椭圆及其标准方程测试
《椭圆》方程典型例题20例(含标准答案).doc

+ ),2=1,得(1 + 〃)宇 一2疽乂 =0 ,典型例题一例1椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当A (2,0)为长轴端点时,。
=2, b = l,22椭圆的标准方程为:'+匕=1;(2)当A (2,0)为短轴端点时,b = 2,。
= 4,椭圆的标准方程为:土 +匕4 16说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不 能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 —个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.说明:求椭圆的离心率问题,通常有两种处理方法,一是求Q,求C,再求 比.二是列含Q 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三例3 已知中心在原点,焦点在x 轴上的椭圆与直线x+y-1 =。
交于A 、B 两点、, M 为AB 中点,0M 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.h 由题意,设椭圆方程为二+),2=1,工+顶一1 =0=hL = _L = L知】43V3— + y2 = 1 为所求.4 -说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四/ V2( 9、例4椭圆一+上=1上不同三点人3,y), B 4,- , C(x2,力)与焦点F(4,0)的25 9 k 5 /距离成等差数列.(1)求证工]+ x2 = 8 ;(2)若线段AC的垂直平分线与工轴的交点为T,求直线BT的斜率证明:(1)由椭圆方程知a = 5 , b = 3, c = 4.由圆锥曲线的统一定义知:—?匕—=上,cr aAF = a-ex} =5- — ^ .4同理CF =5一一七.5 一9•/\AF\ + |CF| = 2|BF|,且BF =—,即X] + x2 = 8 .(2)因为线段AC的中点为,所以它的垂直平分线方程为I 2 )),-心1 =也二%-4).2>1 - >,2又..•点『在人轴上,设其坐标为(工0,0),代入上式,得寸4 =若当2代一易)5 5 - /u' h -9 一259 一252%又,点A(x r yj , B(X2, %)都在椭圆上,将此式代入①,并利用凡+易=8的结论得』36"4 = -云#上一。
高中数学-椭圆的标准方程练习

高中数学-椭圆的标准方程练习学习目标:1.了解椭圆标准方程的推导过程.(难点) 2.掌握椭圆的标准方程,能根据已知条件求椭圆的标准方程.(重点) 3.能用标准方程判定曲线是否是椭圆.[自 主 预 习·探 新 知]椭圆的标准方程焦点在x 轴上 焦点在y 轴上标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形焦点坐标(-c,0),(c,0)(0,-c ),(0,c )a ,b ,c 的关系 b 2=a 2-c 21.判断正误:(1)椭圆的两种标准方程中,虽然焦点位置不同,但都有a 2=b 2+c 2.( ) (2)方程2x 2+y 2=4表示的曲线不是椭圆.( ) (3)圆是椭圆的特殊形式.( )(4)方程x 2a 2+y 22a=1(a >0),表示焦点在x 轴上的椭圆.( )【解析】 (1)√.由椭圆方程的推导过程可知a 2=b 2+c 2.(2)×.把方程2x 2+y 2=4化为标准形式为x 22+y 24=1,易知其表示的曲线是椭圆.(3)×.由圆和椭圆的定义可知其错误.(4)×.当a 2>2a ,即a >2时,方程x 2a 2+y 22a=1(a >0)才表示焦点在x 轴上的椭圆,否则不是.【答案】 (1)√ (2)× (3)× (4)×2.a =5,c =3,焦点在y 轴上的椭圆的标准方程为______.【导学号:95902077】【解析】 ∵a =5,c =3,∴b 2=25-9=16, 又∵焦点在y 轴上, ∴椭圆的方程为y 225+x 216=1.【答案】y 225+x 216=1 [合 作 探 究·攻 重 难]求椭圆的标准方程求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)经过点A (3,-2)和点B (-23,1).[思路探究] (1)利用椭圆的定义或待定系数法求解;(2)利用待定系数法求解.【自主解答】 (1)方法一:由于椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a>b >0).由题意得⎩⎪⎨⎪⎧52a 2+02b2=1,a 2=b 2+42,解得⎩⎪⎨⎪⎧a 2=25,b 2=9,所以椭圆的标准方程为x 225+y 29=1.方法二:由于椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =5+42+5-42=10,∴a =5.又c =4,∴b 2=a 2-c 2=25-16=9.故所求椭圆的标准方程为x 225+y 29=1.方法三:由于椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).因为椭圆经过点(5,0),所以a =5,又因为椭圆的焦点为(-4,0)和(4,0),所以c =4,所以b 2=a 2-c 2=9,故所求椭圆的标准方程为x 225+y 29=1.(2)方法一:①当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧32a 2+-22b 2=1-232a2+1b2=1,解得⎩⎪⎨⎪⎧a 2=15b 2=5.故所求椭圆的标准方程为x 215+y 25=1.②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧-22a2+32b 2=11a 2+-232b2=1,解得⎩⎪⎨⎪⎧a 2=5b 2=15,因为a >b >0,所以无解.所以所求椭圆的标准方程为x 215+y 25=1.方法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎪⎨⎪⎧3m +4n =112m +n =1,解得⎩⎪⎨⎪⎧m =115n =15.所以所求椭圆的标准方程为x 215+y 25=1. [规律方法]1.确定椭圆方程的“定位”与“定量”2.巧设椭圆方程(1)若椭圆的焦点位置不确定,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).(2)与椭圆x 2a 2+y 2b 2=1有相同焦点的椭圆方程可设为x 2a 2+λ+y 2b 2+λ=1.[跟踪训练]1.求焦点在y 轴上,且经过两个点(0,2)和(1,0)的椭圆的标准方程.【解】 由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b2=1(a >b >0).由于椭圆经过点(0,2)和(1,0), ∴⎩⎪⎨⎪⎧4a 2+0b 2=10a 2+1b 2=1,⇒⎩⎪⎨⎪⎧a 2=4b 2=1.故所求椭圆的标准方程为y 24+x 2=1.与椭圆有关的轨迹问题如图221P 作x 轴的垂线段PP ′,P ′为垂足.M 为直线PP ′上一点,且P ′M =λPP ′(λ为大于零的常数).当点P 在圆上运动时,点M 的轨迹是什么?为什么?