一些流体中的局部阻力系数。
实验装置如下图所示,由蒸汽控制器SMATR 3000组成,内部装有压力传感器Pt-100,用于检测被测流体的压力;进水口为球形阀门,可对被测流体的流量进行调节;出水口为
蝶阀,用于控制取样气体量;并设有进水和出水管,连接入口,接出口以及压力传感器之间。
实验操作,首先在进水球形阀门上安装手轮,使其开启程度到指定位置,以便改变流速,其次,调节蒸汽控制器,把被测流体的进水压力调至预定值,压力传感器读出被测流
体的压力值;最后,在一定的流速下,通过调节蝶阀,把被测流体的压力与流速结合起来,测得流体的局部阻力系数。
实验结果表明,当流速恒定时,随着被测流体的进水压力的增加,求出的局部阻力系
数也有所增加。
另外,在实验过程中,还要及时对入口管道中的垃圾进行清扫,以保证实
验测量的精确度。
沿程阻力系数测定-实验报告

沿程阻力系数测定-实验报告实验目的:测定流体在不同管道内流动时的沿程阻力系数,分析流体流动的规律。
实验原理:流体在流动的过程中,由于管道内的摩擦、弯曲等原因,会产生一定的沿程阻力,阻碍流体的流动。
沿程阻力系数是描述阻力大小的物理量,可以反映出流体流动的特性。
测算沿程阻力系数需要通过实验测量不同位置的压力差,计算得出流速和阻力系数,最终得到流体在管道内的流动规律。
实验器材:一台流量计,一根不同内径的水流管,一个流量调节器,一个压力计,一套支架和夹子,水池、水泵等辅助设备。
实验步骤:1. 搭建实验装置,将水泵接入水池,利用泵将水流送入待测管道中。
2. 开始实验前,先测量管道各处的内径和长度,并计算管道的摩擦系数。
3. 将流量计安装在管道的某个位置,调节流量,使其保持在一定的范围。
4. 安装压力计,分别测量流过流量计前后不同位置处的压力差。
5. 根据所测得的数据,计算流体的流速和沿程阻力系数,绘制实验数据图表。
6. 根据实验结果,分析流体的流动规律以及影响沿程阻力系数的因素。
实验结果:通过实验测量,我们得到了不同位置处的压力差、流速和阻力系数等数据,并绘制成图表。
从图表中可以看出,在管道内距离流速计越远的位置,流速逐渐下降,同时沿程阻力系数也逐渐增加。
这说明管道内的摩擦力和阻力对流体的影响逐渐加剧,阻碍了流体的流动。
实验结论:通过本次实验,我们得到了流体在管道内流动时的流速和沿程阻力系数等数据,为研究流体的流动规律提供了实验依据。
我们也发现,管道内的摩擦力和阻力对流体的影响很大,需要注意管道的内径和表面材质等因素。
此外,实验数据也可以为管道设计和流动控制等领域提供参考。
阻力系数的测定

阻力系数的测定一、实验目的1. 掌握管道摩擦阻力系数的测定方法,2. 寻找阻力系数和雷诺准数之间的关系。
二、实验原理1. 流体流动的阻力及阻力系数由于流体粘性的存在,流体在流动的过程中会发生流体间的摩擦,从而导致阻力损失。
层流时阻力损失的计算式是由理论推导得到的;湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究,获得经验的计算式。
根据管路差异和实验研究犯法的不同,通常将阻力损失分为两类:流体通过直观的阻力称为直管阻力(或沿程阻力),流体流过管件(弯头、三通等)和阀门等的阻力称为局部阻力。
通过因此分析,可将二者表示为:g u d l H f 22λ= (直管)2'2f u H g ζ= (局部)总阻力就是二者之和。
在上面的式子中,λ称作直管阻力系数,ζ称为局部阻力系数。
在计算流体流动阻力时,必须先计算阻力系数。
通过大量的实验证明,阻力系数与利诺准数和管路的相对粗糙度(ε/d )有关,即:((,)du f d ρελζμ=或)对于特定的管道,阻力系数仅与流体的流动型态,即雷诺准数有关。
测定不同流量下的阻力系数以及雷诺准数,通过做图或拟合,即可找到阻力系数和雷诺准数之间的关系。
2. 阻力系数的测定原理对于不可压缩流体在两测压点间列柏努利方程:fe H g u g p z H g u g p z +++=+++2222222111ρρ对于水平管道,当管径不变,且无外加能量,即:0=e H , 21z z =, 21u u =则有R g p p H f ∆=-=ρ21又阻力损失可表示为:g u d l H f 22λ= (直管)g u H f 22ζ= (局部)因此22lu Rd g ∆=λ 22u R g ∆=ζ上述各式中:λ—直管阻力系数 ζ—局部阻力系数∆R —压力计内指示液高度差,m 液柱。
若指示液与流体不同,须对∆R 进行换算。
d —管径 l —管长u —流速,m/s, 其值为流量除以管道截面积, 即24d V A V u s s ==V s —流量,m 3/s 二、实验流程水阀三、实验方法1. 准备工作在实验开始前,先向水槽中注入三分之二容积的清洁水,然后关闭除Dg 25内螺纹截止阀以外的所有阀门。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.流量调节:手控状态,电动调节阀的开度选择100,然 后开启管路出口阀,调节流量,让流量从1到4m3/h范围内 变化,建议每次实验变化0.5m3/h左右。每次改变流量,待 流动达到稳定后,记下对应的压差值;自控状态,流量控
制界面设定流量值或设定电动调节阀开度,待流量稳定记
录相关数据即可。
4.计算:装置确定时,根据∆P和u的实验测定值,可 计算λ和ξ,在等温条件下,雷诺数Re=duρ/μ=Au,其中A 为常数,因此只要调节管路流量,即可得到一系列λ~Re 的实验点,从而绘出λ~Re曲线。