图221[思路探究] 设出点M 和点P 的坐标,根据P ′M =λPP ′找到二者的联系,用点M 的坐标表示点P 的坐标,利用点P 在圆上代入可得点M 的轨迹方程,讨论λ可得点M 的轨迹.【自主解答】 设M (x ,y ),P (x 0,y 0),∵PP ′⊥x 轴,且P ′M =λPP ′,∴x =x 0,y =λy 0,即x 0=x ,y 0=1λy .∵点P (x 0,y 0)在圆x 2+y 2=1上,∴x 20+y 20=1.把x 0=x ,y 0=1λy 代入上式得x 2+y 2λ2=1.当0<λ<1时,点M 的轨迹是焦点在x 轴上的椭圆; 当λ=1时,点M 的轨迹是圆;当λ>1时,点M 的轨迹是焦点在y 轴上的椭圆.[规律方法] 求解与椭圆有关的轨迹问题,一般利用相关点法(代入法),可先设动点的坐标为(x ,y ),然后通过题设条件给出的等量关系列出等式,再化简等式得到对应的轨迹方程.[跟踪训练]2.已知点P (x 0,y 0)是椭圆x 28+y 24=1上一点,A 点的坐标为(6,0),求线段PA 中点M 的轨迹方程.【解】 设M (x ,y ),则⎩⎪⎨⎪⎧x 0+62=x ,y 0+02=y ,∴⎩⎪⎨⎪⎧x 0=2x -6,y 0=2y .∵点P 在椭圆x 28+y 24=1上,∴x 208+y 204=1.把⎩⎪⎨⎪⎧x 0=2x -6,y 0=2y 代入x 208+y 204=1,得2x -628+2y24=1,即x -322+y 2=1为所求.椭圆的定义及标准方程的应用[探究问题]1.椭圆的定义是什么?能否用一个数学式来表示椭圆的定义?【提示】 平面内与两个定点F 1,F 2距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆.即PF 1+PF 2=2a (2a >F 1F 2).2.若点P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的点,则PF 1+PF 2的值为多少?【提示】 PF 1+PF 2=2a .3.在三角形PF 1F 2中,F 1F 2的长是多少?设∠F 1PF 2=θ,结合余弦定理,PF 1·PF 2能否用椭圆方程x 2a 2+y 2b2=1(a >b >0)中的参数来表示?【提示】 F 1F 2=2c .在三角形PF 1F 2中,由余弦定理可得F 1F 22=PF 21+PF 22-2PF 1·PF 2cos θ=(PF 1+PF 2)2-2PF 1·PF 2(1+cos θ),即4c 2=4a 2-2PF 1·PF 2(1+cos θ),所以PF 1·PF 2=2b 21+cos θ.4.根据探究3的讨论,能把三角形PF 1F 2的面积表示出来吗?根据基本不等式,PF 1·PF 2和PF 1+PF 2存在不等关系吗?【提示】 S △PF 1F 2=12PF 1·PF 2sin θ=b 2sin θ1+cos θ,根据基本不等式PF 1·PF 2≤⎝⎛⎭⎪⎫PF 1+PF 222=a 2.5.设点F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 是椭圆上任意一点,则三角形PF 1F 2叫做该椭圆的焦点三角形,通过以上探究,我们解决焦点三角形问题时需要注意哪些知识?【提示】 要注意充分利用椭圆的定义、正弦定理、余弦定理(勾股定理)和三角形的面积公式,若涉及范围问题,往往要利用基本不等式解决.已知F 1,F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任意一点.(1)若∠F 1PF 2=π3,求△PF 1F 2的面积;(2)求PF 1·PF 2的最大值.[思路探究] (1)在焦点三角形PF 1F 2中,应用椭圆的定义、余弦定理和三角形的面积公式可求解;(2)利用椭圆的定义和基本不等式可求PF 1·PF 2.【自主解答】 (1)由椭圆的定义可知,PF 1+PF 2=20, ① 在△PF 1F 2中,由余弦定理,得F 1F 22=PF 21+PF 22-2PF 1·PF 2·cos∠F 1PF 2, 即122=PF 21+PF 22-PF 1·PF 2. ② ①2+②,并整理,得PF 1·PF 2=2563.∴S △PF 1F 2=12 PF 1·PF 2·sin π3=643 3.(2)由x 2100+y 264=1可知,a =10,c =6. ∴PF 1+PF 2=20, ∴PF 1·PF 2≤⎝⎛⎭⎪⎫PF 1+PF 222=100.当且仅当PF 1=PF 2=10时,等号成立.∴PF 1·PF 2的最大值是100. [规律方法]1.椭圆的定义给出了一个结论:椭圆上的点P 到两焦点F 1,F 2的距离的和为常数2a ,则已知点P 到一个焦点的距离就可以利用PF 1+PF 2=2a 求出该点到另一个焦点的距离.2.椭圆上一点P 与椭圆的两焦点F 1、F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识.3.对于求焦点三角形的面积,若已知∠F 1PF 2,可利用S =12ab sin C 把PF 1·PF 2看成一个整体,运用公式PF 21+PF 22=(PF 1+PF 2)2-2PF 1·PF 2及余弦定理求出PF 1·PF 2,而无需单独求出,这样可以减少运算量.[跟踪训练]3.已知椭圆x 24+y 22=1的左、右两个焦点分别是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是__________.【导学号:95902078】【解析】 因为x 24+y 22=1,焦点在x 轴上,则a =2,由椭圆定义:|PF 1|+|PF 2|=4,|F 1F 2|=22,又|PF 1|-|PF 2|=2,可得|PF 1|=3,|PF 2|=1,由12+(22)2=9,所以△PF 1F 2是直角三角形,S △PF 1F 2=12|PF 2|·|F 1F 2|= 2.【答案】 2[构建·体系][当 堂 达 标·固 双 基]1.设P 是椭圆x 225+y 216=1上的一点,F 1,F 2是椭圆的两个焦点,则PF 1+PF 2=________.【导学号:95902079】【解析】 由标准方程得a 2=25,∴2a =10,由椭圆定义知PF 1+PF 2=2a =10. 【答案】 102.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为 ________.【解析】 c =1,a =2,∴b 2=a 2-c 2=3.∴椭圆的方程为x 24+y 23=1.【答案】x 24+y 23=1 3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.【导学号:95902080】【解析】 由于椭圆焦点在x 轴上,∴⎩⎪⎨⎪⎧a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧a +2a -3>0,a >-6.⇔a >3或-6<a <-2.【答案】 a >3或-6<a <-24.已知点P 为椭圆x 249+y 224=1上一点,F 1,F 2为椭圆的焦点,若∠F 1PF 2为直角,则PF 1·PF 2=__________.【解析】 由∠F 1PF 2为直角得PF 21+PF 22=F 1F 22,(PF 1+PF 2)2-2PF 1·PF 2=F 1F 22. 又a 2=49,b 2=24得c 2=25,所以142-2PF 1·PF 2=102得PF 1·PF 2=48. 【答案】 485.已知椭圆过点P ⎝ ⎛⎭⎪⎫35,-4和点Q ⎝ ⎛⎭⎪⎫-45,3,求此椭圆的标准方程. 【导学号:95902081】【解】 设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ), 则⎩⎪⎨⎪⎧925m +16n =1,1625m +9n =1,∴⎩⎪⎨⎪⎧m =1n =125.∴椭圆方程为x 2+y 225=1.。
高中数学 专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1(2021年整理)

高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1的全部内容。
椭圆及其方程(时间:25分,满分55分)班级姓名得分一、选择题1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( ) A.椭圆B.直线C.圆D.线段[答案] D2.中心在原点,焦点在坐标轴上,且过两点(4,0)、(0,2)的椭圆方程为() A.错误!+错误!=1 B。
错误!+错误!=1C。
错误!+错误!=1 D。
错误!+错误!=1[答案]D[解析]解法一:验证排除:将点(4,0)代入验证可排除A、B、C,故选D.解法二:设椭圆方程为mx2+ny2=1(m〉0,n>0),∴错误!,∴错误!,故选D。
3.椭圆ax2+by2+ab=0(a〈b〈0)的焦点坐标是()A.(±错误!,0)B.(±错误!,0)C.(0,±错误!)D.(0,±错误!)[答案]D[解析] ax2+by2+ab=0可化为错误!+错误!=1,∵a〈b〈0,∴-a>-b>0,∴焦点在y轴上,c=-a+b=错误!,∴焦点坐标为(0,±错误!).4.“1<m〈2”是“方程错误!+错误!=1表示的曲线是焦点在y轴上的椭圆”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案]C[解析] 方程错误!+错误!=1表示的曲线是焦点在y轴上的椭圆,∴错误!,∴1<m<2,故选C。
椭圆的定义与标准方程(3)含解析

椭圆的定义与标准方程(3)班级:____________ 姓名:__________________一、选择题1.若曲线x 21-k +y 21+k=1表示椭圆,则k 的取值范围是( ) A .k >1B .k <-1C .-1<k <1D .-1<k <0或0<k <12.焦点坐标为(0,3),(0,-3),长轴长为10,则椭圆的标准方程为( )A .x 2100+y 291=1 B .y 2100+x 291=1 C .y 225+x 216=1 D .x 225+y 216=1 3.已知椭圆x 28+y 2=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值是( ) A .8 B .2 2 C .10 D .4 24.已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程为( )A .x 236+y 220=1(x ≠0) B .x 220+y 236=1(x ≠0) C .x 26+y 220=1(x ≠0) D .x 220+y 26=1(x ≠0) 5.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1 B .x 24+y 25=1 C .x 25+y 2=1或x 24+y 25=1 D .以上答案都不对6.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为 ( )A .x 28+y 26=1 B .x 216+y 26=1 C .x 24+y 22=1 D .x 28+y 24=1 7.(多选题)下列命题是真命题的是( )A .已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆B .已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段C .到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹为椭圆D .若点P 到定点F 1(-4,0),F 2(4,0)的距离之和等于点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和,则点P的轨迹为椭圆二、填空题8.已知椭圆中心在坐标原点,焦点在x轴上,椭圆与x轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为.9.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1),P2(-3,-2),则椭圆的方程为.10.如图所示,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2=.11.已知A(-1,0),C(1,0)是椭圆C的两个焦点,过C且垂直于x轴的直线交椭圆于M、N两点,且|MN|=3,则椭圆的方程为,若B是椭圆上一点,则△ABC的最大面积为.12.已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°,椭圆的短半轴长为b=3,则△PF1F2的面积为.三、解答题13.已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.14.P是椭圆+y2=1上的点,F1,F2是椭圆的两个焦点.(1)当∠F1PF2=60°时,求△F1PF2的面积;(2)当∠F1PF2为钝角时,求点P横坐标的取值范围.15.一动圆过定点A(2,0),且与定圆x2+4x+y2-32=0内切,求动圆圆心M的轨迹方程.椭圆的定义与标准方程(3)班级:____________ 姓名:__________________ 一、选择题1.若曲线x 21-k +y 21+k =1表示椭圆,则k 的取值范围是( )A .k >1B .k <-1C .-1<k <1D .-1<k <0或0<k <1D [∵曲线x 21-k +y 21+k =1表示椭圆,∴⎩⎪⎨⎪⎧ 1-k >0,1+k >0,1-k ≠1+k ,解得-1<k <1,且k ≠0.]2.焦点坐标为(0,3),(0,-3),长轴长为10,则椭圆的标准方程为( )A .x 2100+y 291=1B .y 2100+x 291=1C .y 225+x 216=1D .x 225+y 216=1C [由题意a =5,c =3,且焦点在y 轴上,∴b =52-32=4,∴椭圆的标准方程为y 225+x 216=1.]3.已知椭圆x 28+y 2=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值是() A .8 B .2 2 C .10 D .4 2A [由椭圆的定义得,|PF 1|+|PF 2|=2a =42,∴|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=8(当且仅当|PF 1|=|PF 2|时取等号).]4.已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程为( )A .x 236+y 220=1(x ≠0)B .x 220+y 236=1(x ≠0)C .x 26+y 220=1(x ≠0)D .x 220+y 26=1(x ≠0)B [∵△ABC 的周长为20,顶点B (0,-4),C (0,4),∴BC =8.AB +AC =20-8=12,∵12>8,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,焦点在y 轴上,∴a =6,c =4,∴b 2=20,∴点A 的轨迹是x 220+y 236=1(x ≠0).]5.