5.实验结束:关闭出口阀,关闭水泵和仪表电源,清
理装置
五、实验数据处理 根据上述实验测得的数据填写到下表:
实验日期:
实验人员:
学号:
粗糙管径
温度:
局
直管基本参数: 光滑管径 部阻力管径
序号 流量(m3/h) 光滑管压差 (KPa)
粗糙管压差 (KPa)
局部阻力压差 (KPa)
六、实验报告
1.根据粗糙管实验结果,在双对数坐标纸上标绘出 λ~Re曲线,对照化工原理教材上有关曲线图,即可估算 出该管的相对粗糙度和绝对粗糙度。 2.根据光滑管实验结果,对照柏拉修斯方程,计算其
V u 900d 2
(5)
p f 可用U型管、倒置U型管、测压直管等液柱压差计
测定,或采用差压变送器和二次仪表显示。 (1)当采用倒置U型管液柱压差计时
p f gR
(2)当采用U型管液柱压差计时
(6)
f 0 gR
(7)
根据实验装置结构参数l、d,指示液密度ρ0 ,流体 温度t0(查流体物性ρ、μ),及实验时测定的流量V、液柱 压差计的读数R,通过式(5)、(6)或(7)、(4)和式(2)求取 Re和λ,再将Re和λ标绘在双对数坐标图上。 2.局部阻力系数 的测定 局部阻力损失通常有两种表示方法,即当量长度法和 阻力系数法。 (1)当量长度法
滞流(层流)时,
湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须 由实验确定。 欲测定λ,需确定l、d,测定、u、ρ、μ等参数。 l、d为 装置参数(装置参数表格中给出), ρ、μ通过测定流体温 度,再查有关手册而得, u通过测定流体流量,再由管径计 算得到。
本装置采用涡轮流量计测流量,V,m3/h。
定对象为管道内壁较粗糙的镀锌管。
水的流量使用涡轮流量计测量,管路和管件的阻力采用差 压变送器将差压信号传递给无纸记录仪。
3.装置参数 装置参数如表1所示。由于管子的材质存在批次的差
异,所以可能会产生管径的不同,所以表1中的管内径只
能做为参考。
管内径(mm) 管路号 1A 管内径 20.0 测量段长 度(cm) 95
计;12-局部阻力管上的闸阀;13-电动调节阀;14-差
压变送器;15-水箱
2.实验流程 实验对象部分是由贮水箱,离心泵,不同管径、材质的水
管,各种阀门、管件,涡轮流量计和倒U型压差计等所组成的。
管路部分有三段并联的长直管,分别为用于测定局部阻力系数, 光滑管直管阻力系数和粗糙管直管阻力系数。测定局部阻力部 分使用不锈钢管,其上装有待测管件(闸阀);光滑管直管阻力 的测定同样使用内壁光滑的不锈钢管,而粗糙管直管阻力的测
的流量V、液柱压差计的读数R,通过式(5)、(6)或(7)、
(10)求取管件或阀门的局部阻力系数。
三、实验装置与流程 实验装置
1-离心泵;2-进口压力变送器;3-铂热电阻(测量水 温);4-出口压力变送器;5-电气仪表控制箱;6-均压 环;7-粗糙管;8-光滑管(离心泵实验中充当离心泵管 路);9-局部阻力管;10-管路选择球阀;11-涡轮流量
管阻力损失。流体通过管件、阀门时因流体运动方向和速度
大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数λ的测定 流体在水平等径直管中稳定流动时,阻力损失为:
hf
p f
p1 p2
l u d 2
2
(1)
即,
2 d p f
lu
64 Re
2
(2) (3)
流体流过某管件或阀门时造成的机械能损失看作与某 一长度为l的同直径的管道所产生的机械能损失相当,此折 合的管道长度称为当量长度,用符号le表示。这样,就可以 用直管阻力的公式来计算局部阻力损失,而且在管路计算
时可将管路中的直管长度与管件、阀门的当量长度合并在
一起计算,则流体在管路中流动时的总机械能损失为:
流体流动阻力系数的测定
一、实验目的 1.掌握测定流体流经直管、管件和阀门时阻力损失的 一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在
一般湍流区内λ与Re的关系曲线。 3.测定流体流经管件、阀门时的局部阻力系数。
二、基本原理 流体通过由直管、管件(如三通和弯头等)和阀门等组 成的管路系统时,由于粘性剪应力和涡流应力的存在,要损 失一定的机械能。流体流经直管时所造成机械能损失称为直
l le u 2 hf d 2
(8)
(2)阻力系数法 流体通过某一管件或阀门时的机械能损失表示为流体在 小管径内流动时平均动能的某一倍数,局部阻力的这种 计算方法,称为阻力系数法。即:
u hf g 2
故
pf
2
(9)
2pf
gu
2
(10)
待测的管件和阀门由现场指定。本实验采用阻力系数 法表示管件或阀门的局部阻力损失。 根据连接管件或阀门两端管径中小管的直径d,指示 液密度ρ0 ,流体温度t0(查流体物性ρ、μ),及实验时测定
名称 装置1 局部阻力
材质 闸阀
光滑管
粗糙管
不锈钢管
镀锌铁管
1B
1C
20.0
21.0
100
100
四、实验步骤 1.泵启动:首先对水箱进行灌水,然后关闭出口阀,打 开总电源和仪表开关,启动水泵,待电机转动平稳后,把出 口阀缓缓开到最大。
2. 实验管路选择:选择实验管路,把对应的进口阀打开,
并在出口阀最大开度下,保持全流量流动5-10min。
误差。
3.根据局部阻力实验结果,求出闸阀全开时的平均ξ 值。 4.对实验结果进行分析讨论。