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1B .x 24+y 25=1 C .x 25+y 2=1或x 24+y 25=1 D .以上答案都不对C [直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1. 当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆标准方程为y 25+x 24=1.] 6.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为 ( )A .x 28+y 26=1 B .x 216+y 26=1 C .x 24+y 22=1 D .x 28+y 24=1 A [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2, 联立⎩⎪⎨⎪⎧ 4a 2+3b 2=1,c 2=a 2-b 2,得a 2=8,b 2=6,c a =12,故椭圆方程为x 28+y 26=1.] 7.(多选题)下列命题是真命题的是( )A .已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆B .已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段C .到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹为椭圆D .若点P 到定点F 1(-4,0),F 2(4,0)的距离之和等于点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和,则点P 的轨迹为椭圆BD [A 中2<2,故点P 的轨迹不存在;B 中2a =|F 1F 2|=4,所以点P 的轨迹是线段F 1F 2;C 中到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹是线段F 1F 2的垂直平分线(y 轴);D 中点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和为410>8,故点P 的轨迹为椭圆.]二、填空题 8.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为 .x 24+y 23=1 [由题意可得⎩⎪⎨⎪⎧ a +c =3,a -c =1.∴⎩⎪⎨⎪⎧a =2,c =1. 故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.] 9.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为 .x 29+y 23=1 [设椭圆方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ). ∵椭圆经过点P 1,P 2, ∴点P 1,P 2的坐标适合椭圆方程.则⎩⎪⎨⎪⎧ 6m +n =1, ①3m +2n =1, ②①②两式联立,解得⎩⎨⎧ m =19,n =13.∴所求椭圆方程为x 29+y 23=1.] 10.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2= .23 [由题意S △POF 2=34c 2=3,∴c =2, ∴a 2=b 2+4.∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得1b 2+4+3b2=1,解得b 2=23.] 11.(一题两空)已知A (-1,0),C (1,0)是椭圆C 的两个焦点,过C 且垂直于x 轴的直线交椭圆于M 、N 两点,且|MN |=3,则椭圆的方程为 ,若B 是椭圆上一点,则△ABC 的最大面积为 .x 24+y 23=1 3 [设椭圆的方程为x 2a 2+y 2b 2=1,令x =c ,则y =±b 2a ,由|MN |=3,得2b 2a=3,又a 2-b 2=c 2=1,∴a 2=4,b 2=3,所以椭圆的方程为x 24+y 23=1,结合椭圆知当B 点为椭圆与y 轴交点时,S △ABC 的面积最大,此时S △ABC =12×2×3=3.] 12.已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°,椭圆的短半轴长为b =3,则△PF 1F 2的面积为 . 3 [设|PF 1|=m ,|PF 2|=n ,则根据椭圆的定义,得m +n =2a .①又∵△F 1PF 2中,∠F 1PF 2=60°,∴根据余弦定理,得4c 2=m 2+n 2-2mn cos 60°,即m 2+n 2-mn =4c 2.② ∴①②联解,得mn =43b 2, 根据正弦定理,得△PF 1F 2的面积为:S =12mn sin 60°=12×43×3×32=3.] 三、解答题13.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b2=1,又a =3b ,解得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1. 当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0). 由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1. 故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1. 14.P 是椭圆+y 2=1上的点,F 1,F 2是椭圆的两个焦点.(1)当∠F 1PF 2=60°时,求△F 1PF 2的面积;(2)当∠F 1PF 2为钝角时,求点P 横坐标的取值范围.解:(1)由椭圆的定义,得|PF 1|+|PF 2|=4,①且F 1(-,0),F 2(,0).在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°.②由①②得|PF 1||PF 2|=.所以=|PF 1||PF 2|sin ∠F 1PF 2=.(2)设点P(x,y),由已知∠F 1PF 2为钝角,得·<0,所以(x+,y)·(x-,y)<0,又y 2=1-, 所以x 2<2,解得-<x<,所以点P 横坐标的取值范围是(-,). 15.一动圆过定点A (2,0),且与定圆x 2+4x +y 2-32=0内切,求动圆圆心M 的轨迹方程.[解] 将圆的方程化为标准形式为(x +2)2+y 2=62,∴圆心坐标为B (-2,0),半径为6,如图:由于动圆M 与已知圆B 相内切,设切点为C .∴已知圆(大圆)半径与动圆(小圆)半径之差等于两圆心的距离,即|BC |-|MC |=|BM |, 而|BC |=6,|CM |=|AM |,∴|BM |+|AM |=6.根据椭圆的定义知M 的轨迹是以点B (-2,0)和点A (2,0)为焦点的椭圆,且2a =6. ∴a =3,c =2,b =a 2-c 2=5,∴所求圆心的轨迹方程为x 29+y 25=1.。
椭圆的定义、标准方程及几何性质(分层练习)

椭圆的定义、标准方程及几何性质(分层练习)[基础训练]1.[2020天津河北区模拟]已知椭圆C 的中心在原点,焦点在x 轴上,且短轴长为2,离心率为255,则该椭圆的标准方程为( )A.x 25+y 2=1 B .x 23+y 2=1 C.x 24+y 2=1D .y 24+x 2=1答案:A 解析:由题意设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则2b =2,故b =1.又c a =255,a 2=b 2+c 2,∴a 2=5.∴椭圆C 的标准方程为x 25+y 2=1.故选A.2.[2020河北邯郸一模]椭圆x 212+y 23=1的焦点为F 1,F 2,点P 在椭圆上,如果线段PF 2的中点在y 轴上,那么|PF 2|是|PF 1|的( )A .7倍B .5倍C .4倍D .3倍答案:A 解析:设线段PF 2的中点为D ,则|OD |=12|PF 1|,且OD ∥PF 1, ∵OD ⊥x 轴,∴PF 1⊥x 轴. ∴|PF 1|=b 2a =323=32.又∵|PF 1|+|PF 2|=43, ∴|PF 2|=43-32=732=7|PF 1|. ∴|PF 2|是|PF 1|的7倍.3.[2020黑龙江哈尔滨六中模拟]设椭圆C :x 24+y 2=1的左焦点为F ,直线l :y =kx (k ≠0)与椭圆C 交于A ,B 两点,则|AF |+|BF |的值是( )A .2B .23C .4D .43答案:C 解析:设椭圆的右焦点为F 2,连接AF 2,BF 2.因为|OA |=|OB |,|OF |=|OF 2|,所以四边形AFBF 2是平行四边形,所以|BF |=|AF 2|,所以|AF |+|BF |=|AF |+|AF 2|=2a =4.故选C.4.[2020河南洛阳一模]已知椭圆x 211-m +y 2m -3=1的焦点在y 轴上,且焦距为4,则m 等于( )A .5B .6C .9D .10答案:C 解析:由椭圆x 211-m +y 2m -3=1的长轴在y 轴上,焦距为4,可得m -3-11+m =2,解得m =9.故选C.5.[2020安徽宣城一模]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM→·NF →=0,则椭圆的离心率为( ) A.32 B .2-12 C.3-12D .5-12答案:D 解析:由题意知,M (-a,0),N (0,b ),F (c,0), ∴NM→=(-a ,-b ),NF →=(c ,-b ). ∵NM→·NF →=0, ∴-ac +b 2=0,即b 2=ac . 又知b 2=a 2-c 2,∴a 2-c 2=ac . ∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去). ∴椭圆的离心率为5-12, 故选D.6.[2020安徽六安一中模拟]点P 在椭圆C 1:x 24+y 23=1上,C 1的右焦点为F ,点Q 在圆C 2:x 2+y 2+6x -8y +21=0上,则|PQ |-|PF |的最小值为( )A .42-4B .4-42C .6-25D .25-6答案:D 解析:设椭圆的左焦点为F 1, 则|PQ |-|PF |=|PQ |-(2a -|PF 1|)=|PQ |+|PF 1|-4, 故要求|PQ |-|PF |的最小值, 即求|PQ |+|PF 1|的最小值, 圆C 2的半径为2,所以|PQ |+|PF 1|的最小值等于|C 2F 1|-2=[-1-(-3)]2+(0-4)2-2=25-2,则|PQ |-|PF |的最小值为25-6,故选D.7.[2020山东临沂一模]已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|P A |的最大值和最小值分别是________.答案:237和2 解析:设P (x 0,y 0),则|P A |=x 20+(y 0-5)2=x 20+y 20-10y 0+25.∵点P 为椭圆x 2+2y 2=98上的一个动点,∴x 20+2y 20=98,∴x 20=98-2y 20, ∴|P A |=98-2y 20+y 20-10y 0+25=-(y 0+5)2+148. ∵-7≤y 0≤7,∴当y 0=-5时,|P A |max =237; 当y 0=7时,|P A |min =2.8.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.解:(1)设椭圆右焦点F 2的坐标为(c,0). 由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2. 又b 2=a 2-c 2,则c 2a 2=12.所以椭圆的离心率e =22. (2)由(1)知,a 2=2c 2,b 2=c 2, 故椭圆方程为x 22c 2+y 2c 2=1.设P (x 0,y 0),因为F 1(-c,0),B (0,c ), 所以F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ). 由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.① 因为点P 在椭圆上,故x 202c 2+y 20c 2=1.② 由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c , 代入①,得y 0=c3,即点P 的坐标为⎝ ⎛⎭⎪⎫-43c ,c 3.设圆的圆心为T (x 1,y 1).则x 1=-43c +02=-23c ,y 1=c3+c 2=23c , 进而圆的半径r =(x 1-0)2+(y 1-c )2=53c . 由已知,有|TF 2|2=|MF 2|2+r 2, 又|MF 2|=22,故有⎝ ⎛⎭⎪⎫c +23c 2+⎝ ⎛⎭⎪⎫0-23c 2=8+59c 2, 解得c 2=3.所以所求椭圆的方程为x 26+y 23=1.[强化训练]1.[2020湖北1月联考]已知椭圆C :y 2a 2+x 216=1(a >4)的离心率是33,则椭圆C 的焦距是( )A .22B .26C .42D .46答案:C 解析:由e =c a =33,得a =3c ,所以c 2=a 2-b 2=3c 2-16,所以c 2=8,因此焦距为2c =4 2.2.[2020浙江温州1月模拟]如图,设P 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的动点,F 1,F 2分别为椭圆C 的左、右焦点,I 为△PF 1F 2的内心,则直线IF 1和直线IF 2的斜率之积( )A .是定值B .非定值,但存在最大值C .非定值,但存在最小值D .非定值,且不存在最值答案:A 解析:如图,连接PI 并延长交x 轴于点G ,由内角平分线定理,可得GI IP =F 1G PF 1,GI IP =F 2GPF 2,所以GI IP =F 1G +F 2G PF 1+PF 2=2c 2a =ca=e .设P (x 0,y 0),I (x I ,y I ),G (x G,0),则x 20a 2+y 20b 2=1, 所以a 2y 20a 2-x 20=b 2.由GI IP =c a ,得GI GP =GI GI +IP =y I y 0=c a +c ,故y I =cy 0a +c,由F 2G F 1G =PF 2PF 1,即c -x G x G +c =a -ex 0a +ex 0,得x G =e 2x 0.由GI IP =c a ,得GI GP =x I -x G x 0-x G =ca +c ,所以x I =ex 0.又kIF 1=y I x I +c ,kIF 2=y Ix I -c ,所以kIF 1·kIF 2=y 2Ix 2I -c 2=c 2y 20(a +c )2c 2a2x 20-c 2=1(a +c )2·a 2y 20x 20-a 2=-b 2(a +c )2. 所以直线IF 1和直线IF 2的斜率之积是定值.故选A.3.[2020福建福州一模]已知F 1,F 2为椭圆x 24+y 2=1的左、右焦点,P 是椭圆上异于顶点的任意一点,K 点是△F 1PF 2内切圆的圆心,过F 1作F 1M ⊥PK 于M ,O 是坐标原点,则|OM |的取值范围为( )A .(0,1)B .(0,2)C .(0,3)D .(0,23)答案:C 解析:如图,延长PF 2,F 1M 相交于N 点,∵K 点是△F 1PF 2内切圆的圆心, ∴PK 平分∠F 1PF 2,∵F 1M ⊥PK ,∴|PN |=|PF 1|,M 为F 1的N 中点, ∵O 为F 1F 2中点,M 为F 1N 的中点,∴|OM |=12|F 2N |=12||PN |-|PF 2|| =12||PF 1|-|PF 2||<12|F 1F 2|=c =3, ∴|OM |的取值范围为(0,3). 故选C.4.[2020安徽蚌埠一模]已知F 1,F 2是椭圆x 24+y 23=1的左、右焦点,点A 的坐标为⎝ ⎛⎭⎪⎫-1,32,则∠F 1AF 2的平分线所在直线的斜率为( ) A .-2 B .-1 C .-3D .-2答案:A 解析:解法一:∵F 1,F 2是椭圆x 24+y 23=1的左、右焦点,∴F 1(-1,0),F 2(1,0),又A ⎝ ⎛⎭⎪⎫-1,32,∴AF 1⊥x 轴, ∵|AF 1|=32,则|AF 2|=52,∴点F 2(1,0)关于l (∠F 1AF 2的平分线所在直线)对称的点F ′2在线段AF 1的延长线上,又|AF ′2|=|AF 2|=52,∴|F ′2F 1|=1,∴F ′2(-1,-1),线段F ′2F 2的中点坐标为⎝ ⎛⎭⎪⎫0,-12, ∴所求直线的斜率为32-⎝ ⎛⎭⎪⎫-12-1-0=-2.故选A.解法二:如图.设∠F 1AF 2的平分线交x 轴于点N , ∠F 1AN =β,∠ANF 2=α.∵tan 2β=|F 1F 2||AF 1|,∴232=43=2tan β1-tan 2β,∴tan β=12或-2(舍).在Rt △AF 1N 中,tan β=|F 1N ||AF 1|,即|F 1N |32=12,∴|F 1N |=34,∴k l =tan α=tan(π-∠ANF 1)=-tan ∠ANF 1 =-|AF 1||F 1N |=-3234=-2.故选A.5.[2020江西赣州模拟]已知A ,B 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的两点,且A ,B 关于坐标原点对称,F 是椭圆的一个焦点,若△ABF 面积的最大值恰为2,则椭圆E 的长轴长的最小值为( )A .1B .2C .3D .4答案:D 解析:如图所示,设AB 的方程为ty =x ,F (c,0),A (x 1,y 1),B (x 2,y 2).联立⎩⎨⎧ty =x ,x 2a 2+y 2b 2=1可得y 2=a 2b 2b 2t 2+a2=-y 1y 2,∴△ABF 的面积S =12c |y 1-y 2| =12c (y 1+y 2)2-4y 1y 2=c a 2b 2b 2t 2+a 2≤cb ,当t =0时等号成立.∴bc =2.∴a 2=b 2+c 2≥2bc =4,a ≥2.∴椭圆E 的长轴长的最小值为4.故选D.6.已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin Csin B=________. 答案:54 解析:由题意知,A ,C 为椭圆的两个焦点, 由正弦定理,得sin A +sin C sin B=|BC |+|AB ||AC |=2a 2c =a c =54. 7.[2020山东烟台一模]已知F (2,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,过F 且垂直于x 轴的弦长为6,若A (-2,2),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________.答案:8+2 解析:设椭圆的左焦点为F ′, 由椭圆的右焦点为F (2,0),得c =2, 又过F 且垂直于x 轴的弦长为6,即2b 2a =6, 则a 2-c 2a =a 2-4a =3,解得a =4,所以|MF |+|MA |=8-|MF ′|+|MA |=8+|MA |-|MF ′|, 当M ,A ,F ′三点共线时,|MA |-|MF ′|取得最大值, (|MA |-|MF ′|)max =|AF ′|=2, 所以|MF |+|MA |的最大值为8+ 2.8.[2020河北保定一模]与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.答案:x 225+y 216=1 解析:设动圆的半径为r ,圆心为P (x ,y ), 则有|PC 1|=r +1,|PC 2|=9-r . 所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.9.已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32.(1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E ,求证:△BDE 与△BDN 的面积之比为4∶5.(1)解:设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意,得⎩⎨⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1.所以椭圆C 的方程为x24+y 2=1.(2)证明:设M (m ,n ),则D (m,0),N (m ,-n ). 由题设知,m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n .所以直线DE 的方程为y =-m +2n (x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎨⎧y =-m +2n (x -m ),y =n 2-m (x -2),得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2. 由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.10.[2020云南曲靖模拟]已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝⎛⎭⎪⎫1,32. (1)求椭圆C 的标准方程;(2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意,得⎩⎨⎧ a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理,得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4,⎩⎪⎨⎪⎧x 1+x 2=-3m ,x 1x 2=m 2-1. 由OA ⊥OB ,得OA→·OB →=0, OA →·OB →=x 1x 2+y 1y 2=x 1x 2+⎝ ⎛⎭⎪⎫32x 1+m ⎝ ⎛⎭⎪⎫32x 2+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2 =54m 2-74=0,解得m 2=75.又|AB |=1+34(x 1+x 2)2-4x 1x 2=72·4-m 2,O 到直线AB 的距离d =|m |1+34=|m |72. 所以S △AOB =12|AB |·d =12×72×4-m 2×|m |72=9110.。
椭圆定义及标准方程专项练习含解析

定义及标准方程一、单选题(共28题;共56分)1.已知椭圆+=1的两个焦点F1,F2,M是椭圆上一点,且|MF1|-|MF2|=1,则△MF1F2是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 等边三角形2.已知椭圆上的一点到左焦点的距离为6,则点到右焦点的距离为()A. 4B. 6C. 7D. 143.已知椭圆的两个焦点是,椭圆上任意一点与两焦点距离的和等于4,则椭圆C的离心率为()A. B. C. D. 24.如果方程表示焦点在轴上的椭圆,则的取值范围是().A. B. C. D.5.已知椭圆的一点到椭圆的一个焦点的距离等于6,那么点到椭圆的另一个焦点的距离等于( )A. 2B. 4C. 6D. 86.椭圆的左右焦点分别为,,一条直线经过与椭圆交于,两点,则的周长为()A. B. 6 C. D. 127.已知椭圆的一个焦点坐标为,则k的值为()A. 1B. 3C. 9D. 818.已知椭圆的中点在原点,焦点在轴上,且长轴长为,离心率为,则椭圆的方程为().A. B. C. D.9.椭圆的焦距为8,且椭圆的长轴长为10,则该椭圆的标准方程是()A. B. 或C. D. 或10.方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.11.若直线经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为()A. B. C. 或 D. 以上答案都不对12.已知椭圆C:中,,,则该椭圆标准方程为A. B. C. D.13.已知方程的曲线是焦点在轴上的椭圆,则实数的取值范围是()A. B. C. D. 且14.已知椭圆的两个焦点是,且点在椭圆上,则椭圆的标准方程是()A. B. C. D.15.P为椭圆上一点,、为左右焦点,若则△的面积为()A. B. C. 1 D. 316.已知椭圆:()的左、右焦点为,,离心率为,过的直线交于,两点.若的周长为,则的方程为()A. B. C. D.17.以双曲线的焦点为顶点,顶点为焦点的椭圆方程为( )A. B. C. D.18.椭圆的焦点在轴上,中心在原点,其短轴上的两个顶点和两个焦点恰好为边长为的正方形的顶点,则椭圆的标准方程为()A. B. C. D.19.椭圆的焦距为2,则m的值等于A. 5或3B. 8C. 5D. 或20.焦点坐标为,长轴长为10,则此椭圆的标准方程为()A. B. C. D.21.点A(a,1)在椭圆的内部,则a的取值范围是()A. -<a<B. a<-或a>C. -2<a<2D. -1<a<122.已知方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.23.椭圆的一个焦点坐标是()A. B. C. D.24.已知F1F2为椭圆的两个焦点,过F2作椭圆的弦AB,若的周长为16,椭圆的离心率,则椭圆的方程为()A. B. C. D.25.“”是“方程表示焦点在y轴上的椭圆”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件26.已知、为椭圆两个焦点,P为椭圆上一点且,则()A. 3B. 9C. 4D. 527.已知椭圆的焦点在轴上,离心率为,则的值为()A. B. C. D. 或28.方程2x2+ky2=1表示的是焦点在y轴上的椭圆,则实数k的取值范围是( )A. (0,+∞)B. (2,+∞)C. (0,2)D. (0,1)二、填空题(共17题;共19分)29.已知椭圆中心在原点,一个焦点为,且长轴长是短轴长的2倍.则该椭圆的长轴长为________;其标准方程是________.30.已知椭圆的左、右两个焦点分别为,若经过的直线与椭圆相交于两点,则的周长等于________31.已知F1,F2为椭圆的两个焦点,过F1的直线交椭圆于A,B两点,若|F2A|+|F2B|=12,则|AB|=________.32.已知两定点、,且是与的等差中项,则动点P的轨迹方程是________ .33.已知点,点B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交于点,则动点的轨迹方程为________.34.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则________.35.已知椭圆:的左、右焦点分别为、,以为圆心作半经为1的圆,为椭圆上一点,为圆上一点,则的取值范围为________.36.焦点在x轴上,短轴长等于16,离心率等于的椭圆的标准方程为________.37.椭圆的焦点为,点P在椭圆上,若,则的大小为________.38.P是椭圆上的点,F1和F2是该椭圆的焦点,则k=|PF1|·|PF2|的最大值是________。
高中数学椭圆及其标准方程

椭圆及其标准方程(45分钟 100分)一、选择题(每小题6分,共30分)1.已知焦点坐标为(0,-4),(0,4),且a=6的椭圆方程是( )A.+=1B.+=1C.+=1D.+=12.(2013·重庆高二检测)椭圆+=1的一个焦点坐标为(3,0),那么m的值为( )A.-16B.-4C.16D.43.(2013·珠海高二检测)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( )A.2B.6C.4D.124.(2013·安阳高二检测)如图,椭圆+=1上的点M到焦点F1的距离为2,N为MF1的中点,则|ON|(O为坐标原点)的值为( )A.8B.2C.4D.5.设α∈(0,),方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围是( )A.(0,)B.(0,]C.(,)D.[,)二、填空题(每小题8分,共24分)6.已知椭圆+=1的焦点在y轴上,且焦距为4,则m等于.7.(2013·汕头高二检测)已知F1,F2为椭圆+=1的两个焦点,过F1的直线交椭圆于A,B两点.若|F2A|+|F2B|=12,则|AB|= .8.F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是.三、解答题(9题,10题14分,11题18分)9.等腰直角三角形ABC中,斜边BC长为4,一个椭圆以C为其中一个焦点,另一个焦点在线段AB上,且椭圆经过A,B两点,求该椭圆的标准方程.10.已知椭圆的焦点在x轴上,且焦距为4,P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的标准方程.(2)若△PF1F2的面积为2,求P点坐标.11.(能力挑战题)已知P是椭圆+y2=1上的任意一点,F1,F2为椭圆的两焦点.(1)求|PF1|·|PF2|的最大值.(2)求|PF1|2+|PF2|2的最小值.答案解析1.【解析】选B.由条件知,椭圆的焦点在y轴上,且c=4,a=6,∴b2=a2-c2=36-16=20,∴其标准方程为+=1.2.【解析】选C.由条件知,椭圆焦点在x轴上且c=3.∴由25-m=32,得m=16.【举一反三】若题中焦点坐标由“(3,0)”改为“(0,3)”,结果如何?【解析】∵焦点坐标为(0,3),∴焦点在y轴上且c=3.由m-25=9,得m=34.3.【解析】选C.设椭圆的另一焦点为F,则|BA|+|BF|=2a=2,|CA|+|CF|=2a=2,由条件可得,△ABC的周长是|AB|+|AC|+|BC|=|BA|+|BF|+ |CA|+|CF|=4a=4.4.【解题指南】结合平面图形的性质可知ON为△MF1F2的中位线,所以首先由定义求出|MF2|,进而求得ON.【解析】选C.∵O为F1F2的中点,N为MF1的中点,∴ON∥MF2且|ON|=|MF2|.∵|MF1|+|MF2|=2a=10,∴|MF2|=10-|MF1|=10-2=8,∴ON=4.5.【解析】选C.由题意可知<,∴sinα>cosα>0,又∵α∈(0,),解得<α<.【变式备选】(2013·邵阳高二检测)“m>n>0”是“方程mx2+ny2=1表示焦点在y 轴上的椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C.m>n>0⇔0<<⇔mx2+ny2=1表示焦点在y轴上的椭圆,故选C. 6.【解析】由条件可知,2c=4,即c=2,∴(m-2)-(10-m)=c2=4,解得m=8.答案:87.【解题指南】由椭圆的定义可以求出△ABF2的周长,从而结合已知求出|AB|.【解析】由椭圆的定义可知|AF1|+|AF2|=2a=10,|BF1|+|BF2|=2a=10,∴|AB|+|AF2|+|BF2|=20,又∵|F2A|+|F2B|=12,∴|AB|=8.答案:88.【解析】设|OF2|=c,∴c2=,即c=2.∴a2=b2+4,又点P的坐标为(1,±),点P在椭圆上,∴+=1.解得b2=2.答案:2【误区警示】解题过程中,往往不能将a,b,c的意义与△POF2的边长联系起来,从而很难列出方程组求解.9.【解题指南】建立适当的坐标系,设出椭圆标准方程,而后求解椭圆中的a,b,c 即可.【解析】如图,设椭圆的方程为+=1(a>b>0),有|AM|+|AC|=2a,|BM|+|BC|=2a,两式相加,得8+4=4a,∴a=2+,|AM|=2a-|AC|=4+2-4=2.在直角三角形AMC中,∵|MC|2=|AM|2+|AC|2=8+16=24,∴c2=6,b2=4.故所求椭圆的标准方程为+=1.10.【解题指南】(1)由条件“|F1F2|是|PF1|和|PF2|的等差中项”求出a,从而得b2后写出椭圆方程.(2)根据面积可以先确定出点P的纵坐标,再代入方程求横坐标.【解析】(1)由题意知,2c=4,c=2.且|PF1|+|PF2|=2|F1F2|=8,即2a=8,∴a=4.∴b2=a2-c2=16-4=12.又椭圆的焦点在x轴上,∴椭圆的方程为+=1.(2)设P点坐标为(x0,y0),依题意知,|F1F2|·|y0|=2,∴|y0|=,y0=±,代入椭圆方程+=1得,x0=±2,∴P点坐标为(2,)或(2,-)或(-2,)或(-2,-).11.【解析】(1)∵椭圆方程为+y2=1,∴a=2,b=1,∴c=,即|F1F2|=2.又∵|PF1|+|PF2|=2a=4,∴|PF1|·|PF2|≤()2=()2=4,当且仅当|PF1|=|PF2|=2时取“=”,此时点P是短轴顶点,∴|PF1|·|PF2|的最大值为4.(2)∵|PF1|2+|PF2|2≥2|PF1|·|PF2|,∴2(|PF1|2+|PF2|2)≥|PF1|2+|PF2|2+2|PF1|·|PF2|=(|PF1|+|PF2|)2,∴|PF1|2+|PF2|2≥(|PF1|+|PF2|)2=×16=8,当且仅当|PF1|=|PF2|=2时取“=”.∴|PF1|2+|PF2|2的最小值为8.【拓展提升】揭秘焦点三角形椭圆中的焦点三角形问题由于涉及知识面广,探究性强,综合性高,成为椭圆和解三角形、三角函数以及不等式等知识交汇的命题点,是命题的“焦点”.在解决与椭圆有关的焦点三角形问题中,常用到以下结论:设F1,F2为椭圆焦点,M为椭圆上的点.(1)|MF1|+|MF2|=2a.(2)|MF1||MF2|≤=a2.(3)|MF1||MF2|=2a2-.(4)=b2tan(其中∠F1MF2=θ).关闭Word文档返回原板块高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
椭圆的标准方程和几何性质练习题

椭圆的标准方程和几何性质练习题一1. 假设曲线ax 2+by 2=1为核心在x 轴上的椭圆,那么实数a ,b 知足( )A .a 2>b 2B.1a <1bC .0<a <bD .0<b <a答案:C 由ax 2+by 2=1,得x 21a+y 21b=1,因为核心在x 轴上,因此1a >1b>0,因此0<a <b . 2. 一个椭圆中心在原点,核心F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2| 成等差数列,那么椭圆方程为( )A.2x 8+2y 6=1B.2x 16+2y 6=1C.2x 8+2y 4=1D.2x 16+2y 4=1 答案:A 设椭圆的标准方程为2222x y a b +=1(a>b>0)。
由点P(2,3)在椭圆上知2243a b+=1。
又|PF 1|,|F 1F 2|,PF 2|成等差数列,那么|PF 1|+|PF 2|=2|F 1F 2|,即2a=2×2c,c 1,a 2=又c 2=a 2-b 2,联立得a 2=8,b 2=6 3. 已知△ABC 的极点B 、C 在椭圆x 23+y 2=1上,极点A 是椭圆的一个核心,且椭圆的另外一个核心在BC 边上,那么△ABC 的周长是( )A .23 B .6 C .43 D .12答案:C 如图,设椭圆的另外一个核心为F ,那么△ABC 的周长为|AB |+|AC |+|BC |=(|AB |+|BF |)+(|AC |+|CF |)=4a =43。
4. 已知椭圆x 2+my 2=1的离心率e ∈⎝ ⎛⎭⎪⎫12,1,那么实数m 的取值范围是( )A. ⎝⎛⎭⎫0,34B. ⎝⎛⎭⎫43,+∞C. ⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞ D. ⎝⎛⎭⎫34,1∪⎝⎛⎭⎫1,43答案:C 在椭圆x 2+my 2=1中,当0<m <1时,a 2=1m ,b 2=1,c 2=a 2-b 2=1m-1,∪e 2=c 2a 2=1m -11m=1-m ,又12<e <1,∪14<1-m <1,解得0<m <34,当m >1时,a 2=1,b 2=1m ,c 2=1-1m , e 2=c 2a 2=1-1m 1=1-1m ,又12<e <1,∪14<1-1m <1,解得m >43,综上可知实数m 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《椭圆及其标准方程》测试题
1. 判断下列命题是否正确.
(1)平面内到两个定点距离之和等于定长的点的轨迹为椭圆. ( )
(2)方程()0,012222>>=+b a b
y a x 表示的曲线是椭圆. ( ) 2. 设P 是椭圆116
2522=+y x 上的点,若F 1,F 2是椭圆上的两个焦点,则21PF PF +等于( )
A.4
B.5
C.8
D.10
3. 如果方程16
2
22=++a y a x 表示焦点在x 轴上的椭圆,则实数a 的取值范围( )
A.3>a
B.2-<a
C.23-<>a a 或
D.263-<<->a a 或
4. 椭圆136
1002
2=+y x 上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是______.
5. 椭圆19
1622=+y x 的焦距是______,焦点坐标为______;若CD 为过左焦点1F 的弦,则△F 2CD 的周长为______.
6. 求符合下列条件的椭圆的标准方程:
(1)3=b ,经过点()40-,
,焦点在y 轴; (2)两个焦点坐标分别为()()0,2,0,2,
-,且过点()3,2P ; (3)椭圆经过点⎪⎭⎫ ⎝⎛-453,P ,⎪⎭
⎫ ⎝⎛-354,;。